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Chapter 1
Introduction

Superconductivity is a macroscopic quantum phenomenon discovered by H. K.
Onnes in 1911. He and his colleague observed the disappearance of electric resis-
tivity in Hg at 4.2 Kelvin (K) [39, 52]. This experimental finding opened a new era
of low temperature science. Superconductors exhibit various unusual response to
an electromagnetic field such as perfect diamagnetism, persistent current and flux
quantization. In 1957, Bardeen-Cooper-Schrieffer (BCS) explained the microscopic
mechanism of superconductivity [16]. According to BCS theory, two electrons on the
Fermi surface form a pair due to an attractive interaction mediated by phonons at a
low temperature. The electron pair is called Cooper pair. The coherent condensation
of a number of Cooper pairs causes the unusual response to electromagnetic fields.
The mean-field theory by Bogoliubov enabled us to describe the thermodynamic
properties of a superconductor as well as the linear response to electromagnetic
fields. Before publishing the BCS theory, however, a phenomenological theory by
the London brothers and that by Ginzburg-Landau explained the electromagnetic
properties of superconductors successfully. The assumptions introduced in these
phenomenological theories have been justified by the microscopic theory of super-
conductivity.

1.1 Scope of this book

It is not easy to explain all of the exotic superconducting phenomena within a
short textbook. Fortunately, historical textbooks have achieved such a goal success-
fully [51, 1]. In this textbook, we focus only on the electric transport properties in
superconducting hetero structures such as the differential conductance in a normal-
metal/superconductor (NS) junction and the Josephson current in a superconduc-
tor/insulator/superconductor (SIS) junction. Generally speaking, electric current is
obtained theoretically by calculating the Green’s function of a junction. In this text-
book, however, we do not use such technique at all. The reason is very simple. The
Green’s function is undoubtedly a powerful tool for experts but is not always useful
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2 1 Introduction

language for general researchers in solid state physics. The goal of this book is to
demonstrate exotic transport properties of a junction consisting of an unconventional
superconductor. The contents in the following sections are written to be straight to
the goal. We begin with superconducting phenomena observed in experiments to
make clear theoretical requirements to explain these phenomena. Chapters 2 and
3 are spent relating to theoretical tools and basics of superconductivity, which are
the minimum necessary items to understand the superconductivity. Therefore, read-
ers should study more details on BCS, Ginzburg-Landau, and London theories in
standard textbooks [23, 37, 42, 2, 24]. Chapters 4, 5, and 6 are the main body of
the textbook, where the transport properties of superconducting junctions are ex-
plained in terms of the Andreev reflection. The outline of the theoretical method in
these Chapters are as follows. At first, the wave functions are obtained by solving
Bogoliubov-de Gennes (BdG) equation near a junction interface. Secondly, the trans-
port coefficients are calculated by connecting the wave functions under appropriate
boundary conditions at the junction interface. Finally, the substitution of the result-
ing coefficients into the current formulas enables us to analyze transport properties
measurable in experiments. Instead of deriving the current formulas, we explain the
physical picture that relates the Andreev reflections to the transport phenomena. In
Chapter 7, we briefly discuss the anomalous proximity effect in a dirty normal metal
attached to an unconventional superconductor.

1.2 Overview of superconducting phenomena

R

T

T > Tc T < Tc

Fig. 1.1 (Left) An image of the historic plot [39, 52]. The resistance in Hg vanishes at 4.2 K.
(Right) A superconductor excludes magnetic flux at a temperature lower than Tc and a field below
a certain critical one.
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Let us begin a brief overview of superconducting phenomena with the discovery
of superconductivity in 1911. Low temperature physics might be a trend in science at
the beginning of the 20th century. The last inactive gas He became liquid at 4.2 K in
1908. A natural question would be what happen on materials near zero temperature.
The resistance R in a metal was an issue in this direction. It was accepted at that
time that a charged particle (electron) moves freely in a metal and carries the electric
current I under the bias voltage V . The Ohm’s law V = IR holds true in metals for
wide temperature range. According to kinetic theory of gas by Boltzmann, every
particle stops its motion at zero temperature. By extension, a metal might be an
insulator at zero temperature because all electrons stop their motion. According to
this assumption, the resistivity would be infinitely large at zero temperature. On the
other hand, on the basis of experimental results at that time, a group of scientists
inferred that the resistivity would go to zero at zero temperature. An electron is
scattered by the thermal vibration of ions in a metal, which is a source for a finite
resistance. At zero temperature, therefore, an electron under bias voltage would
move freely at zero temperature. The experiments by Onnes was supposed to settle
the debate over. The experimental data on Hg, however, showed the disappearance
of the resistivity at a temperature above zero as shown in Fig. 1.1. This was the
first quantum phenomenon that we observed in our history. The phenomenon was
named superconductivity. The critical temperature dividing the two transport phases
is called the transition temperature Tc . A series of experiments reported anomalies
in thermodynamic property of a superconductor at Tc . The specific heat shows a
jump at Tc , which suggested the rapid decrease of the entropy and the development
of an order below Tc .

We summarize briefly the unusual response of a superconductor to magnetic
field in what follows. The first phenomenon is called Meissner effect. An external
magnetic field H threats a normal metal at a room temperature. Far below the
transition temperature T ≪ Tc , the metal excludes a weak external magnetic field
from its interior as shown in Fig. 1.1. The magnetic flux density B in a superconductor
is zero as represented by

B = H + 4πM = 0, (1.1)

where M denotes the magnetization of a superconductor. The magnetic susceptibility
defined by M = χH results in

χ = − 1
4π
. (1.2)

A superconductor is a perfect diamagnet at a temperature far below Tc in a weak
magnetic field.

The magnetic response of a multiply-connected superconductor is more unusual.
We apply a magnetic filed to a ring at T > Tc as shown In Fig. 1.2, where we illustrate
the cooling process under a magnetic field. When a temperature is decreased down
below Tc , a ring-shaped superconductor excludes the magnetic fluxes from its arm.
After switching off a magnetic field at T ≪ Tc , magnetic fluxes are trapped at a hole
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J

Φ
T > Tc

H

T < Tc

H

H = 0

T < Tc

Fig. 1.2 Persistent current at a ring-shaped superconductor. At a higher temperature than Tc , a
uniform external magnetic field is applied as shown in the upper left figure. Keeping the magnetic
field, the superconductor is cool down to a temperature much less than Tc as shown in the upper
right figure. The magnetic field is excluded from the superconductor due to the Meissner effect.
Then the external magnetic field is switched off as shown in the lower figure. Quantized magnetic
flux Φ is left in the ring. The current persists as far as T ≪ Tc .

of the ring. According to the Maxwell equation

∇ × H =
4π
c

j, (1.3)

the magnetic fluxes left in the hole generates the electric current circulating the
ring. The current is called persistent current because it does not decrease at all even
after passing a long enough time. The results imply that the superconducting current
flows in equilibrium while the ring accommodates magnetic fluxes. We have already
known an example of similar effect in an external magnetic field H . The weak orbital
diamagnetism M = χH of a metal generates the electric current in equilibrium as
shown in Fig.1.3. The susceptibility χ is negative in a metal. Together with Eq. (1.3),
we find

j =
c

4πχ
∇ × M . (1.4)

The electric current is represented as the rotation of a vector. The total transport
current can be calculated as

J =
∫

dS · j = c
4πχ

∫
S

dS · ∇ × M =
c

4πχ

∮
C

d l · M . (1.5)

We find J = 0 because it is possible to take the integration path l outside the metal.
The magnetization is absent there, (i.e., M = 0). Namely, the current described as
j ∝ ∇×M does not flow out from the metal. As we will see later on, the supercurrent
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j

S

C

H

M

Fig. 1.3 Schematic picture of the diamagnetic current in a metal. The diamagnetic current in a
metal cannot flow out from the metal.

can be represented as j ∝ A and flows out from a superconductor. In addition to the
persistency of the current in a superconducting ring, the magnetic flux at a hole is
quantized as

Φ = nϕ0, ϕ0 =
πℏc

e
, (1.6)

where n is an integer number. Quantum mechanics tells us that the quantization of a
physical value is a result of a boundary condition of wave function. As we will see
later on, the macroscopic wave function of Cooper pairs must be single-valued in
real space, which explains the flux quantization.

The perfect screening of a magnetic field is realized when the magnetic field is
weak enough. At higher magnetic fields, the magnetic response depends on the types
of superconductors. The type I superconductor excludes magnetic fields up to the
critical magnetic field Hc as shown in Fig. 1.4(a). All the superconducting properties
disappears for H > Hc . The magnetic properties of the type II superconductor is
characterized by two critical magnetic fields: HC1 and HC2 as shown in Fig. 1.4(b).
Such a type II superconductor excludes magnetic field for H < HC1 and become a
normal metal for H > HC2 . In the intermediate magnetic fields for HC1 < H < HC2 ,
the metal is superconductive but allows the penetration of magnetic flux as quantized
vortices. The magnetic flux is quantized as ϕ0 at each vortex. As a result, the profile
of the magnetic flux becomes inhomogeneous in real space. Near HC2 , a number of
vortex form a hexagonal structure called Abrikosov lattice. Ginzburg-Landau showed
that the boundary of the two types superconductors are described by a parameter
κ = λL/ξ0, where ξ0 is called coherence length and λL is the London’s penetration
length. The meaning of the two length scales will be explained in Chap. 3. The type
I (type II) superconductors are characterized by κ < 1/

√
2 (κ > 1/

√
2).

Quantum mechanics also tells us that the wave function can be a complex number

ψ(r) = |ψ(r)|eiφ . (1.7)

The amplitude |ψ(r)|2 is proportional to the probability that we observe a particle
there. A phase uniform in real space φ does not play any role in the Schroedinger
picture for a quantum particle. As we will see later on, the superconducting state is
described phenomenologically well by the macroscopic wave function,
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BB

H

H

H c1 H c2
0

B

H
H c0

(a)

(b)

Abrikosov Latticevortex

0

0

Fig. 1.4 B − H curve in a superconductor: (a) type I and (b) type II.

ψ(r) =
√

n(r) eiφ . (1.8)

Here ψ(r) describes a quantum state consisting of NA Cooper pairs with NA ∼
1023 being the Avogadro number. Namely, NA Cooper pairs share the common
phase φ and form a phase coherent condensate. This causes the unusual response
to the electromagnetic field. The Josephson effect is a highlight of superconducting
phenomena [31]. The electric current flows between the two superconductors in
equilibrium. Figure. 1.5 shows a typical Josephson junction where an insulating
film is sandwiched by two superconductors. Today we know that the current can be
represented as

J = Jc sin(φL − φR), (1.9)

where Jc is called critical current and φL(R) is called superconducting phase at the
left (right) superconductor.

superconductor superconductor

ϕ
L

ϕ
R

J

Fig. 1.5 Two superconductors are separated by a thin insulating barrier. The electric current flows
through the junction in the presence of the phase difference across the junction.
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What is the superconducting phase? Why does the phase difference generate
the electric current? These are essential questions to which we would like to give
answers. As a first step to towards the goal, let us consider an argument by Feynman.
He assumed that the superconducting condensate including NA electrons behaves
as if it were a coherent object. This view might be enable us to introduce a wave
function of the superconducting condensate

ψL =
√

nLeiφL , ψR =
√

nReiφR , (1.10)

where nL(R) is the electron density in the superconducting condensate at the left
(right) superconductor and φL(R) is the phase of the wave function. The two super-
conducting condensates interact with each other through a thin insulating barrier.
Let us introduce the tunneling Hamiltonian between the two superconductors. The
rate equation would be given by

iℏ
∂

∂t
ψL = TI ψR, iℏ

∂

∂t
ψR = TI ψL (1.11)

where TI is the tunneling element of the insulating barrier. The electric current
density through the barrier might be given by

j = −e
∂

∂t
nL, nL = ψ

∗
L ψL . (1.12)

The time derivative of density is calculated as

∂

∂t
nL =∂tψ

∗
L ψL + ψ

∗
L ∂tψL =

i
ℏ

TI ψ
∗
R ψL − i

ℏ
TI ψ

∗
L ψR, (1.13)

=
i
ℏ

TI
√

nLnR

(
ei(φL−φR ) − e−i(φL−φR )

)
, (1.14)

= − 2
TI

ℏ
√

nLnR sin(φL − φR). (1.15)

The electric current results in

J =
2e
ℏ

TI S
√

nLnR sin(φL − φR), (1.16)

where S is the cross section of a junction. The obtained expression explains well the
Josephson effect. Feynman provides a clear view of superconductivity. His assump-
tion in Eq. (1.10) suggests that the phase characterizes the ground state of many
electrons. However, it would not be easy for us to imagine such ground state of
electrons in a metal.





Chapter 2
Theoretical tools

Today we have already known that superconductivity is a many-body effect of
electrons in a metal and that the attractive interactions between two electrons play
essential role in stabilizing the superconducting state. To describe superconducting
phenomena, we use several theoretical tools. The purpose of this section is to explain
what tools we need and how to use them. The first tool is the creation and the
annihilation operators of a particle.

2.1 Harmonic oscillators

The Hamiltonian of a harmonic oscillator in one-dimension reads,

H =
p2
x

2m
+

1
2

mω2x2, px =
ℏ
i

d
dx
, (2.1)

in the Schroedinger picture. The energy eigenvalues are given by

E = ℏω
(
n +

1
2

)
, n = 0,1,2, · · · . (2.2)

Let us introduce a length scale x0 which balances the kinetic energy and the potential
energy as,

ℏ2

2mx2
0
=

1
2

mω2x2
0 . (2.3)

The solutions x0 =
√
ℏ/mω is the characteristic length scale of the Hamiltonian. By

applying the scale transformation x = x0q, the Hamiltonian and the commutation
relation becomes

9



10 2 Theoretical tools

H = − ℏ2

2mx2
0

d2

dq2 +
1
2

mω2x2
0q2 =

ℏω
2

(
− d2

dq2 + q2
)
, (2.4)

[q, p] =i, p = −i
d

dq
. (2.5)

When we define two operators as

a =
1
√

2
(q + ip) = 1

√
2

(
q +

d
dq

)
, a† =

1
√

2
(q − ip) = 1

√
2

(
q − d

dq

)
, (2.6)

we find the commutation relations

[a,a†] =1
2
[(q + ip)(q − ip) − (q − ip)(q + ip)] , (2.7)

=
1
2

[
q2 − iqp + ipq + p2 − q2 − iqp + ipq − p2] = −i[q, p] = 1, (2.8)

[a,a] =0. (2.9)

The original operators are represented in terms of a and a† by

q =
1
√

2
(a + a†), p =

1
√

2i
(a − a†). (2.10)

Using the commutation relation, it is possible to derive

p2 + q2 =
1
2

[
−(a − a†)(a − a†) + (a + a†)(a + a†)

]
, (2.11)

=
1
2

[
−a2 + aa† + a†a − (a†)2 + a2 + aa† + a†a + (a†)2

]
, (2.12)

=2a†a + 1. (2.13)

Thus the Hamiltonian is diagonalized as

H = ℏω
(
a†a +

1
2

)
. (2.14)

The expectation value should be ⟨a†a⟩ = n so that the expectation value of H
coincides with Eq. (2.2). The operator n̂ = a†a is called number operator and
satisfies the relations

[n̂,a] =a†aa − aa†a = a†aa − (1 + a†a)a = −a, (2.15)

[n̂,a†] =a†aa† − a†a†a = a†(1 + a†a) − a†a†a = a†. (2.16)

Let us assume that |ν⟩ is the eigenstate of n̂ belonging to the eigenvalue ν,

n̂|ν⟩ = ν |ν⟩, ⟨ν′ |ν⟩ = δν,ν′ . (2.17)
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It is easy to confirm the relations

n̂a|ν⟩ =a†aa|ν⟩ = (−1 + aa†)a|ν⟩ = (−a + aν)|ν⟩ = (ν − 1)a|ν⟩, (2.18)

n̂a† |ν⟩ =a†aa† |ν⟩ = (a† + a†n̂)|ν⟩ = (a† + a†ν)|ν⟩ = (ν + 1)a† |ν⟩. (2.19)

The results suggest that a|ν⟩ is the eigenstate of n̂ belonging to ν − 1 and that a† |ν⟩
is the eigenstate of n̂ belonging to ν + 1. Therefore, it is possible to describe these
states as

a|ν⟩ = β |ν − 1⟩, a† |ν⟩ = γ |ν + 1⟩, (2.20)

with β and γ being c-numbers. Together with the Hermite conjugate of them

⟨ν |a† = β∗⟨ν − 1|, ⟨ν |a = γ∗⟨ν + 1|, (2.21)

the norm of these states are calculated as

⟨ν |a†a|ν⟩ = |β |2, ⟨ν |aa† |ν⟩ = |γ |2. (2.22)

Simultaneously, the left-hand side of these equations can be represented by

⟨ν |a†a|ν⟩ = ⟨ν |n|ν⟩ = ν, ⟨ν |aa† |ν⟩ = ⟨ν |n + 1|ν⟩ = ν + 1, (2.23)

because of the definition in Eq. (2.17). Thus we find β =
√
ν, γ =

√
ν + 1, and

a|ν⟩ =
√
ν |ν − 1⟩, a† |ν⟩ =

√
ν + 1|ν + 1⟩. (2.24)

The relation ν ≥ 0 must be true because ν is the norm of a|ν⟩ as shown in Eq. (2.23).
The recursive relation Eq. (2.24)

a|ν⟩ =
√
ν |ν − 1⟩, (2.25)

a2 |ν⟩ =
√
ν(ν − 1)|ν − 2⟩, (2.26)

aM |ν⟩ =
√
ν(ν − 1) · · · (ν − M + 1)|ν − M⟩, (2.27)

however, suggests that ν − M can be negative if we can chose large enough M . To
avoid such unphysical situation, we impose the boundary condition of the series of
the recursive relation. The eigenvalue of n̂ include zero so that

a|0⟩ = 0, (2.28)

deletes the physical state. The relation in Eq. (2.28) defines the vacuum of a particle
|0⟩. Finally we obtain

a|n⟩ =
√

n|n − 1⟩, a† |n⟩ =
√

n + 1|n + 1⟩, n̂|n⟩ = n|n⟩. (2.29)
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These relations represent the mechanics of harmonic oscillators. The operator a (a†)
is called annihilation (creation) operator because it decreases (increases) the number
of oscillator by one. The ground state is then given by |0⟩ where no harmonic
oscillator exists. The m-th excited state |m⟩ describes the state in which m oscillators
are excited on the vacuum as

|m⟩ = (a†)m
√

m!
|0⟩. (2.30)

Next we discuss the wave function in the Schroedinger picture which can be
obtained by multiplying ⟨q | to the relation a|0⟩ = 0. The representation becomes

0 = ⟨q |a|0⟩ = 1
√

2
⟨q |q + ip|0⟩ = q

√
2
⟨q |0⟩ + 1

√
2

d
dq

⟨q |0⟩. (2.31)

We obtained the differential equation

d
dq

⟨q |0⟩ = −q⟨q |0⟩. (2.32)

The solution is given by

⟨q |0⟩ = C e−
1
2 q

2
. (2.33)

The left-hand side is the definition of the wave function at the ground state and
the right-hand side is Gauss’s function. The wave function at the excited states are
calculated as

⟨q |1⟩ =⟨q |a† |0⟩ = 1
√

2

(
q − d

dq

)
C e−

1
2 q

2
, (2.34)

⟨q |n⟩ = 1
√

n!
⟨q |(a†)n |0⟩ = 1

√
n!
√

2
n

(
q − d

dq

)n
C e−

1
2 q

2
. (2.35)

This sequence generates the series of Hermite’s polynomial.
The observable values are calculated as the average of operators. Here the average

has double meanings: the average in quantum mechanics and the average in statistical
mechanics. The average of an operator Q is defined by

⟨Q⟩ = 1
Ξ

Tr
[
e−βHQ

]
, Ξ = Tr

[
e−βH

]
, (2.36)

where H is the Hamiltonian under consideration and β = 1/kBT corresponds to
the inverse of temperature with kB being the Boltzmann constant. To proceed the
calculation, we define Tr in the average and explain several identities for the trace of
matrices. Let us assume that |p⟩ is the eigen state of H belonging to the eigenvalue
of ϵp ,
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H|p⟩ = ϵp |p⟩, ⟨p′ |p⟩ = δp,p′,
∑
p

|p⟩⟨p| = 1. (2.37)

When we choose |p⟩ as the basis of the trace, the partition function can be calculated
as

Ξ = Tr
[
e−βH

]
=

∑
p

⟨p|e−βH |p⟩ =
∑
p

e−βϵp . (2.38)

The first theorem says that a value of the trace does not change under the unitary
transformation,

|q⟩ =
∑
p

Aq,p |p⟩,
∑
p

Aq,pA∗
q′,p =

∑
p

A∗
p,q′ Ap,q = δq,q′ . (2.39)

The second equation is the definition of the unitary matrix of A, (i.e., A†A = A†A =
1). The trace of Q is transformed as∑

p

⟨p|Q|p⟩ =
∑
p

∑
q,q′

⟨q′ |A∗
p,q′QAp,q |q⟩ =

∑
q,q′

[∑
p

A∗
p,q′ Ap,q

]
⟨q′ |Q|q⟩, (2.40)

=
∑
q

⟨q |Q|q⟩. (2.41)

The second theorem says a value of the trace does not change under the cyclic
permutation of operators

Tr[A B C] = Tr[C A B] = Tr[B C A]. (2.42)

It is easy to confirm the relations

Tr[A B] =
∑
p,q

Ap,qBq,p =
∑
p,q

Bq,pAp,q = Tr[B A], (2.43)

Tr[(A B)C] =Tr[C (A B)]. (2.44)

By using these theorems, we try to calculate the average of number operator in the
Hamiltonian

H =
∑
p

ϵp a†p ap, [ap,a
†
p′] = δp,p′, [ap,ap′] = 0, (2.45)

where p indicates a quantum state. The average of the number operator is calculated
by

⟨a†paq⟩ =
1
Ξ

Tr[e−βHa†paq] =
1
Ξ

Tr[aqe−βHa†p], (2.46)

=
1
Ξ

Tr[e−βH
(
eβHaqe−βH

)
a†p]. (2.47)
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The Heisenberg operator is represented as

I(β) = eβHaqe−βH, ∂β I = eβH[H,aq]e−βH . (2.48)

We find [H,aq] = −ϵqaq because of the relation

H aq =
∑
p

ϵp a†p ap aq =
∑
p

ϵp(−δp,q + aq a†p) ap = aqH − ϵqaq . (2.49)

By substituting the results into Eq. (2.48), we obtain the differential equation

∂β I(β) = −ϵq I(β). (2.50)

The solution is given by

I(β) = aqe−ϵqβ . (2.51)

The average can be represented as

⟨a†paq⟩ =
1
Ξ

Tr[e−βH a†p aq] =
1
Ξ

Tr[e−βH eβH aq e−βH a†p], (2.52)

=
1
Ξ

Tr[e−βH aqa †
p]e−ϵqβ =

1
Ξ

Tr[e−βH(δp,q + a†paq)]e−ϵqβ, (2.53)

=⟨a†paq⟩e−ϵqβ + δp,qe−ϵqβ . (2.54)

We reach the final results of average,

⟨a†paq⟩ =δp,q nB(ϵq), (2.55)

nB(ϵq) =
1

eϵqβ − 1
=

1
2

[
coth

(
ϵp

2kBT

)
− 1

]
, (2.56)

where nB is the Bose-Einstein distribution function. The results are consistent with
a fact that Eq. (2.45) describes the commutation relation of bosons.

2.2 Free electrons in a metal

The Hamiltonian for free electrons in a metal is given by

H0 =
∑
α=↑,↓

∫
dr ψ†

α(r)
[
−ℏ2∇2

2m
− ϵF

]
ψα(r), (2.57){

ψα(r),ψ†
β(r

′)
}
= δ(r − r ′)δα,β,

{
ψα(r),ψβ(r ′)

}
= 0, (2.58)

{A,B} = AB + BA. (2.59)
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To diagonalize the Hamiltonian, we apply the Fourier transformation of operator

ψα(r) =
1

√
Vvol

∑
k

ck ,αeik ·r , (2.60)

where Vvol is the volume of a metal. The basis functions satisfy the normalization
condition and completeness,

1
Vvol

∫
dr ei(k−k

′)·r = δk ,k′, (2.61)

1
Vvol

∑
k

eik ·(r−r
′) =

1
(2π)d

∫
dk eik ·(r−r

′) = δ(r − r ′), (2.62)

where d represents the spatial dimension of the metal. The anticommutation relation
of ck ,α can be derived as

{ck ,α, c
†
p,β} =

1
Vvol

∫
dr

∫
dr ′ {ψα(r),ψ†

β(r
′)}e−ik ·reip ·r

′
, (2.63)

=δα,β
1

Vvol

∫
dr e−i(k−p)·r = δα,βδk ,p, (2.64)

{ck ,α, cp,β} =0. (2.65)

Substituting the Fourier representation, the Hamiltonian becomes,

H0 =
∑
α=↑,↓

∫
dr

1
Vvol

∑
k ,k′

e−ik
′ ·rc†

k′,α

[
−ℏ2∇2

2m
− ϵF

]
eik ·rck ,α, (2.66)

=
∑
α=↑,↓

1
Vvol

∫
dr

∑
k ,k′

ei(k−k
′)·rc†

k′,α
ξk ck ,α =

∑
α=↑,↓

∑
k

ξk c†
k ,α

ck ,α, (2.67)

where ξk = ℏ2k2/(2m) − ϵF is the kinetic energy of an electron measured from the
Fermi energy ϵF = ℏ2k2

F/(2m).
Let us check the average of number operator given by

⟨c†
k ,α

cp,λ⟩ =
1
Ξ

Tr[e−βHc†
k ,α

cp,λ] =
1
Ξ

Tr[cp,λe−βHc†
k ,α

], (2.68)

=
1
Ξ

Tr[e−βH I(β)c†
k ,α

], (2.69)

I(β) =eβHcp,λe−βH . (2.70)

Since [H, cp,λ] = −ξpcp,λ, it is possible to replace I(β) by cp,λe−βξp as discussed
in Eq. (2.51). The average is then described as
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⟨c†
k ,α

cp,λ⟩ =
1
Ξ

Tr[e−βHcp,λc†
k ,α

]e−βξp , (2.71)

=
1
Ξ

Tr[e−βH(δα,λδk ,p − c†
k ,α

cp,λ)]e−βξp , (2.72)

=δα,λδk ,pe−βξp − ⟨c†
k ,α

cp,λ⟩e−βξp . (2.73)

Therefore, we reach the expression

⟨c†
k ,α

cp,λ⟩ =δα,λ δk ,p nF (ξk ), (2.74)

nF (ξk ) =
1

eβξk + 1
=

1
2

[
1 − tanh

(
ξk

2kBT

)]
, (2.75)

where nF is the Fermi-Dirac distribution function. Eqs. (2.64) and (2.65) are the
anticommutation relations of fermion operators. It is easy to show ⟨ck ,αcp,λ⟩ = 0
and ⟨c

k ,α
c†p,λ⟩ = [1 − nF (ξk )]δα,λ δk ,p .

In usual metals such as Au, Al, and Pb, a crystal with volume of 1 cm3 contains
NA ∼ 1023 metallic ions. Therefore, the density of free electrons is about 1023 cm−3.
At T = 0, NA electrons occupy all the possible states from the band bottom up to the
Fermi energy ϵF . The Fermi energy is typically 104 Kelvin and is much larger than
the room temperature of 300 K. The Fermi velocity vF = ℏkF/m is about 108 cm/s
which is 1/100 of the speed of light c = 3× 1010 cm/s. Electrons on the Fermi surface
have such high kinetic energy due to their statistics. In addition, the degree of the
degeneracy at the Fermi energy is large. The quantum mechanics suggests that the
large degree of degeneracy in quantum states are a consequence of high symmetry of
Hamiltonian. In metals, electrons in conduction bands always interact with another
bosonic excitations such as phonon and magnon. In addition, the Coulomb repulsive
interaction works between two electrons. Electrons often break the high symmetry
spontaneously by using such interactions. As a result electrons can decrease their
ground state energy because the symmetry breaking lifts the degeneracy. Indeed
a number of simple metals becomes ferromagnetic or superconductive at a low
enough temperature. Fig. 2.1 shows the periodic table of elements, where elements
colored in red or pink are superconductors and those in blue are ferromagnets.
The table implies that superconductivity is a common feature among metals at a
low temperature. Time-reversal symmetry is broken due to the short range repulsive
interaction in a ferromagnet and translational symmetry is broken due to the coupling
with the lattice distortion in a charge density wave compound. The phase transition
of the second kind describes well the appearance of such ordered phases at a low
temperature. The transition to superconducting state is also a phase transition of the
second kind which is caused by the attractive interaction between two electrons. The
superconducting state breaks gauge symmetry spontaneously. In what follows, we
will see the physical consequence of the breaking gauge symmetry.
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Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sb Te I XeSn

Cs Ba

Fr Ra

La Hf Ta W Re Os Ir Pt Au Hg Tl Bi Po At RnPb

Ce Pr Nd Pm Sm

Ac

Th Pa U Np Pu

Eu Gd Tb Dy Er Tm YbHo

K Ca

Na Mg

Li

H

Be

Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga As Se Br KrGe

Al P S Cl ArSi

B N O F Ne

He

C

Superconducting Elements

Al Superconducting

Si Superconducting under high pressure or thin film

Rb Mettalic but not yet found to be superconducting

F Nonmetallic elements

Ni Elements with magnetic order

He Superfluid

Lu

Am

Fig. 2.1 The periodic table of elements. Elements colored in red or pink are superconductors. [26]

2.3 Coherent state

Superconductivity is a macroscopic quantum phenomenon. This means that the su-
perconducting state including NA electrons could be described well by a macroscopic
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wave function Ψ. The Feynman’s explanation of the Josephson effect suggests that
the wave function can be described by

Ψ =
√

Neiθ, (2.76)

where the phase θ is uniform in a superconductor. In the field theory, let us assume
that the Ψ is an operator obeys the bosonic commutation relation

[Ψ,Ψ†] = 1, [Ψ,Ψ] = 0. (2.77)

As a result, the number of particle N and the phase θ are also operators which do
not commute to each other. The commutation relation results in

[Ψ,Ψ†] =
√

Neiθe−iθ
√

N − e−iθ
√

N
√

Neiθ = N − e−iθNeiθ . (2.78)

We will show that the relation

[N, θ] = i, (2.79)

is a sufficient condition for the the right hand side of Eq. (2.78) being unity. Beginning
with Eq. (2.79), we first prove the relation

[N, θm] = m i θm−1. (2.80)

Eq. (2.79) corresponds to the case of m = 1. At m → m + 1,

[N, θm+1] =Nθmθ − θm+1N = (miθm−1 + θmN)θ − θm+1N, (2.81)

=miθm + θm(i + θN) − θm+1N = (m + 1)iθm. (2.82)

Therefore, a commutator becomes

[N, e−iθ ] =
[
N,

∞∑
m=0

(−1)m
m!

θm

]
=

∞∑
m=0

(−1)m
m!

m i θm−1 = i
d
dθ

∞∑
m=0

(−1)m
m!

θm, (2.83)

=i
d
dθ

e−iθ = e−iθ . (2.84)

Thus Eq. (2.78) results in [Ψ,Ψ†] = 1. Although Eq. (2.79) is only a sufficient
condition, it has an important physical meaning. Eq. (2.79) suggests that N and θ
are canonical conjugate to each other. Thus it is impossible to fix the two values
simultaneously. Namely if we fix the number of electrons, the phase is unfixed. On
the other hand, when we fix the phase, the number of electrons is unfixed. The
former is realized in the normal metallic state, whereas the latter corresponds to the
superconducting state.

To imagine the phase fixed state, let us consider the classical coherent light
so called laser beam. Light is described as a state of number of photons. Let us
introduce the bosonic annihilation (creation) operator of a photon a (a†) with the
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vacuum a|0⟩ = 0. The coherent state |C⟩ is defined as an eigenstate of the annihilation
operator,

a|C⟩ = α |C⟩, (2.85)

where the eigenvalue α = |α |eiφα is a complex number. The coherent state is
decomposed into a series of

|C⟩ =
∞∑
n=0

cn |n⟩, |n⟩ = (a†)n
√

n!
|0⟩. (2.86)

According to the definition, we find

a|C⟩ =
∞∑
n=1

cn
√

n|n − 1⟩ = α
∞∑

m=0
cm |m⟩ = α

∞∑
n=1

cn−1 |n − 1⟩, (2.87)

and obtain the relation cn
√

n = cn−1α. By applying the recursive relation repeatedly,
the coefficients of the series is represented as

cn =
α
√

n
cn−1 =

α
√

n
α

√
n − 1

cn−2 = · · · = αn

√
n!

c0, (2.88)

|C⟩ =c0

∞∑
n=0

αn

√
n!
|n⟩. (2.89)

A constant c0 is determined by

⟨C|C⟩ = |c0 |2
∞∑
n=0

∞∑
m=0

(α∗)n
√

n!
αm

√
m!

⟨n|m⟩ = |c0 |2
∞∑
n=0

|α |2n
n!
= |c0 |2e |α |2 = 1. (2.90)

The coherent state is then described as

|C⟩ =e−
1
2 |α |2

∞∑
n=0

αn

√
n!
|n⟩ = e−

1
2 |α |2

∞∑
n=0

(αa)n
n!

|0⟩, (2.91)

=e−
1
2 |α |2

[
1 + (|α | eiφα a†) + 1

2
(|α | eiφα a†)2 + · · · + 1

n!
(|α | eiφα a†)n + · · ·

]
|0⟩.

The number of photon is not fixed in the coherent state. In addition, all photons are
generated on the vacuum with the same phase of φα. Such a coherent state is realized
in the classical coherent light.

Ginzburg-Landau theory of superconductivity describes phenomenologically the
equation of motion for the wave function Ψ(r) =

√
n(r) eiθ(r). In the microscopic

theory, the normal ground state of free electrons in a metal is called Fermi’s Sea and
is described by
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|N⟩ =
∏

|k | ≤kF ,α=↑,↓
c†
k ,α

|0⟩. (2.92)

When the number of states for |k | ≤ kF is N , the number of electron is fixed at 2N .
According to the BCS theory [16], the superconducting state is described by

|S⟩ =
∏

|k | ≤kF

(
uk + vkeiφc†−k ,↓c†

k ,↑

)
|0⟩, (2.93)

with u2
k
+ v2

k
= 1. A pair of two electrons are created with a phase of φ independent

of k . The superconducting condensate is described by the coherent superposition
of such electron pairs. It is clear that the number of electrons is not fixed in the
superconducting state in Eq. (2.93).



Chapter 3
Mean-field theory of superconductivity

The mechanism of superconductivity in metals was explained by Bardeen, Cooper,
and Schrieffer (BCS) in 1957. Although the variational wave function method was
used in the original paper, we often use the mean-field theory to describe the su-
perconducting condensate today. The mean-field theory is advantageous when we
calculate various physical values and generalize the theory to inhomogeneous super-
conductors or superconducting junctions. The energy of the superconducting state in
Eq. (2.93) is lower than that of the normal state in Eq. (2.92) when a weak attractive
interaction works between two electrons on the Fermi surface [16]. BCS showed
that the Fermi surface is fragile in the presence of the attractive interactions between
two electrons. In a metal, the repulsive Coulomb interaction mediated by a photon
always works between two electrons. In the Coulomb gauge, the coulomb interaction
is instantaneous. The attractive interaction, on the other hand, is not instantaneous
because the velocity of phonon vph ≈ 100 m/sec is much slower than vF . Thus
such retardation effect in the attractive interaction enables two electrons to form a
pair. The classical image of the pairing mechanism may be explained as follows. An
electron comes to a certain place (say r0) in a metal at a certain time (say t = 0) and
attracts ions surrounding it. The coming electron stays around r0 within a time scale
given by te ∼ ℏ/ϵF . On the other hand, it takes tph ∼ 1/ωD ≫ te for ions to move
toward r0, where ωD is called Debye frequency. At t = tph , the electron has already
moved away from r0. But remaining ions charge the place positively, which attracts
another electron. Two electrons on the Fermi surface form a Cooper pair due to such
an attractive interaction nonlocal in time. The classical image of the interaction is
illustrated in Fig. 3.1

3.1 Pairing Hamiltonian

The interaction between two electrons is described by the Hamiltonian

21
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Fig. 3.1 The schematic image for electron-phonon interaction. (a) The first electron modifies the
lattice structure locally and leaves away. (b) The local positive charge attracts the second electron.

HI =
1
2

∑
α,β

∫
dr

∫
dr ′ψ†

α(r)ψ†
β(r

′)V(r − r ′)ψβ(r ′)ψα(r). (3.1)

The total Hamiltonian we consider is H = H0+HI , where H0 is given in Eq. (2.57).
By applying the Fourier transformation in Eq. (2.60), we obtain H0 in Eq. (2.67) and

HI =
1

2Vvol

∑
α,β

∑
k1 ,k2 ,q

Vq c†
k1+q,α

c†
k2−q,β ck2 ,β ck1 ,α, (3.2)

V(r) = 1
Vvol

∑
q

Vqeiq ·r . (3.3)

We assume that Vq satisfies following conditions,

1. The interaction is attractive and independent of q, (i.e., Vq = −g).
2. The interaction works between two electrons at k2 = −k1 and β = ᾱ.
3. The scattering event by the interaction happens in a small energy window near

the Fermi level characterized by ℏωD .

Under these conditions, the interaction Hamiltonian becomes

HI =
1

Vvol

∑
k ,k′

V(k, k ′) c†−k′,↓ c†
k′,↑ ck ,↑ c−k ,↓, (3.4)

V(k, k ′) = − g Θ(−|ξk | + ℏωD)Θ(−|ξk′ | + ℏωD), (3.5)

where g > 0 is a constant. The total Hamiltonian
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H =
∑
k ,α

ξk c†
k ,α

ck ,α − g

Vvol

∑
k

′∑
k′

′
c†−k′,↓ c†

k′,↑ ck ,↑ c−k ,↓, (3.6)∑
k

′
=

∑
k

Θ(−|ξk | + ℏωD), (3.7)

is called pairing Hamiltonian or BCS Hamiltonian. The interaction at the final
expression in real space is given by V(r − r ′) = −gδ(r − r ′) which is short-range
in space and instantaneous in time. These properties are different qualitatively from
the effective interaction mediated by a phonon. In this sense, the BCS Hamiltonian
is a model Hamiltonian that describes many-electron states in the presence of a
specialized attractive interaction between two electrons on the Fermi surface. As
we will see below, however, the mean-field theory of the BCS Hamiltonian explains
well the superconducting phenomena observed in experiments. This suggests that
the attractive interaction between two electrons is indispensable to superconductivity
and its dependence on space-time plays only a minor role.

3.2 Mean-field approximation

The interaction term in Eq. (3.6) is nonlinear. It is impossible to have an exact
solution of the ground state. Here, instead of solving Eq. (3.6) exactly, we apply
the mean-field approximation to the interaction term. We introduce the average of
operators

∆ eiφ ≡ g

Vvol

∑
k

′
⟨ck ,↑ c−k ,↓⟩, (3.8)

which is called pair potential and plays a central role in describing superconductivity.
Generally speaking, the right-hand side is a complex number. Thus, the left-hand side
is decomposed into the amplitude and the phase of the pair potential. Before solving
the mean-field Hamiltonian, the meaning of the pair potential should be clarified.
The product of two annihilation operators decreases the number of electrons by
two. If we consider a ground state in which the number of electrons N is fixed, the
quantum average results in

⟨N |ck ,↑ c−k ,↓ |N⟩ ∝ ⟨N |N − 2⟩ = 0. (3.9)

When the pair potential in Eq. (3.8) takes a nonzero value, the number of electrons is
not fixed in such a ground state. The coherent state of the laser light can be a possible
candidate of the ground state. Let us replace a product of electron operators by a
boson operator phenomenologically as ak = ck ,↑ c−k ,↓. Since ak |C⟩ ∝ |C⟩, the pair
potential can have a nonzero value in the coherent state. Thus Eq. (3.8) determines
a character of the ground state automatically.

Our next task is to linearize the BCS Hamiltonian by using the mean field in
Eq. (3.8),
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ck ,↑ c−k ,↓ =⟨ck ,↑ c−k ,↓⟩ +
[
ck ,↑ c−k ,↓ − ⟨ck ,↑ c−k ,↓⟩

]
, (3.10)

c†−k ,↓ c†
k ,↑ =⟨c

†
−k ,↓ c†

k ,↑⟩ +
[
c†−k ,↓ c†

k ,↑ − ⟨c†−k ,↓ c†
k ,↑⟩

]
. (3.11)

These are the identities. The first term on the right-hand-side is the average on the
left-hand side. The second term is considered to be the fluctuations from the average.
In the mean-field theory, we assume that the fluctuations are much smaller than the
average and expand the nonlinear term within the first order of the fluctuations. The
interaction term becomes∑

k′

′
c†−k′,↓ c†

k′,↑

∑
k

′
ck ,↑ c−k ,↓, (3.12)

=
∑
k′

′
⟨c†−k′,↓ c†

k′,↑⟩ +
[
c†−k′,↓ c†

k′,↑ − ⟨c†−k′,↓ c†
k′,↑⟩

]
×

∑
k

′
⟨ck ,↑ c−k ,↓⟩ +

[
ck ,↑ c−k ,↓ − ⟨ck ,↑ c−k ,↓⟩

]
, (3.13)

=

{
Vvol∆e−iφ

g
+

[∑
k′

′
c†−k′,↓ c†

k′,↑ −
Vvol∆e−iφ

g

]}
×

{
Vvol∆eiφ

g
+

[∑
k

′
ck ,↑ c−k ,↓ −

Vvol∆eiφ

g

]}
, (3.14)

≈ −
V2

vol∆
2

g2 +
Vvol

g

∑
k

′ [
∆e−iφck ,↑ c−k ,↓ + ∆eiφc†−k ,↓ c†

k ,↑

]
. (3.15)

On the way to the derivation, we have used the complex conjugation of the pair
potential

∆ e−iφ =
g

Vvol

∑
k

′
⟨c†−k ,↓ c†

k ,↑⟩. (3.16)

The mean-field Hamiltonian for superconductivity has the form

HMF =
∑
k ,α

ξk c†
k ,α

ck ,α −
∑
k

′ [
∆e−iφck ,↑ c−k ,↓ + ∆eiφc†−k ,↓ c†

k ,↑

]
+

Vvol∆
2

g
, (3.17)

=
∑
k

[
c†
k ,↑, c−k ,↓

] [
ξk ∆ eiφ

∆ e−iφ −ξ∗−k

] [
ck ,↑
c†−k ,↓

]
+

Vvol∆
2

g
. (3.18)

To diagonalize the mean-field Hamiltonian, we solve the eigen equation,[
ξk ∆eiφ

∆e−iφ −ξ∗−k

] [
a
b

]
= E

[
a
b

]
. (3.19)

The solutions are given by
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uk

vke−iφ

]
,

[
−vkeiφ

uk

]
, (3.20)

for E = Ek and E = −Ek , respectively. Here we define

Ek =

√
ξ2
k
+ ∆2, uk =

√
1
2

(
1 +

ξk
Ek

)
, vk =

√
1
2

(
1 − ξk

Ek

)
. (3.21)

The results are summarized as[
ξk ∆

∆∗ −ξ∗−k

]
=

[
uk −vkeiφ

vke−iφ uk

] [
Ek 0
0 −Ek

] [
uk vkeiφ

−vke−iφ uk

]
. (3.22)

By substituting the results into Eq. (3.18), the Hamiltonian is diagonalized as

HMF =
∑
k

[
γ†
k ,↑, γ−k ,↓

] [
Ek 0
0 −E−k

] [
γk ,↑
γ†−k ,↓

]
+

Vvol∆
2

g
, (3.23)

=
∑
k

Ek (γ†k ,↑γk ,↑ + γ
†
−k ,↓γ−k ,↓ − 1) + Vvol∆

2

g
, (3.24)

with [
γk ,↑
γ†−k ,↓

]
=

[
uk vkeiφ

−vke−iφ uk

] [
ck ,↑
c†−k ,↓

]
, (3.25)[

ck ,↑
c†−k ,↓

]
=

[
uk −vkeiφ

vke−iφ uk

] [
γk ,↑
γ†−k ,↓

]
. (3.26)

The last relationships are called Bogoliubov transformation [19, 20]. The opera-
tor γk ,α is the annihilation operator of a Bogoliubov quasiparticle and obeys the
fermionic anticommutation relations

{γk ,α, γ†p,β} = δk ,pδα,β, {γk ,α, γp,β} = 0, γk ,α |0̃⟩ = 0. (3.27)

The last equation defines the ’vacuum’ of the Bogoliubov quasiparticle, where |0̃⟩
represents the superconducting ground state. The creation of a Bogoliubov quasipar-
ticle describes the elementary excitation from the superconducting ground state.

3.3 Gap equation and thermodynamic properties

The remaining task is to determine the pair potential ∆ in a self-consistent way. By
the definition of the pair potential Eq. (3.8) and the Bogoliubov transformation in
Eq. (3.26), we obtain
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∆ eiφ =
g

Vvol

∑
k

′ 〈
(ukγk ,↑ − vkeiφγ†−k ,↓)(vkeiφγ†

k ,↑ + ukγ−k ,↓)
〉
, (3.28)

=
g

Vvol

∑
k

′
ukvkeiφ (1 − 2nF (Ek )) =

g

Vvol

∑
k

′∆ eiφ

2Ek
tanh

(
Ek

2kBT

)
. (3.29)

On the way to the last line, we have used the relations,

⟨γ†
k ,α

γp,β⟩ = nF (Ek ) δk ,p δα,β, ⟨γk ,αγp,β⟩ = 0. (3.30)

The amplitude of ∆ should be determined by solving Eq. (3.29). Thus Eq. (3.29)
is called gap equation. We note that the equation has a solution only for g > 0
(attractive interaction). To proceed the calculation, we introduce the density of states
per volume per spin,

N(ξ) = 1
Vvol

∑
k

δ(ξ − ξk ). (3.31)

The gap equation becomes,

1 =g
∫ ℏωD

0
dξ

N(ξ)√
ξ2 + ∆2

tanh

(√
ξ2 + ∆2

2kBT

)
. (3.32)

At zero temperature T = 0, the integral can be carried out as

1 =g
∫ ℏωD

0
dξ

N(ξ)√
ξ2 + ∆2

≃ gN0

∫ ℏωD

0

dξ√
ξ2 + ∆2

, (3.33)

=gN0 ln

ℏωD

∆
+

√(
ℏωD

∆

)2
+ 1

 ≃ gN0 ln(2ℏωD/∆), (3.34)

where N0 is the density of states at the Fermi level per spin per unit volume. The
amplitude of the pair potential at T = 0 is then described as

∆0 = 2ℏωD e−
1

gN0 . (3.35)

As discussed in a number of textbooks, it is impossible to expand the right-hand
side with respect to the small parameter gN0 ≪ 1, which implies the instability of
the Fermi surface in the presence of a weak attractive interaction. Just below the
transition temperature Tc , it is possible to put ∆→ 0 into the gap equation,
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1 =gN0

∫ ℏωD

0

dξ
ξ

tanh
(

ξ

2kBTc

)
, (3.36)

=gN0 ln
(
ℏωD

2kBTc

)
tanh

(
ℏωD

2kBTc

)
− gN0

∫ ∞

0
dξ ln(ξ) cosh−2(ξ), (3.37)

≃gN0

[
ln

(
ℏωD

2kBTc

)
+ ln

(
4γ0

π

)]
= gN0 ln

(
2ℏωDγ0

πkBTc

)
. (3.38)

On the way to the last line, we considered ℏωD ≫ Tc and used∫ ∞

0
dx ln(x) cosh−2(x) = ln(4γ0/π), (3.39)

ln γ0 ≃0.577 Euler constant. (3.40)

From the last line, we obtain

Tc =
2ℏωDγ0

πkB
e−1/g0N (0) =

γ0

πkB
∆0. (3.41)

The relation of 2∆0 = 3.5kBTc has been confirmed in a number of metallic super-
conductors. Figure 3.2 show the dependence of the pair potential on temperature. As
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Fig. 3.2 The amplitude of the pair potential is plotted as a function of temperature. Here we solved
the gap equation numerically.
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shown in Appendix A, the pair potential just below Tc depends on temperature as

∆ = πkBTc

√
8

7ζ(3)

√
Tc − T

Tc
. (3.42)

By using the energy of superconducting state in Eq. (3.24), it is possible to calculate
the partition function and the specific heat of a superconductor,

ΞS =
∑

nk ,σ=0,1
exp

[
−

{∑
k ,σ

Ek (nk ,σ − 1) + Vvol∆
2/g

}
/kBT

]
, (3.43)

= exp(−Vvol∆
2/gkBT)

∏
k

eEk /kBT
∏
k

(
1 + e−Ek /kBT

)2
. (3.44)

The thermodynamic potential of the superconducting state per volume is represented
by

ΩS = −kBT
1

Vvol
logΞS =

∆2

g
− 1

Vvol

∑
k

[
Ek + kBT log

(
1 + e−Ek /kBT

)2
]
. (3.45)

The specific heat is then calculated as

SS = −
∂ΩS

∂T
= −2kB

Vvol

∑
k

(1 − nF ) log(1 − nF ) + nF log nF , (3.46)

CS =T
∂SS
∂T
=

2kB
Vvol

∑
k

Ek
∂nF
∂T
=

2kB
Vvol

∑
k

(
−∂nF
∂Ek

) (
E2
k

T
− 1

2
∂E2

k

∂T

)
, (3.47)

nF =
1
2

[
1 − tanh

(
Ek

2kBT

)]
. (3.48)

At the transition temperature, the specific heat is discontinuous, which implies the
rapid decrease of entropy at T = Tc . The difference in the specific heats per volume
is described as

∆C = CS − CN =2kB

∫
dξN(ξ)

(
−∂ f (ξ)

∂ξ

) (
−1

2
∂∆2

∂T

)
, (3.49)

=N0
8π2

7ζ(3) k2
B Tc . (3.50)

By using the specific heat in the normal state at T = Tc

CN =
2π2

3
N0 k2

B Tc, (3.51)

we obtain
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∆C
CN (Tc)

=
12

7ζ(3) ≈ 1.42. (3.52)

The left hand-side of the equation is a universal value independent of materials.
The free energy in the normal state ΩN is obtained by putting ∆→ 0 in ΩS . The

difference between the free energies corresponds to the condensation energy of the
superconducting state,

ΩS −ΩN =
1

Vvol

∑
k

×
[
∆2

2Ek
tanh

(
Ek

2kBT

)
+ |ξk | − Ek − 2kBT log

1 + e−Ek /kBT

1 + e−|ξk |/kBT

]
, (3.53)

where we have used the gap equation. At T = 0, the condensation energy is calculated
to be

ΩS −ΩN = 2N0

∫ ∞

0
dξ

[
∆2

2E
+ ξ − E

]
= −1

2
N0∆

2 = −H2
c

8π
. (3.54)

The last equation relates the condensation energy to the thermodynamic critical field.

3.4 Cooper pair

The pair correlation function is a two-point function in real space,

F(r1, r2) =⟨ψ↑(r1)ψ↓(r2)⟩ =
1

Vvol

∑
k ,k′

⟨ck ,↑ ck′,↓⟩eik ·r1 eik
′ ·r2, (3.55)

=
1

Vvol

∑
k ,k′

⟨ck ,↑ ck′,↓⟩ei(k+k
′)·rei(k−k

′)·ρ/2, (3.56)

where we introduce the coordinate

r =
r1 + r2

2
, ρ = r1 − r2. (3.57)

In a uniform superconductor, the pair correlation function is independent of r , which
requiers k ′ = −k . As a result, correlation function depends only on the relative
coordinate as

F(ρ) = 1
Vvol

∑
k

⟨ck ,↑ c−k ,↓⟩eik ·ρ . (3.58)

The pair correlation function of two electrons at the same place ρ = 0 is linked to
the pair potential in Eq. (3.8). We note that the pair potential is the product of the
pair correlation function and the attractive interaction. In the BCS Hamiltonian, the
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interaction is short range in real space V(ρ) = −gδ(ρ). The pair potential satisfies
the relation,

∆↑,↓ = g⟨ψ↑(r1)ψ↓(r1)⟩ = −g⟨ψ↓(r1)ψ↑(r1)⟩ = −∆↓,↑. (3.59)

Due to Pauli’s exclusion principal, two electrons at the same place must have the
opposite spin to each other. Above relation shows that the pair potential is anti-
symmetric under the commutation of two spins. Thus, a Cooper pair belongs to
spin-singlet s-wave symmetry class.

The function F(ρ) describes the pairing correlation between two electrons with
their relative coordinate at ρ , 0. The correlation function is calculated at T = 0 as
a function of ρ = |ρ |,

F(ρ) = 1
Vvol

∑
k

′∆eiφ

2Ek
eik ·ρ . (3.60)

By replacing the summation by integration in three-dimension,

1
Vvol

∑
k

′
=

1
(2π)3

∫ 2π

0
dϕ

∫ π

0
dθ sin θ

∫ k0

0
dkk2, (3.61)

the correlation function is expressed as

F(ρ) =∆eiφ

4π2

∫ k0

0
dkk2 sin(kρ)

kρ
1√

ξ2
k
+ ∆2

. (3.62)

Since the integrand is large at ξk = 0, we apply the approximation k ≈ kF + ξ/ℏvF .
By changing the running variable k → ξk , we obtain

F(ρ) ≈ ∆eiφ

4π2ρℏvF
2
∫ ℏωD

0
dξkF

sin(kF ρ) cos(ξρ/ℏvF )√
ξ2 + ∆2

, (3.63)

=
mkF∆eiφ

2π2ℏ2
sin(kF ρ)

kF ρ
K0

(
ρ

πξ0

)
, ξ0 ≡ ℏvF

π∆0
, (3.64)

where K0 is the modified Bessel function of the second kind and K0(x) ∼ e−x for
x ≫ 1. The characteristic length ξ0 is called coherence length which describes
the spatial size of a Cooper pair. In typical metallic superconductors, ξ0 is about
1 × 10−6m.

3.5 Magnetic properties

The pair correlation function becomes non uniform and depends on the center-of-
mass coordinate r in the presence of magnetic field. We consider pairing correlation
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function,

⟨ψ↑(r)ψ↓(r)⟩ ∝ Ψ(r) ≡
√

ns(r) eiφ(r). (3.65)

This relation defines the macroscopic wave function of superconducting conden-
sate described by the density of Cooper pairs ns and the phase of pairs φ. The
superconducting condensate would have the kinetic energy density

E =
∫

dr
ℏ2

2m∗

(
∇ + i

e∗

ℏc
A

)
Ψ

∗(r) ·
(
∇ − i

e∗

ℏc
A

)
Ψ(r) (3.66)

where m∗ = 2m and e∗ = 2e are the effective mass and the effective charge of a
Cooper pair, respectively. Let us assume that the density ns is uniform in a supercon-
ductor for a while. In the absence of the vector potential, the kinetic energy density
is estimated as

E =
∫

dr
ℏ2ns
4m

(∇φ)2. (3.67)

The results suggest that the spatial gradient in the phase increases the energy. Thus the
phase φ must be uniform in the ground state, (i. e., ∇φ = 0). Eq. (3.67) corresponds
to the elastic energy to deform the phase from a phase-rigid ground state. The current
density of such condensate would be described as

j(r) =2eℏ
4mi

[
Ψ

∗
(
∇ − i

2e
ℏc

A

)
Ψ −

(
∇ + i

2e
ℏc

A

)
Ψ

∗
Ψ

]
, (3.68)

=
eℏ
m

ns

[
∇φ(r) − 2e

ℏc
A

]
. (3.69)

The current is driven by the spatial derivative of phase, which explains the Josephson
effect. The supercurrent density on the left-hand side is an observable, whereas the
vector potential on the right-hand side depends on the gauge choice. The supercon-
ducting phase is necessary to be transformed as φ → φ + 2e/(ℏc)χ under the gauge
transformation A → A + ∇χ. Therefore,

φ(r) − 2e
ℏc

∫ r

d l · A(l), (3.70)

is referred to as a gauge-independent phase.

Meissner effect
Let us consider a superconductor in a weak magnetic field. The magnetic field in the
superconductor should be described by the Maxwell equation,

∇ × H +
1
c
∂tE =

4π
c

j . (3.71)
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In a static magnetic field, by substituting ∂tE = 0, H = ∇ × A, and Eq. (3.69) into
the Maxwell equation, we find

∇ × H =
4π
c

eℏns
m

(
∇φ − 2e

ℏc
A

)
. (3.72)

By multiplying ∇× from the left and using relations

∇ × ∇ × H = −∇2H, ∇ · H = 0, ∇ × (∇φ) = 0, (3.73)

we obtain

−∇2H = −4π(2ns)e2

mc2 H . (3.74)

We try to solve the equation at a surface of a superconductor as shown in Fig. 3.3(a),
where the superconductor occupies x ≥ 0 and x < 0 is vacuum. A magnetic field is
applied uniformly in the y direction as H = H0 ŷ in vacuum. A magnetic field in the
superconductor H = H(x) ŷ obeys

d2

dx2 H(x) − 1
λ2
L

H(x) = 0, λL ≡

√
mc2

4πnee2 , (3.75)

where we have used a relation 2ns = ne with ne is the electron density. The solution
with a boundary condition H(0) = H0,

H(x) =H0e−
x
λL , j = − c

4π
H0

λL
e−

x
λL ẑ, (3.76)

indicates that the penetration of the magnetic field is limited in the range of λL
and that the current flows at the surface of the superconductor to screen the applied
magnetic field. The characteristic length λL is called London’s length is about 10−8m
in typical metallic superconductors.

At the surface 0 < x < λL , the electric current in the z direction under the
magnetic field in the y direction feels the Lorentz force in the x direction,

f =
1
c
j × H =

H2
0

4πλL
e−

2x
λL x̂ = − 1

4π
∂xHH x̂. (3.77)

The force points to the center of the superconductor. The current, however, stays
at the surface because the superconducting condensate pushes the current back. To
push the current from the center (x = ∞) of a superconductor to its surface (x = 0)
against the Lorentz force, the superconducting condensate does the work of

W = −
∫ x=0

x=∞
dr · f = 1

4π

∫ 0

∞
dx∂xHH =

H2
0

8π
e−2x/λL

���0
∞
=

H2
0

8π
. (3.78)
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Fig. 3.3 (a) A magnetic field at a surface of a superconductor. The electric current flows in the z
direction to screen an external magnetic field. (b) The integration path l inside a superconducting
ring. The arm is much thicker than the London length. The magnetic flux in the hole Φ is quantized
due to the boundary condition for the macroscopic wave function.

An external magnetic field H0 must be smaller than the thermodynamic critical
magnetic field Hc defined by

H2
c

8π
≡ ΩN −ΩS . (3.79)

The right hand side of the equation corresponds to the condensation energy of
the superconducting state and is given by N0∆

2
0/2 at T = 0 as we have discussed

in Sec. 3.3. For H0 > Hc , the current and the magnetic fields penetrate into the
superconductor and destroy superconductivity.

Flux quantization
A superconducting ring can accommodate magnetic flux Φ in its hole at zero tem-
perature as shown in Fig. 3.3(b). When the thickness of the arm d is much larger
than λL, both the electric current and the magnetic field are absent at the center of
the arm. Let us integrate the current in Eq. (3.69) along such a closed path along the
ring,

0 =
∮

d l · j(l) = eℏns
m

[∮
d l · ∇φ − 2e

ℏc

∮
d l · A

]
. (3.80)

The second term is calculated using the Stokes theorem,

2e
ℏc

∮
d l · A = 2e

ℏc

∫
dS · (∇ × A) = 2e

ℏc

∫
dS · H = 2e

ℏc
Φ. (3.81)

The first term should satisfy

1
2π

∮
d l · ∇φ(l) = φ(2π) − φ(0)

2π
= n, (3.82)
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because the wave function must be single-valued in quantum mechanics. Thus, we
find that the magnetic flux passing through the hole is quantized by

Φ = nϕ0, ϕ0 =
πℏc

e
= 2 × 10−7gauss · cm2, (3.83)

where ϕ0 is called flux quantum. An integer number n in Eq. (3.82) is a topological
invariant which is called winding number.

Vortex as a topological matter
Superconductors are classified into two kinds in terms of their magnetic property.
Phenomenologically,

κ =
λL
ξ0

(3.84)

characterizes the boundary. The type I superconductor characterized by κ ≤ 1/
√

2
excludes the external magnetic field up to H < Hc and keeps superconductivity.
Once H goes over Hc , superconductivity disappears. The threshold Hc is called the
thermodynamic critical field as discussed in Eq. (??). On the other hand, the type
II superconductor characterized by κ > 1/

√
2 have two critical fields Hc1 and Hc2 ,

( Hc1 < Hc2 ). The superconductor excludes perfectly the external magnetic field
in a weak magnetic field H < Hc1 . The superconductivity disappears in a strong
magnetic field H > Hc2 . In the intermediate region Hc1 < H < Hc2 , a magnetic
field penetrates into the superconductor as quantized magnetic vortices. According
to textbooks, these critical fields are represented as

Hc2 =
ϕ0

2πξ2
0
, Hc1 =

ϕ0

2πλ2
L

log
[
λL

ξ0

]
. (3.85)

Magnetic fluxes fluctuate the phase of the superconducting condensate spatially. The
phase, however, must be uniform at least the spatial area of ξ2

0 to keep superconduc-
tivity. In a high magnetic field at which a flux quanta ϕ0 passes through the area of
ξ2

0 , the condensate cannot keep the phase coherence any longer. The critical field Hc2

indicates such a boundary between the normal state and the superconducting state.
Let us consider a magnetic flux at the origin of two-dimensional plane. The vector

potential of such a flux is represented by

A =
ϕ

2πr
eθ, (3.86)

where we used the polar coordinate in two-dimension x = r cos θ and y = r sin θ.
The magnetic field calculated as

Hz =
1
r
∂r

(
r
ϕ

2πr

)
= 0, (3.87)
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Fig. 3.4 The phase of superconducting state around a vortex core for r , 0 is illustrated in (a) for
several choices of winding numbers n. The spatial profile of the macroscopic wave function and
that of a magnetic field around a vortex core are shown in (b).

is zero for r , 0. On the other hand, the magnetic flux calculated as∮
d l · A =

∫ 2π

0
dθr

ϕ

2πr
= ϕ, (3.88)

is finite, where d l = dθ r eθ indicates an integration path enclosing the flux at r = 0.
Stokes theorem does not hold true because of the singularity in the vector potential
at the origin. Let us assume that the magnetic flux at the origin is ϕ = nϕ0. In such
a situation, the wave function far from the origin has the form

Ψ(r) ≈ √
nseinθ . (3.89)

In Fig. 3.4(a), we illustrate the phase of a superconductor far from the origin, where
the phase φ(θ) = nθ is indicated by arrows for n = 1,2 and −1. The superconducting
phase is linked to the angle in real space coordinate. At the origin r = 0, however, it
is impossible to determine the direction of the arrows. To relax the situation, ns(r)
goes to zero at r = 0 as shown in Fig. 3.4(b). The coherence length ξ0 characterizes
the spatial variation of the wave function, whereas the London length characterizes
the variation of magnetic fields. The place for ns(r) = 0 (a node in the wave function)
is called vortex core. Here let us consider a superconductor in Hc1 < H < Hc2 which
accommodates the magnetic flux Nϕ0. There would be two ways for Nϕ0 flux to
stay in the superconductor: one giant flux with the winding number n = N or N flux
quanta with the winding number n = 1 at each. According to Eq. (3.67), the energy
of the former is given by N2E1, whereas that of the latter would be NE1, where
E1 = (ℏ2nsV/4m) is the energy density for one vortex with n = 1. Therefore, the
magnetic fluxes pass through a superconductor as a number of flux quanta.

Finally, we briefly discuss a topological aspect of a vortex. We first consider
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Before After1 2 3

Before After1 2 3

(a) Propagation of a lattice defect

(b) Prapagation of a vortex core

Fig. 3.5 The propagation of a defect from left to right through a uniform system. (a) A filled circle
corresponds to an atom in a crystal. An open circle coming from the left is a vacancy. (b) An arrow
represents a superconducting phase at the place. An open circle coming from the left indicates a
magnetic flux quantum.

a simple defect in a crystal lattice as shown in Fig. 3.5 (a), where a filled circle
corresponds to an atom in the crystal. An open circle coming from the left is a
vacancy. The vacancy comes into the crystal at the 1st time-step, moves to the right
at 2nd and the 3rd time-step, and leaves away from the crystal. There is no difference
between the crystal structures before the vacancy coming in and those after the
vacancy leaving away. The vacancy is a local defect in the crystal and affects only its
neighboring atoms. Next we consider a vortex core with n = 1 in a superconductor.
Since the vortex core is a topological defect, its propagation changes the global phase
configuration as illustrated in Fig. 3.5 (b). Before the core coming, a superconductor
is in the ground state indicated by a uniform phase at φ = 0. At the 1st time-step,
the superconductor changes the phase configuration drastically to accommodate the
vortex. The winding number of the phase configuration becomes n = 1 at the second
time-step. At the 3rd time-steps, the arrows tend to point to the left. After the vortex
leaving, the superconductor is in the ground state with a uniform phase at φ = π. In
the process, the winding number in the superconducting state changes as 0 → 1 → 0.
The propagation of a topological defect changes the phase configurations of whole
the superconductor.



Chapter 4
Andreev reflection

The penetration of a Cooper pair from a superconductor to a non-superconducting
material modifies the electromagnetic properties of the material. Such effect is called
proximity effect. In the mean field theory of superconductivity, the Andreev reflec-
tion [6] describes the penetration of a Cooper pair into a metal. In the Bogoliubov-de
Gennes picture, the Andreev reflection represents the conversion between an electron
and a Cooper pair. Since a Cooper pair is a charged particle, the propagation of a
Cooper pair through a junction interface affects drastically the low energy charge
transport such as the differential conductance in normal-metal/superconductor (NS)
junctions and the Josephson current in superconductor/insulator/superconductor
(SIS) junctions. We show schematic illustration of superconducting junctions in
Fig. 4.1. In SIS and NS junctions, the pair potential is zero in a normal metal and in

normal metal superconductor

x

y

x = 0

superconductor

x = 0

superconductor

(a) NS junction (b) SIS junction

W

Fig. 4.1 Schematic picture of superconducting junctions are shown for an NS junction in (a) and
an SIS junction in (b). The width of the junction is W . The electric current flows in the x direction
and the interface is parallel to the y direction.

an insulator. To analyze the electric current in such a non-superconducting segment,
we begin this section with the mean-field Hamiltonian in real space,

37
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HMF =

∫
dr

∑
α

ψ†
α(r) ξ(r)ψα(r)

+

∫
dr ψ†

↑(r)∆(r)e
iφ ψ†

↓(r) + ψ↓(r)∆(r)e−iφ ψ↑(r), (4.1)

=
1
2

∫
dr[ψ†

↑(r),ψ
†
↓(r),ψ↑(r),ψ↓(r)] ȞBdG(r)


ψ↑(r)
ψ↓(r)
ψ†
↑(r)

ψ†
↓(r)


, (4.2)

ȞBdG(r) =
[

ξ(r) σ̂0 ∆(r) eiφ iσ̂2
−∆(r) e−iφ iσ̂2 −ξ(r) σ̂0

]
, (4.3)

ξ(r) = − ℏ2∇2

2m
+ V(r) − ϵF , (4.4)

where σ̂j for j = 1 − 3 is the Pauli’s matrix in spin space and σ̂0 is the unit matrix.
The derivation is shown in Appendix. C. Eq. (4.3) has 4 × 4 structure because of
the spin and electron-hole degrees of freedom. The 2 × 2 space at the upper-left of
Eq. (4.3) is the Hamiltonian of an electron (particle) and that at the lower-right is the
Hamiltonian of a hole (anti-particle). The pair potential hybridizes the two spaces.
The hole-degree of freedom is introduced in the Bogoliubov-de Gennes picture in
such a way as∫

dr
∑
α,β

ψ†
α(r)ξα,β(r)ψβ(r), (4.5)

=
1
2

∫
dr

∑
α,β

[
ψ†
α(r) ξα,β(r)ψβ(r) − ψα(r) ξ∗α,β(r)ψ

†
β(r)

]
. (4.6)

The relation holds exactly even when ξ includes spin-dependent potentials and vector
potentials. The spin structure of the pair potential is represented by iσ̂2 which means
that the pair potential is antisymmetric under the permutation of two spins. The
equation

ȞBdG(r)
[

uν(r) σ̂0
vν(r) (−i)σ̂2

]
= Eν

[
uν(r) σ̂0

vν(r) (−i)σ̂2

]
(4.7)

is called Bogoliubov-de Gennes (BdG) equation. It is possible to derive the similar
equation

ȞBdG(r)
[
v∗ν(r)(−i)σ̂2

u∗ν(r)σ̂0

]
= −Eν

[
v∗ν(r)(−i)σ̂2

u∗ν(r)σ̂0

]
, (4.8)

because of particle-hole symmetry of the Hamiltonian,[
0 σ0
σ0 0

]
Ȟ∗

BdG(r)
[

0 σ0
σ0 0

]
= −ȞBdG(r). (4.9)
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The wave function satisfies the orthonormal property and the completeness.∫
dr

[
u∗ν(r)uλ(r) + v∗ν(r)vλ(r)

]
= δν,λ, (4.10)∑

ν

[
uν(r)σ̂0

vν(r)(−i)σ̂2

] [
u∗ν(r ′)σ̂0, v

∗
ν(r ′)iσ̂2

]
+

[
v∗ν(r)(−i)σ̂2

u∗ν(r)σ̂0

]
[vν(r ′) iσ̂2,uν(r ′)σ̂0]

= 1̌4×4 δ(r − r ′). (4.11)

The Bogoliubov transformation is given by
ψ↑(r)
ψ↓(r)
ψ†
↑(r)

ψ†
↓(r)


=

∑
ν

[
uν(r)σ̂0

vν(r)(−i)σ̂2

] [
γν,↑
γν,↓

]
+

[
v∗ν(r)(−i)σ̂2

u∗ν(r)σ̂0

] [
γ†−ν,↑
γ†−ν,↓

]
, (4.12)

=
∑
ν


uν 0 0 −v∗ν
0 uν v∗ν 0
0 −vν u∗ν 0
vν 0 0 u∗ν



γν,↑
γν,↓
γ†−ν,↑
γ†−ν,↓


. (4.13)

4.1 Conductance in an NS junction

The Andreev reflection occurs at an interface between a superconductor and a normal
metal. In what follows, we will consider the transport property of an NS junction,
where a normal metal (x < 0) is connected to a superconductor (x > 0) at x = 0.
The BdG Hamiltonian in Eq. (4.3) is separated in two 2 × 2 Hamiltonian. Here we
choose the Hamiltonian for an electron with spin ↑ and a hole with spin ↓. The BdG
Hamiltonian of an NS junction becomes

ĤBdG(r) =
[
ξ(r) ∆(r)
∆∗(r) −ξ∗(r)

]
, (4.14)

with

ξ(r) = − ℏ2∇2

2m
+ v0δ(x) − ϵF , ∆(r) = ∆eiφΘ(x). (4.15)

In a normal metal, the BdG equation is divided into two equations,[
−ℏ2∇2

2m
− ϵF

]
u(r) = Eu(r) and

[
ℏ2∇2

2m
+ ϵF

]
v(r) = Ev(r). (4.16)

The eigenvalues and the wave functions are obtained easily. The solutions are repre-
sented as
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1
0

)
eikx fp(ρ) and

(
0
1

)
eikx fp(ρ), (4.17)

respectively. Here the first (second) wave function is the solution of an electron (a
hole) belonging to E = ξk (E = −ξk ) with ξk = ℏ2(k2 + p2)/(2m) − ϵF . The wave
function in the transverse direction to the interface is given by fp(ρ) = eip ·ρ/

√
S

with S being the cross section of the junction. These dispersions are illustrated in
Fig. 4.2(a), where we plot the energy of an electron ξk and that of a hole −ξk for
a propagation channel p as a function of the wave number in the x direction k. At
the Fermi level, we find that k = kx =

√
k2
F − p2 and that the two dispersions are

degenerate because of ξkF = 0. In a superconductor, two solutions given by(
uk eiφ/2

vk e−iφ/2

)
eikx fp(ρ) and

(
−vk eiφ/2

uk e−iφ/2

)
eikx fp(ρ), (4.18)

belong to E = Ek and E = −Ek , respectively. The amplitudes of wave function
is given by Eq. (3.21). The dispersion of Ek are illustrated in Fig. 4.2(b). The pair
potential hybridizes the dispersion of an electron and that of a hole. As a consequence,
a gap opens at the Fermi level, (i. e., k = ±kx). The dispersion for |k | > kx describes
the excitation energy of an electronlike quasiparticle, where the amplitude of an
electron uk is larger than that of a hole vk . On the other hand, the dispersion for
|k | < kx describes the excitation energy of a holelike quasiparticle. In this book,
an electronlike (a holelike) quasiparticle is refereed to as an electron (a hole) for
simplicity. Eqs. (4.17) and (4.18) are the eigenstate vectors a function of the wave
number k .

Next we consider a situation where an electron at the Fermi level comes into the
junction from the normal metal as indicated by α in Fig. 4.2(a). Due to the potential
barrier at x = 0, the incoming wave is reflected into the electron branch as indicated
by A. Simultaneously, the incoming wave is transmitted to the superconducting side.
Since the pair potential hybridizes the electron and hole branches, two outgoing
waves are possible as indicated as C and D. In the normal metal, therefore, the
outgoing wave from the hole channel is also possible as indicated by B. The last
process is called Andreev reflection where an electron is reflected as a hole by the pair
potential in a superconductor. To describe the transmission and reflection processes
at the junction interface, we need the wave function for an incoming and those for
outgoing waves at an energy E . In a normal metal, the wave number calculated by
the relation,

±E = ξk =
ℏ2k2

2m
+ ϵp − ϵF , ϵp =

ℏ2p2

2m
. (4.19)

The wave number is calculated as k+ (k−) in the electron (hole) branch with

k± =

√
k2
x ±

2mE
ℏ2 , k2

x = k2
F − p2. (4.20)
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The wave numbers at four branches in a normal metal are shown in Fig. 4.2(a). The
wave number at A becomes −k+. In the hole branch, the wave number at B is k−
because of the relation E = −ξk . The wave function in a normal metal is represented
by

ϕL(r) =
∑

|p |<kF

[(
1
0

)
α eik+x +

(
0
1

)
β e−ik−x +

(
1
0

)
A e−ik+x +

(
0
1

)
B eik−x

]
× fp(ρ). (4.21)

The wave number is positive at the left-going hole branch, which is explained by the
group velocity of a quasiparticle. Since E = ξk in the electron branch, the velocity
is defined as

ve(k, p) = 1
ℏ

[
∂kξk x̂ + ∂pξk

]
=

ℏ
m

[k x̂ + p] , (4.22)

where x̂ is the unit vector in the x direction. In the hole branch, the velocity is
calculated as

vh(k, p) = 1
ℏ

[
−∂kξk x̂ − ∂pξk

]
= − ℏ

m
[k x̂ + p] . (4.23)

The velocity of a hole is negative in the x direction for k > 0. In a superconductor,
the relation E = Ek is transformed to

ξk = ±Ω, Ω =
√

E2 − ∆2. (4.24)

Therefore, we obtain

q± =

√
k2
x ±

2mΩ
ℏ2 . (4.25)

In the electron branch as indicated by C in Fig. 4.2(b), we put ξk → Ω in Eq. (4.24)
and the wave number is q+. In the hole branch as indicated by D in Fig. 4.2(b),
however, we put ξk → −Ω in Eq. (4.24) and the wave number is −q−. Thus the wave
function on the right-hand side of the junction interface is represented as

ϕR(r) =
∑

|p |<kF
Φ̂

[(
u
v

)
C eiq+x +

(
v

u

)
D e−iq−x +

(
u
v

)
γ e−iq+x +

(
v

u

)
δ eiq−x

]
× fp(ρ), (4.26)

u =

√
1
2

(
1 +
Ω

E

)
, v =

√
1
2

(
1 − Ω

E

)
, Φ̂ =

(
eiφ/2 0

0 e−iφ/2

)
. (4.27)

The group velocity in a superconductor is calculated as a function of k,
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v(k, p) =1
ℏ

[
∂kEk x̂ + ∂pEk

]
=

ℏ
m

[k x̂ + p] ξk
Ek

(4.28)

In the electron (hole) branch, ξk is replaced by Ω (−Ω). The group velocities are
then calculated to be

ve(±q+, p) =
ℏ
m

[±q+ x̂ + p] Ω
E
, (4.29)

vh(±q−, p) =
ℏ
m

[±q− x̂ + p] −Ω
E
, (4.30)

The group velocity in the x direction is indicated by arrows in Fig. 4.2. For E < ∆,
the wave number in Eq. (4.25) become complex, which suggests that a quasiparticle
at C and D in Fig. 4.2(b) do not propagate to x = ∞. In this case, all the transport
channels become evanescent mode.

k

E k

Δ

E
q+q-q--q+-

k

E

ξ k−ξ k
k+- k-- k- k+

(a) normal metal (b) superconductor

CDA B αβ
γ δ

0 0kx
kx− kx

kx−

N S

e
-iϕ e

i ϕ
2Δ

(c) Andreev reflection 

from an electron to a hole 

0

N S

e
i ϕ

(d) Andreev reflection 

from a hole to an electron 

0
e

i ϕ

Fig. 4.2 The dispersion relation in a normal metal (a) and that in a superconductor (b). The arrow
points the direction of the group velocity. The two Andreev reflection processes are schematically
illustrated in (c) and (d).

The boundary conditions for the wave functions are given by,

ϕL(0, y) = ϕR(0, y), (4.31)

− ℏ2

2m

[
d
dx
ϕR(r)

����
x=0

− d
dx
ϕL(r)

����
x=0

]
+ v0 ϕR(0, y) = 0. (4.32)

The first condition represents the single-valuedness of the wave function. The second
condition is derived from the BdG equation
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lim
δ→0

∫ δ

−δ
dx HBdG ϕ(r) = E lim

δ→0

∫ δ

−δ
dx ϕ(r) = 0, (4.33)

and implies the current conservation law. See also Appendix B for details. The
wave number p is conserved in the transmission and reflection processes because
of translational symmetry in the transverse direction. The boundary conditions are
represented in a matrix form,(

α
β

)
+

(
A
B

)
=Φ̂ Û

(
C
D

)
+ Φ̂ Û

(
γ
δ

)
, (4.34)

k̄ τ̂3

(
α
β

)
− k̄ τ̂3

(
A
B

)
=Φ̂ Û

(
k̄ τ̂3 + 2iz0

) (
C
D

)
− Φ̂ Û

(
k̄ τ̂3 − 2iz0

) (
γ
δ

)
, (4.35)

Û =
(

u v

v u

)
, (4.36)

where τ̂3 is the third Pauli’s matrix in particle-hole space. We have used the relation
k̄ ≈ k±/kF ≈ q±/kF which are valid at a low energy E ≪ ϵF . The transport
coefficients in the normal state is calculated to be

tn =
k̄

k̄ + iz0
, rn =

−iz0

k̄ + iz0
, k̄ =

kx
kF
, z0 =

mv0

ℏ2kF
, (4.37)

where tn (rn) is the transmission (reflection) coefficient of the potential barrier.
At first, we calculate the transport coefficients for a quasiparticle incoming from

a normal metal. They are defined as[
A
B

]
=

[
ree
nn reh

nn
rhe
nn rhh

nn

] [
α
β

]
,

[
C
D

]
=

[
tee
sn teh

sn
the
sn thh

sn

] [
α
β

]
. (4.38)

By putting γ = δ = 0, the coefficients result in

ree
nn =

2rnΩ
ΞNS

, rhh
nn =

2r∗nΩ
ΞNS

, rhe
nn =

|tn |2∆e−iφ

ΞNS
, reh

nn =
|tn |2∆eiφ

ΞNS
, (4.39)

tee
sn =

tn e−iφ/2
√

2E
√

E +Ω
ΞNS

, thh
sn =

t∗n eiφ/2
√

2E
√

E +Ω
ΞNS

, (4.40)

the
sn =

r∗ntn e−iφ/2
√

2E
√

E −Ω
ΞNS

, teh
sn =

rnt∗n eiφ/2
√

2E
√

E −Ω
ΞNS

, (4.41)

ΞNS =2Ω + |tn |2(E −Ω). (4.42)

By putting α = β = 0, the transport coefficients for a quasiparticle incoming from a
superconductor become,[

C
D

]
=

[
ree
ss reh

ss
rhe
ss rhh

ss

] [
γ
δ

]
,

[
A
B

]
=

[
tee
ns teh

ns
the
ns thh

ns

] [
γ
δ

]
. (4.43)
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with

ree
ss =

2rnΩ
ΞNS

, rhh
ss =

2r∗nΩ
ΞNS

, rhe
ss =

−|tn |2∆
ΞNS

, reh
ss =

−|tn |2∆
ΞNS

, (4.44)

tee
ns =

2tnΩeiφ/2

ΞNS

√
E +Ω

2E
, thh

ns =
2t∗nΩe−iφ/2

ΞNS

√
E +Ω

2E
(4.45)

the
ns =

2t∗nrne−iφ/2Ω
ΞNS

√
E −Ω

2E
, teh

ns =
2tnr∗neiφ/2Ω
ΞNS

√
E −Ω

2E
. (4.46)

The scattering matrix of the junction interface is then represented by
A
B
C
D

 =S

α
β
γ
δ

 , S =


ree
nn reh

nn t̃ee
ns t̃eh

ns
rhe
nn rhh

nn t̃he
ns t̃hh

ns
t̃ee
sn t̃eh

sn ree
ss reh

ns
t̃he
sn t̃hh

sn rhe
ss rhh

ns

 . (4.47)

The transmission coefficients are corrected by the ratio of the velocity in the outgoing
channel and that in the incoming channel, (i.e.,

√
vout/vin). The results are given by

t̃i jsn =

√
Re

[
Ω

E

]
ti jsn, t̃i jns =

√
Re

[
E
Ω

]
ti jns. (4.48)

For E > ∆, all the channels in a superconductor are propagating with the velocity of
|vS | = vkx (Ω/E). In a normal metal, all the channels are always propagating with the
velocity of |vN | = vkx . For E < ∆, on the other hand, all the transport channels in a
superconductor are evanescent, which results in t̃i jsn = 0 and t̃i jns = 0. The unitarity
of the scattering matrix SS† = 1 implies the current conservation law.

The Andreev reflection of a quasiparticle is a peculiar reflection process by a
superconductor. When an energy of an incident electron is smaller than the gap
E < ∆, an electron cannot go into a superconductor because of a gap at the Fermi
level. In the superconducting gap, however, a number of Cooper pairs condense
coherently at a phase of φ. A Cooper pair is a composite particle consisting of two
electrons and a phase as shown in Fig. 4.2(c). An incident electron has to find a
partner of a pair and get the phase of eiφ so that the electron can penetrate into
the superconductor as a Cooper pair. As a result of such Cooper pairing, the empty
shell of the partner is reflected as a hole into the normal metal. Simultaneously,
the conjugate phase e−iφ is copied to the wave function of a hole. Thus an electron
is converted to a Cooper pair at the Andreev reflection. The inverse process, the
reflection from a hole to an electron, is also called the Andreev reflection as shown
in Fig. 4.2(d). A hole cancels an electron of a Cooper pair. As a consequence,
a remaining electron is reflected into the normal metal with the phase of eiφ . At
E = 0, the wavenumber of an electron is calculated as

q+ = kF

(
1 +

i
2
∆

ϵF

)
= kF + i

∆

ℏvF
, (4.49)
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where we choose p = 0 for simplicity. The inverse of the imaginary part characterizes
the penetration length of an electron and is equal to the coherence length ξ0. Namely,
an incident electron decreases its amplitude and condenses as a Cooper pair in the
superconducting gap. Such event happens at the interface of a superconductor and a
normal metal. At E < ∆, the conservation law

|ree
nn |2 + |rhe

nn |2 = 1, (4.50)

holds true as there is no propagating channel in a superconductor. When the normal
transmission probability is much smaller than unity |tn |2 ≪ 1, the Andreev reflection
is suppressed |rhe

nn | → 0 and the normal reflection is perfect |ree
nn | → 1. On the contrary

at tn = 1, the normal reflection is absent |ree
nn | = 0 and the Andreev reflection is perfect

|rhe
nn | → 1. The reflection coefficients

rhe
nn =e−i arctan

(√
∆2−E2/E

)
e−iφ, reh

nn = e−i arctan
(√
∆2−E2/E

)
eiφ, (4.51)

includes only the phase information at tn = 1.
The Blonder-Tinkham-Klapwijk (BTK) formula [18] or Takane-Ebisawa [44]

formula enables us to calculate the differential conductance of a NS junction in
terms of the reflection coefficients,

GNS =
dI
dV

����
eV

=
2e2

h

∑
p

(
1 − |ree

nn |2 + |rhe
nn |2

)�����
E=eV

. (4.52)

In the normal state, the Andreev reflection is absent rhe
nn = 0. In such case, the formula

is identical to the Landauer’s conductance formula by using the conservation law
|tee |2 = 1−|ree |2. In Appendix B, a derivation of the Landauer’s conductance formula
is explained briefly. The formula in Eq. (4.52) also assumes reservoirs of an electron
at x = ±∞. The difference in the chemical potentials in these reservoirs corresponds
to the bias voltage across the junction eV = µN − µS , where µN (µS) is the chemical
potential of the reservoir connected with a normal metal (a superconductor). The
voltage drops at the insulating barrier at the junction interface. The Andreev reflection
probability describes the effects of a superconductor on the electric transport. By
substituting the reflection coefficients, we obtain

GNS =
2e2

h

∑
p

2∆2 |tn |4
(2 − |tn |2)2(∆2 − E2) + |tn |4E2

�����
E=eV

for 0 < eV < ∆, (4.53)

and

GNS =
2e2

h

∑
p

2|tn |2[|tn |2E2 + (2 − |tn |2)
√

E2 − ∆2E]
[(2 − |tn |2)

√
E2 − ∆2 + |tn |2E]2

�����
E=eV

for eV ≥ ∆.

(4.54)
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We plot the conductance as a function of the bias voltage in Fig. 4.3, where the
vertical axis is normalized to the conductance of the junction in the normal state,

GN =
2e2

h

∑
p

|tn |2 = R−1
N . (4.55)

At |tn | = 1, the conductance is twice of its normal value at the subgap regime E < ∆
due to the perfect Andreev reflection.

GNS =
2e2

h
2
∑
p

|rhe |2 = 4e2

h

∑
p

=
4e2

h
Nc, (4.56)

GN =
2e2

h
Nc = R−1

N , (4.57)

where Nc is the number of propagating channels of the junction. The conductance
remains finite even though any scatterers are absent in a sample. As discussed briefly
in Appendix B, the conductance in Eq. (4.57) due to the finte width of a sample is
called Sharvin conductance. The Sharvin registance is the inversion of the Sharvin
conductance. An incident electron is converted to a Cooper pair perfectly, which
increases the number of the charge passing through the interface by a factor 2. On
the other hand in the limit of |tn | ≪ 1, the conductance spectra become

GNS → GN
E

√
E2 − ∆2

����
E=eV

, (4.58)

which is proportional to the density of states in a uniform superconductor. The results
in Fig. 4.3 at z0 = 5 correspond to the spectra measured by scanning tunneling
microscopy (STM) or scanning tunneling spectroscopy (STS) experiments.

At the end of this subsection, we explain the relation between the property of
Ω and the causality of the transport coefficients. Outgoing waves from the junction
are related to an incoming wave to the junction by the transmission and reflection
coefficients in Eq. (4.38). In such case, the transport coefficients belong the retarded
causality. The analytic properties of the retarded function ΩR ≡

√
(E + iδ)2 − ∆2

and the advancewd function ΩA ≡
√
(E − iδ)2 − ∆2 are described by

lim
δ→0+

√
(E ± iδ)2 − ∆2 =


±
√

E2 − ∆2 E ≥ ∆
i
√
∆2 − E2 −∆ < E < ∆

∓
√

E2 − ∆2 E ≤ −∆.
(4.59)

These relations enable a unified description of the transport coefficients for E > 0
and those E < 0. For E < 0, Eq. (4.53) remains unchanged, whereas

√
E2 − ∆2 in

Eq. (4.54) changes its sign. As a result, we find that Eq. (4.54) is an even function of
E . In what follows, we implicitly assume that Ω belongs to the retarded causality.
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Fig. 4.3 The differential conductance of a NS junction is plotted as a function of the bias voltage
across the junction for several choices of the potential barrier hight z0.

4.2 Retroreflectivity

The Andreev reflection has quite unusual properties also in real space. When the
wave number of an incident electron is (k, p), the wave number at outgoing waves
are summarized as

A : (−k, p), B : (k, p), C : (k, p), D : (−k, p). (4.60)

The trajectories of outgoing waves are illustrated in Fig. 4.4(a), where we consider the
group velocities in Eqs. (4.22), (4.23), (4.29) and (4.30). The velocity component
perpendicular to the interface changes sign in the normal reflection, whereas all
the velocity components change signs in the Andreev reflection. As a result, a
reflected hole traces back the original trajectory of an incoming electron as shown in
Fig. 4.4(a). Such property of a hole in the Andreev reflection is called retroreflectivity.
An electron-hole pair on the Fermi level (E = 0) connected by the Andreev reflection
are retroreflective exactly in the presence of time-reversal symmetry. Therefore the
two trajectories are retroreflective to each other even in the presence of impurities as
shown in Fig. 4.4(b). Although the pair potential is zero in a normal metal, a Cooper
penetrates from a superconductor. The presence of a Cooper in a normal metal is
described by a strongly correlated electron-hole pair in the Bogoliubov-de Gennes
picture. This fact is very important to understand the Josephson effect through a
dirty metal. In the absence of time-reversal symmetry, the retroreflective is lost. A
good example might be the motion of a quasiparticle in an external magnetic field
perpendicular to the two-dimensional plane as shown in Fig. 4.4(c). The Lorentz
force acts on a charged particle moving in a magnetic field
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f = ev × H . (4.61)

The charge of a hole has the opposite sign to that in the electron. Simultaneously, the
velocity of a hole is just the opposite to that of an electron. Thus the Lorentz force
acts in the same direction in the two particles. In Fig. 4.4(c), an electron and a hole
depart at a same point on the NS interface and meet again at an another point on
the interface. Such correlated motion of an electron and a hole is responsible for the
Aharonov-Bohm like effect in the magnetoconductance of a ballistic NS junction [7].

h

e h

e eh

e 1

2A

B

C

D

Normal metal Superconductor

(a) (b) (c)

impurities

magnetic

fields

Fig. 4.4 The trajectory of outgoing waves. The Andreev reflection is retroreflective on the Fermi
surface in the presence of time-reversal symmetry (a). A hole traces back the trajectory of an
incoming electron as shown in (a) and (b). In a magnetic field, the retroreflectivity is lost as shown
in (c).

4.3 Josephson current in an SIS junction

The Josephson effect is a highlight of superconducting phenomena. The dissipa-
tionless electric current flows between two superconductors at zero bias voltage.
In this section, we try to understand the Josephson effect in terms of the Andreev
reflection. A typical example of Josephson junction may be an SIS junction as
shown in Fig. 4.1(b), where two superconductors sandwich an insulating barrier.
The Josephson current is calculated based on Furusaki-Tsukada formula [25],

J =
e
ℏ

∑
p

kBT
∑
ωn

∆

Ωn
[rhe(p,ωn) − reh(p,ωn)] , (4.62)

where the current is expressed in terms of two Andreev reflection coefficients rhe and
reh. The reflection coefficient rhe represents the process where an electron incoming
from the left superconductor is reflected as a hole after traveling whole the junction as
shown in Fig. 4.5. This process carries a Cooper pair from the left superconductor to
the right superconductor. The coefficient reh represents the conjugate process to rhe.
The formula suggests that the net current should be described by the subtraction of the
two coefficients. Since the direct-current Josephson effect happens in equilibrium,
the reflection coefficients are described as a function of a Matsubara frequency
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Fig. 4.5 The dispersion relations in an SIS junction. rhe (reh) is the Andreev reflection coefficients
of an electron (a hole) incoming to the junction from the left superconductor.

ωn = (2n + 1)πkBT/ℏ, where n is an integer number and T is a temperature. The
analytic continuation in energy is summarized as

E → iℏωn, Ω =
√

E2 − ∆2 → iΩn, Ωn =

√
ℏ2ω2

n + ∆
2. (4.63)

The conductance in an NS junction is represented by the absolute values of re-
flection coefficients in Eq. (4.52). The Josephson current in Eq. (4.62) is represented
using reflection coefficients themselves. The two superconductors exchange their
phase information through the phase degree of freedom of the transport coefficients.
The transmission and reflection coefficients appear in the Landauer formula for con-
ductance which is a basic formula in mesoscopic physics. The formula in Eq. (4.62)
as well as Eq. (4.52) bridges physics of superconductivity and physics of mesoscopic
transport.

Our next task is to calculate the Andreev reflection coefficients in an SIS junction
by solving the BdG equation,[

ξ(r) ∆(r)
∆(r)∗ −ξ(r)

] [
u(r)
v(r)

]
= E

[
u(r)
v(r)

]
, (4.64)

∆(r) =
{
∆eiφL x < 0
∆eiφR x > 0.

(4.65)

The wave function in the left superconductor is given by

ϕL(r) = Φ̂L

[(
u
v

)
eikx xα +

(
v

u

)
e−ikx xβ +

(
u
v

)
e−ikx x A +

(
v

u

)
eikx xB

]
× fp(ρ), (4.66)
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Φ̂j =

(
eiφ j /2 0

0 e−iφ j /2

)
, u =

√
1
2

(
1 +
Ωn

ℏωn

)
, v =

√
1
2

(
1 − Ωn

ℏωn

)
, (4.67)

where A and B are the amplitude of outgoing waves and α and β are the amplitude of
incoming waves. In the right superconductor, the wave function is represented with
two amplitudes C and D as

ϕR(r) = Φ̂R

[(
u
v

)
eikp xC +

(
v

u

)
e−ikp xD +

(
u
v

)
e−ikp xγ +

(
v

u

)
eikp xδ

]
× fp(ρ). (4.68)

By substitute the wave functions into the boundary conditions in Eqs. (4.31) and
(4.32), we obtain the relationship among the amplitudes of wave functions,

Φ̂Û
[(
α
β

)
+

(
A
B

)]
= Û

(
C
D

)
+ Û

(
γ
δ

)
,

Φ̂Û
[
k̄ τ̂3

(
α
β

)
− k̄ τ̂3

(
A
B

)]
=

[
Û k̄ τ̂3 + 2iz0Û

] (
C
D

)
−

[
Û k̄ τ̂3 − 2iz0Û

] (
γ
δ

)
,

Φ̂ =

(
ei(φL−φR )/2 0

0 e−i(φL−φR )/2

)
, Û =

(
u v

v u

)
,

By eliminating C and D under γ = δ = 0, we obtain(
A
B

)
=

(
ree reh
rhe rhh

) (
α
β

)
, (4.69)

rhe =
|tn |2∆
2iΞSS

[ℏωn(cos φ − 1) + iΩn sin φ] , (4.70)

reh =
|tn |2∆
2iΞSS

[ℏωn(cos φ − 1) − iΩn sin φ] , (4.71)

ΞSS =(ℏωn)2 + |tn |2∆2
[
1 − |tn |2 sin2

(φ
2

)]
, φ = φL − φR, (4.72)

where we have used the relations

uv =
∆

2iℏωn
, u2 − v2 =

√
(ℏωn)2 + ∆2

ℏωn
. (4.73)

The Josephson current is represented as

J =
e
ℏ

sin φ
∑
p

kBT
∑
ωn

|tn |2∆2

ℏ2ω2
n + ∆

2 (
1 − |tn |2 sin2 ( φ

2
) ) . (4.74)

The identity

kBT
∑
ωn

1
(ℏωn)2 + y2 =

1
2y

tanh
(

y

2kBT

)
(4.75)
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enables us to carry out the summation over Matsubara frequency. Finally, we reach
at

J =
e
ℏ

sin φ
∑
p

|tn |2∆

2
√

1 − |tn |2 sin2 ( φ
2
) tanh

©«
∆

√
1 − |tn |2 sin2 ( φ

2
)

2kBT

ª®®¬ . (4.76)

First we consider the tunneling limit of |tn | ≪ 1 which represents an SIS junction.
Using the normal resistance in Eq. (4.55), the Josephson current becomes

J =
π∆0

2eRN

(
∆

∆0

)
tanh

(
∆

2kBT

)
sin φ. (4.77)

Eq. (4.77) was first derived by Ambegaokar-Baratoff [5] and has explained well
the Josephson effect observed in experiments. By using the dependence of ∆ on
temperature in Fig. 3.2, the amplitude of the Josephson current is plotted as a
function of temperature in Fig 4.6. The Josephson current increases with the decrease
of temperature and saturates at low temperatures.
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Fig. 4.6 Left: the amplitude of the Josephson current in a SIS junction ( |tn | ≪ 1) is plotted
as a function of temperature. Right: the current-phase relationship in a S-constriction-S junction
( |tn | = 1).

Next we consider a junction through a constriction by choosing tn = 1. Using the
Sharvin resistance RN in Eq. (4.57), the Josephson current becomes

J =
π∆0

eRN

(
∆

∆0

)
sin

(φ
2

)
tanh

(
∆ cos

( φ
2
)

2kBT

)
. (4.78)
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This formula was first derived by Kulik-O’melyanchuck [34]. The results at T = 0
suggest the fractional current-phase relationship as sin(φ/2). The Josephson current
is discontinuous at φ = ±π. Just belowTc , the current-phase relationship is sinusoidal
as displayed in Fig. 4.6. Generally speaking, the Josephson current is decomposed
into a series of

J =
∑
n=1

Jn sin(nφ), (4.79)

when the junction preserves time-reversal symmetry at φ = 0. The current-phase
relationship in Eq. (4.78) is described as

sin
(φ
2

)
=

∞∑
n=1

(−1)n+18n
π(2n + 1)(2n − 1) sin(nφ). (4.80)

Namely, not only the lowest order coupling term J1 but also higher order terms Jn for
n = 2,3, · · · contribute to the Josephson current. The Andreev reflection processes
for the lowest order term are analyzed in what follows. In Fig. 4.7(a), we show the
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Fig. 4.7 (a) The process include the Andreev reflection at the right interface once. The material
at the central segment is indicated by X. The transmission coefficient of X are tX in the electron
branch and t∗X in the hole branch. (b) The reflection processes contribute to J1. (c) The schematic
illustration of the Andreev reflection processes in J2.

Andreev reflection process for the Josephson current, where a quasiparticle suffers
the Andreev reflection at the right interface once. The two processes are possible for
rhe in Eq. (4.62) as shown in (a1) and (a2). Figures in (a3) and (a4) represent the
processes for reh. The contributions of these four processes to the Josephson current
are summarized as A1 as
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A1 =
e
ℏ

∑
p

kBT
∑
ωn

∆

Ωn

[
thh
sn (L) · t∗X · rhe

nn(R) · tX · tee
ns (L) + the

sn (L) · tX · reh
nn(R) · t∗X · the

ns (L)

− tee
sn (L) · tX · reh

nn(R) · t∗X · thh
ns (L) − teh

sn (L) · t∗X · rhe
nn(R) · tX · teh

ns (L)
]
, (4.81)

where tX (t∗X ) is the transmission coefficient of a material X in the electron (hole)
branch. We have assumed that the material X preserves time-reversal symmetry.
Among the transport coefficients shown in Eqs. (4.39)-(4.46), it is possible to confirm
the relations

tee
ns (L) ·

∆

Ω
· thh

sn (L) − teh
ns (L) ·

∆

Ω
· teh

sn (L) = 2reh
nn(L), (4.82)

thh
ns (L) ·

∆

Ω
· tee

sn (L) − the
ns (L) ·

∆

Ω
· tee

sn (L) = 2rhe
nn(L). (4.83)

These relationships hold true even after applying the analytic continuation E →
iℏωn. Thus we obtain

A1 =
2ie
ℏ

∑
p

kBT
∑
ωn

[
reh
nn(L) · t∗X · rhe

nn(R) · tX − rhe
nn(L) · tX · reh

nn(R) · t∗X
]
. (4.84)

The reflection processes indicated by this equation are illustrated in Fig. 4.7(b).
The processes include the Andreev reflection once at the left interface and once at
the right interface. The transport coefficients include tn which is the transmission
coefficients of the interface between the superconductor and the material X. To
proceed the calculation let us choose tn ≪ 1.

A1 =
e
ℏ

∑
p

kBT
∑
ωn

|tX t2
n |2

(
∆

Ωn

)2
sin φ. (4.85)

The results correspond to J1 sin φ. In the n-th order term in Eq. (4.79) are derived
from the processes including the Andreev reflection n times at the left interface and
n times at the right interface. In addition, n th order process is proportional to |tX |2n
because a quasiparticle travel the X segment 2n times. When |tX |2 ≪ 1 as it is in the
insulator, the higher harmonics is negligible. In Eq. (4.78), the higher order terms
contribute to the Josephson current because the two interfaces and the material X
are highly transparent. Fig. 4.7(c) shows the reflection process which contribute to
J2 sin(2φ).

Note
As already mention in the formula of Eq. (4.62) that the Josephson current is
described by the Andreev reflection coefficients. Although the current should be
gauge invariant, the reflection coefficients depend on a gauge choice. The user of
Eq. (4.62) should pay attention to the gauge choice with which the Andreev reflection
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coefficients are calculated. In this text, Eq. (4.62) is correct when we calculate the
transport coefficients in Eq. (4.69) from the wave functions in Eqs. (4.66) and (4.68).



Chapter 5
Unconventional superconductor

In previous Chapters, we have assumed that a superconductor is a simple metal such
as Al, Pb and Nb. A Cooper pair in such a conventional superconductor belongs
to spin-singlet s-wave symmetry class. In this chapter, we focus on the Andreev
reflection by a superconductor belonging to unconventional symmetry class such as
spin-singlet d-wave and spin-triplet p-wave. To descrive unconventional supercon-
ducting state, we first generalize the pair potential within the mean-field theory,

∆α,β(r1, r2) =g(r1 − r2)
〈
ψα(r1)ψβ(r2)

〉
= −g(r1 − r2)

〈
ψβ(r2)ψα(r1)

〉
, (5.1)

= − ∆β,α,(r2, r1), (5.2)

where the attractive interaction g(r1 − r2) = g(r2 − r1) is symmetric under the
permutation of real space coordinate and we have used the anticommutation relation
of fermion operators. The pair potential must be antisymmetric under the permutation
of two electrons as shown in Eq. (5.2) as a result of the Fermi-Dirac statistics of
electrons. The negative sign on the right-hand side of Eq. (5.2) should be derived from
the permutation of spins or the permutation of spatial coordinates of two electrons.
This relation enables us to categorize superconductors into two classes: spin-singlet
even-parity and spin-triplet odd-parity. By applying the Fourier transformation

ψα(r) =
1

√
Vvol

∑
k

ck ,αeik ·r , g(r) = 1
Vvol

∑
k

gkeik ·r , (5.3)

the pair potential is represented as

∆α,β(R,ρ) =
1

V2
vol

∑
q,k ,k′

gq eiq ·ρ ⟨ck ,αck′,β⟩ei(k+k
′)·Rei(k−k

′)·ρ/2, (5.4)

R =
r1 + r2

2
, ρ = r1 − r2. (5.5)

Here we put k ′ = −k because we consider a uniform superconductor. Namely the
pair potential is independent of the center-of-mass coordinate of two electrons R.

55
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As a result, we have an expression of the pair potential,

∆α,β(ρ) =
1

V2
vol

∑
k ,q

gq ⟨ck ,αc−k ,β⟩ei(k+q)·ρ =
1

Vvol

∑
k

∆α,β(k)eik ·ρ . (5.6)

with the Fourier component

∆α,β(k) =
1

Vvol

∑
p

g(k − p) fα,β(p), fα,β(k) = ⟨ck ,αc−k ,β⟩. (5.7)

In the weak coupling theory, two electrons on the Fermi level form a Cooper pair due
to an attractive interaction. Therefore, k and p in Eq. (5.7) are limited to be momenta
on the Fermi surface. To proceed the argument, let us consider a superconductor in
two-dimension and replace the summation by the integration,

1
Vvol

∑
k

→
∫

dξN(ξ)
∫ 2π

0

dθ
2π
, (5.8)

where N(ξ) is the density of states per spin per volume and θ is an angle on the
two-dimensional Fermi surface as shown in Fig. 5.1. The pair potential is described
as,

∆α,β(θ) =
∫

dξN(ξ)
∫ 2π

0

dθ ′

2π
g(θ, θ ′) fα,β(ξ, θ ′). (5.9)

The the pairing function is decomposed into the Fourier series as

fα,β(ξ, θ) = fα,β(ξ) +
∑
n=1

f (c)α,β(ξ,n) cos(nθ) + f (s)α,β(ξ,n) sin(nθ). (5.10)

The transformation of k → −k is described by θ → θ + π. The component fα,β(ξ)
is the even-parity s-wave because it is independent of θ. The functions cos(2mθ)
and sin(2mθ) are even-parity for m being an integer number, whereas cos((2m−1)θ)
and sin((2m − 1)θ) are odd-parity. When g(θ, θ ′) = g is independent of θ, the pair
potential is also independent of θ because the integral over θ ′ extracts the s-wave
component from the pairing function. The resulting relation

∆α,β =

∫
dξN(ξ)g fα,β(ξ), (5.11)

recovers the gap equation in the BCS theory. At n = 1, f (c)α,β(ξ,1) cos(θ) and
f (s)α,β(ξ,1) sin(θ) belong respectively to px-symmetry and py-symmetry because of
kx = kF cos θ and ky = kF sin θ. To describe p-wave pair potential, we should
choose

g(θ, θ ′) = 2 cos(θ − θ ′) = 2 cos θ cos θ ′ + 2 sin θ sin θ ′, (5.12)
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where the first (second) term extracts px-wave (py-wave) component from the pairing
function. In the similar manner, the d-wave pair potential is described by choosing

g(θ, θ ′) = 2 cos(2θ − 2θ ′) = 2 cos(2θ) cos(2θ)′ + 2 sin(2θ) sin(2θ ′). (5.13)

The first (second) term extracts dx2−y2 -wave (dxy-wave) component from the pairing
function. The unconventional pair potentials are illustrated in Fig. 5.1 on the Fermi
surface. The pair potential for an unconventional superconductor changes its sign on
the Fermi surface, which enriches the transport phenomena as we will discuss in this
Chapter.

The BdG Hamiltonian in momentum space is given by

HBdG(k) =
[

ξk σ̂0 ∆̂k eiφ

−∆̂∗−k e−iφ −ξ∗−k σ̂0

]
. (5.14)

The spin-singlet pair potential is decomposed as

∆̂k =∆k iσ̂2, ∆k =


∆ : s-wave
∆(k2

x − k2
y)/k2

F : dx2−y2 -wave
∆(2kxky)/k2

F : dxy-wave
. (5.15)

The spin-triplet pair potential can be described by

∆̂k =∆k id · σ̂ σ̂2, ∆k =

{
∆kx/kF : px-wave
∆ky/kF : py-wave , (5.16)

where d is a real unit vector in spin space representing a spin structure of a Cooper
pair as

id · σ̂σ̂2 =

[
d↑↑ d↑↓
d↓↑ d↓↓

]
=

[
id2 − d1 d3

d3 id2 + d1

]
. (5.17)

In this book, ∆k and d represent the k-dependence and the spin structure of the pair
potential, respectively. We focus only on unitary states d × d∗ = 0 for spin-triplet
pair potential.

The BdG Hamiltonian is represented as

HBdG(k) =
[

ξk σ̂0 ∆k σ̂S eiφ

∆k σ̂
†
S

e−iφ −ξk σ̂0

]
, (5.18)

where we introduced a matrix in spin space,

σ̂S =

{
iσ̂2 : singlet

id · σ̂σ̂2 : triplet , (5.19)

and we used ξ∗−k = ξk . The BdG equation can be solved as



58 5 Unconventional superconductor

HBdG(k) Φ̌
[

uk σ̂0
vk sk σ̂

†
S

]
= Φ̌

[
uk σ̂0

vk sk σ̂
†
S

]
Ek, (5.20)

Ek =

√
ξ2
k
+ ∆2

k
, sk ≡ ∆k|∆k |

(5.21)

Φ̌ =

[
eiφ/2σ̂0 0

0 e−iφ/2σ̂0

]
, uk =

√
1
2

(
1 +

ξk
Ek

)
, vk =

√
1
2

(
1 − ξk

Ek

)
. (5.22)

The sign of the pair potential sk enters the wave function because the pair potential
depends on the direction of the wavenumber on the Fermi surface.

Here we note several facts which we used on the way to the derivation. The Pauli
matrices obey the relations

σ̂∗ = −σ̂2 σ̂ σ̂2, a · σ̂ b · σ̂ = a · b σ̂0 + i a × b · σ̂. (5.23)

For the orbital part of the pair potential, we have used the relations

∆
∗
−k =

{
∆k : singlet

−∆k : triplet , (5.24)

which is true for the pair potentials in Fig. 5.1. However the relation is not true for
a chiral superconductor. The solution in Eq. (5.20) can be represented in different
ways. For example,

Φ̌

[
uk sk σ̂S

vk σ̂0

]
, (5.25)

is also a solution of the BdG equation. The wave function depends on gauge choices
for phase and matrix structures in spin space. We will use Eq. (5.25) as a wave
function at the hole branch in following sections.
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Fig. 5.1 The pair potentials are illustrated on the the two-dimensional Fermi surface.
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5.1 Conductance in an NS junction

We consider the conductance of an NS junction consisting of an unconventional
superconductor in two-dimension. To calculate the reflection coefficients, we first
describe the wave function in a normal metal,

ϕL(r) =
[(
α
0

)
eikx x +

(
0
β

)
e−ikx x +

(
A
0

)
e−ikx x +

(
0
B

)
eikx x

]
fky (y), (5.26)

where fky (y) is the wave function in the y direction at the wave number being ky

and kx =
√

k2
F − k2

y is the wave number in the x direction on the Fermi surface. We
have neglected the corrections to the wave number of the order of ∆/ϵF ≪ 1. The
amplitude of wave function,

X =
[

X↑
X↓

]
, (5.27)

has two spin components for X being α, β, A, and B in Eq. (5.26). This is also true
for C and D in Eq. (5.28). Thus "0" in Eq. (5.26) is 2 × 1 null vector in spin space.
The right-going wave in a superconductor is represented as

ϕR(r) =Φ
[(

u+σ̂0
v+s+σ̂

†
S

)
eikx xC +

(
v−s−σ̂S

u−σ̂0

)
e−ikx xD

]
fky (y), (5.28)

u± =

√
1
2

(
1 +
Ω±
E

)
, v± =

√
1
2

(
1 − Ω±

E

)
, Ω± =

√
E2 − ∆2

±, (5.29)

∆± =∆(±kx, ky), s± =
∆±
|∆± |

, (5.30)

where C and D represent the amplitudes of outgoing waves. In the electron branch,
the wave vector of a right-going channel is (kx, ky) on the Fermi surface. The wave
function of an electron is a function of ∆+ = ∆(kx, ky). In the hole branch, on the
other hand, the pair potential is ∆− = ∆(−kx, ky) because the wave vector on the
Fermi surface is (−kx, ky). As we see below, the sign of the pair potential s± plays
an importan role in quantum transport.

Using the boundary conditions in Eqs. (4.31) and (4.32), it is possible to derive a
relation[

k̄τ3U−1 − U−1 k̄τ3 + 2iz0U−1] [
α
β

]
= −

[
k̄τ3U−1 +U−1 k̄τ3 + 2iz0U−1] [

A
B

]
,

U = Φ
[

u+σ̂0 v−s−σ̂S

v+s+σ̂
†
S

u−σ̂0

]
. (5.31)

The reflection coefficients defined by,



60 5 Unconventional superconductor[
A
B

]
=

[
r̂ee r̂eh
r̂he r̂hh

] [
α
β

]
(5.32)

are calculated as

r̂ee =
rn(1 − Γ+Γ−)
1 − |rn |2Γ+Γ−

σ̂0, r̂hh =
r∗n(1 − Γ+Γ−)
1 − |rn |2Γ+Γ−

σ̂0, (5.33)

r̂he =
|tn |2Γ+e−iφ

1 − |rn |2Γ+Γ−
σ̂†
S
, r̂eh =

|tn |2Γ−eiφ

1 − |rn |2Γ+Γ−
σ̂S, (5.34)

with the transmission coefficients in the normal state in Eq. (4.37) and

Γ± ≡ v±
u±

s± =
∆±

E +Ω±
. (5.35)

In an unconventional superconductor junction, the two pair potentials ∆+ and ∆−
enter the transport coefficients. In particular, the Andreev reflection at E = 0 shows
qualitatively different behavior depending on the relative sign between the two pair
potentials. To see this, let us classify the pair potentials in Fig. 5.1 into two groups.
The pair potentials can be described as

∆+ = s+ |∆k |, ∆− = s− |∆k |. (5.36)

We find that

s+ s− = 1 : s, py, and dx2−y2,

s+ s− = −1 : dxy and px,
(5.37)

are satisfied for all the propagating channels ky . It is possible to obtain simple
expression of the Andreev reflection coefficients in these pairing symmetries because
Ω± = Ω, u± = u, and v± = v are satisfied.

In the limit of E → 0, we note that the function

lim
E→0
Γ± = −is±, (5.38)

is proportional to the sign of the pair potential.
In the case of s+s− = 1, the reflection probabilities at E = 0 in the tunneling limit

|tn | ≪ 1 become

lim
E→0

|r̂he |2 =
(
|tn |2

2

)2

σ̂0, lim
E→0

|r̂ee |2 = |rn |2σ̂0. (5.39)

The zero-bias conductance is proportional to |tn |4 because the conductance is cal-
culated by substituting the reflection coefficients into the formula in Eq. (4.52). The
conductance for s+s− = 1 can be represented by Eqs. (4.53) and (4.54) with∆→ ∆+.
The zero-bias conductance is zero in the tunnel limit |tn | ≪ 1. In Fig. 5.2(b) and (d),
we shows the differential conductance of an NS junctions consisting of a dx2−y2 -wave
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superconductor and that of a py-wave superconductor, respectively. The conductance
spectra for z0 = 5 correspond to the density of states at the uniform superconducting
state in both in Fig. 5.2 (b) and (d). The V-shaped spectra around zero bias are a
result of nodes of the superconducting gap on the Fermi surface.

In the case of s+s− = −1, on the other hand, we find Γ+Γ− = 1 at E = 0, which
results in

lim
E→0

|r̂he |2 = σ̂0, lim
E→0

|r̂ee |2 = 0. (5.40)

The Andreev reflection is perfect at E = 0 independent of the potential barrier at the
interface. The differential conductance for s+s− = −1 is calculated to be

GNS =
2e2

h

∑
ky

2|tn |4∆2
+

4(1 − |tn |2)E2 + |tn |4∆2
+

����
E=eV

for 0 ≤ eV < |∆+ |. (5.41)

At E = eV = 0, the conductance is twice of the Sharvin conductance. In the limit of
|tn |2 ≪ 1 and E ≪ |∆+ |, the expression

GNS ≈ 4e2

h

∑
ky

(|tn |2∆+/2)2
E2 + (|tn |2∆+/2)2

����
E=eV

, (5.42)

suggests that conductance has a peak at zero bias and the peak width is given by
|tn |2 |∆+ |/2. For eV ≥ |∆+ |, the conductance for s+s− = −1 calculated to be

GNS =
2e2

h

∑
ky

2|tn |2
[
|tn |2E2 + (2 − |tn |2)

√
E2 − ∆2

+E
]

[
(2 − |tn |2)E + |tn |2

√
E2 − ∆2

+

]2

���������
E=eV

. (5.43)

The asymptotic behavior in the tunnel limit,

GNS =
2e2

h

∑
ky

|tn |2
√

E2 − ∆2
+

E

�������
E=eV

, (5.44)

is approximately proportional to the density of states at the bulk. In Fig. 5.2 (a)
and (c), we shows the differential conductance of a dxy-wave junction and that of
a px-wave junction, respectively. The conductance in the tunnel limit shows a large
peak at zero bias for both (a) and (c). [48] The sign change of pair potential is a
general feature of all unconventional superconductors. Thus the zero-bias anomaly
observed in STM/STS experiments in a superconductor suggests that the pairing
symmetry of the superconductor would be unconventional.
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Fig. 5.2 The conductance spectra are calculated for an NS junction consisting of an unconventional
superconductor for several choices of the barrier parameter z0. The transmission probability is
unity for z0 = 0. The results for z0 = 5 correspond to the tunnel spectra measured in STM/STS
experiments, where the transmission probability of the potential barrier is estimated to be 0.026.

5.2 Surface Andreev bound states

The reasons of the zero-bias anomaly appearing in the conductance spectra should
be clarified [13]. In Fig. 5.3, the Andreev reflection process is decomposed into a
series of multiple reflections by the pair potential and those by the barrier potential.
In the electron branch, the transmission and reflection coefficients of the barrier in
the normal state are tn and rn, respectively. In the hole branch, they are given by
t∗n and r∗n. At the first order process, an electron transmits into the superconductor
with the coefficient tn. For 0 ≤ E < ∆, the penetration of such an electron into a
superconductor is limited spatially by the coherence length ξ0 from the interface.
Thus an electron is reflected as a hole by the pair potential∆+. The Andreev reflection
coefficients in this case is obtained by putting tn = 1 into Eq. (5.34) as
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r̂ (0)he =Γ+ e−iφ σ̂†
S
, r̂ (0)eh = Γ− eiφ σ̂S . (5.45)

Finally a reflected hole transmits back into the normal metal with t∗n. The Andreev
reflection coefficient at the first order process is summarized as

r̂ (1)he = t∗n · r̂ (0)he · tn. (5.46)

The reflection sequence is ordered from the right to the left of this equation. In
the second order process, a quasiparticle in the 1st process is reflected by the pair
potential twice more. Simultaneously, a quasiparticle reflected by the barrier potential
twice. The resulting reflection coefficient becomes

r̂ (2)he = t∗n
[
r̂ (0)he · rn · r̂ (0)eh · r∗n

]
r̂ (0)he · tn. (5.47)

By repeating the similar argument, it is possible to calculate m-th order reflection
coefficient as

r̂ (m)
he = t∗n ·

[
r̂ (0)he · rn · r̂ (0)eh · r∗n

]m−1
r̂ (0)he · tn. (5.48)

Due to Eq. (5.38), the Andreev reflection probability at E = 0 is given by

r̂he r̂†he =|tn |
4

����� ∞∑
m=0

(1 − |tn |2)m(−s+s−)m
�����2 σ̂0 =

|tn |4σ̂0

|1 + (1 − |tn |2)s+s− |2
. (5.49)

When the two pair potentials have the same sign (i. e., s+s− = 1), the Andreev
reflection probability in Eq. (5.49) is represented by the summation of an alternating
series. The zero-bias conductance represented as

GNS |E=0 =
2e2

h

∑
ky

2|tn |4
(2 − |tn |2)2

, (5.50)

vanishes in the tunnel limit |tn | → 0. When the two pair potentials have the opposite
sign (i. e., s+s− = −1), on the other hand, the Andreev reflection probability is unity
independent of the potential barrier. The resulting conductance

GNS |E=0 =
2e2

h
2Nc, (5.51)

is the twice of the Sharvin conductance.
The relative sign of the two pair potentials s+s− plays a crucial role in the

interference effect of a quasiparticle near a surface of a superconductor. Namely
s+s− = 1 causes the destructive interference effect. The constructive interference
effect with s+s− = −1 enables the resonant transmission of a quasiparticle (resonant
conversion of an electron to a Cooper pair) through the potential barrier. Thus, it
is expected that the resonant states at E = 0 would be bound at the surface of
an unconventional superconductor. [22, 27] The zero-bias peak in the conductance
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Fig. 5.3 The Andreev reflection process is decomposed into a series of reflections by the pair
potential and by the barrier potential.

could be interpreted as the local density of states at the surface. It is possible to
confirm this argument by seeking a bound state in terms of the wave function in
Eq. (5.28) which represents the right-going wave in the superconductor at E ,

ϕR(x) =
[ [

σ̂0
Γ+σ̂

†
S

]
eikx xC +

[
Γ−σ̂S

σ̂0

]
e−ikx xD

]
e−x/ξ0 . (5.52)

Here we assume that E < |∆± | and φ = 0. The imaginary part of wave number is
represented explicitly to describe bound states at the surface. At x = 0, the wave
function should satisfy

ϕR(0) =
[
σ̂0 Γ−σ̂S

Γ+σ̂
†
S

σ̂0

] [
C
D

]
= 0. (5.53)

The condition is satisfied when

Γ+Γ− = 1. (5.54)

In the case of s+s− = 1, E = ∆+ is a solution of this equation. The wave function
of such solution, however, is not localized at the interface. In the case of s+s− = −1,
E = 0 is a solution of this equation. The wave function of such a bound state is



5.3 Josephson current in an SIS junction 65

described by

ϕR(x) =C sin(2kx x) e−x/ξ0

[
σ̂0

−iσ̂†
S

s+

]
, (5.55)

where C is a constant. Today, the surface Andreev bound states are called topologi-
cally protected bound states at a surface of a topologically nontrivial superconductor.
We will address this issue in Sec. 5.4.

5.3 Josephson current in an SIS junction

The Andreev bound state at the surface on the Fermi level (E = 0) causes the
zero-bias anomaly in the differential conductance in an NS junction. In this section,
we discuss the effects of the surface bound states on the Josephson current. Let us
consider an SIS junction, where two unconventional superconductors are identical
to each other. In the left superconductor, the wave function is given by

ϕL(r) =Φ̌L

[(
u+σ̂0
v+s+σ̂

†
S

)
eikx xα +

(
v−s−σ̂S

u−σ̂0

)
e−ikx xβ

+

(
u−σ̂0
v−s−σ̂

†
S

)
e−ikx x A +

(
v+s+σ̂S

u+σ̂0

)
eikx xB

]
fky (y), (5.56)

u± =

√
1
2

(
1 +
Ωn,±
ℏωn

)
, v± =

√
1
2

(
1 − Ωn,±

ℏωn

)
, Ωn,± =

√
ℏ2ω2

n + ∆
2
±, (5.57)

with Eq. (5.30). In the same way, the wave function on the right is represented by,

ϕR(r) =Φ̌R

[(
u+σ̂0
v+s+σ̂

†
S

)
eikx xC +

(
v−s−σ̂S

u−σ̂0

)
e−ikx xD

]
fky (y). (5.58)

The phase of superconductor is represented by

Φ̌j =

[
eiφ j /2σ̂0 0̂

0̂ e−iφ j /2σ̂0

]
, (5.59)

with j = L or R. The Josephson current can be calculated based on a formula [49, 8]

J =
e

2ℏ
kBT

∑
ωn

∑
ky

Tr

[
∆+σ̂S r̂he

Ωn,+
−
∆−σ̂

†
S
r̂eh

Ωn,−

]
. (5.60)

As discussed at the end of Chap. 4, the expression of the formula depends on the
gauge choice. The formula is correct when the Andreev reflection coefficients are
calculated from the wave functions in Eqs. (5.56) and (5.58).
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Applying the boundary conditions in Eqs. (4.31) and (4.32), we obtain the Andreev
reflection coefficients. As shown in Eq. (5.37), we consider two cases to make clear
the effects of the surface Andreev bound states at zero energy on the Josephson
effect. Since Ωn± = Ωn, reflection coefficients result in

r̂he =
∆+σ̂

†
S

2i


|tn |2 {(cos φ − 1) ℏωn + i sin φΩn} + |rn |2(1 − s+s−) ℏωn

|tn |2
{
(ℏωn)2 + ∆2

k
cos2(φ/2)

}
+ |rn |2

{
ℏωn

1−s+s−
2 +Ωn

1+s+s−
2

}2

 ,
r̂eh =

∆−σ̂S

2i


|tn |2 {(cos φ − 1) ℏωn − i sin φΩn} + |rn |2(1 − s+s−) ℏωn

|tn |2
{
(ℏωn)2 + ∆2

k
cos2(φ/2)

}
+ |rn |2

{
ℏωn

1−s+s−
2 +Ωn

1+s+s−
2

}2

 ,
with φ = φL − φR and the transport coefficients in the normal state in Eq. (4.37).
When s+s− = 1 is satisfied in s-, dx2−y2 -, and py-wave junctions, we obtain

r̂he =
σ̂†
S
|tn |2∆+
2i

[
(cos φ − 1) ℏωn + i sin φΩn

ℏ2ω2
n + ∆

2
k

{
1 − |tn |2 sin2(φ/2)

} ]
, (5.61)

r̂eh =
σ̂S |tn |2∆−

2i

[
(cos φ − 1) ℏωn − i sin φΩn

ℏ2ω2
n + ∆

2
k

{
1 − |tn |2 sin2(φ/2)

} ]
. (5.62)

The Josephson current becomes,

J =
e
ℏ

sin φ
∑
ky

|tn |2∆k
2
√

1 − |tn |2 sin2(φ/2)
tanh

[
∆k

√
1 − |tn |2 sin2(φ/2)

2kBT

]
. (5.63)

The results are qualitatively same as the Josephson current in Eq. (4.76). For s+s− =
−1 in dxy- and px-wave junctions, on the other hand, the coefficients are represented
as

r̂he =
σ̂†
S
∆+

2i

[
|tn |2 {(cos φ − 1) ℏωn + i sin φΩn} + 2|rn |2ℏωn

ℏ2ω2
n + ∆

2
k
|tn |2 cos2(φ/2)

]
, (5.64)

r̂eh =
σ̂S∆−

2i

[
|tn |2 {(cos φ − 1) ℏωn − i sin φΩn} + 2|rn |2ℏωn

ℏ2ω2
n + ∆

2
k
|tn |2 cos2(φ/2)

]
. (5.65)

The Josephson current is calculated to be,

J =
e
ℏ

sin φ
∑
ky

|tn |∆k
2 cos(φ/2) tanh

[
∆k |tn | cos(φ/2)

2kBT

]
. (5.66)

At T = 0, the current-phase relationship is fractional irrespective of tn because
of the resonant transmission of a Cooper pair via the Andreev bound states at the
interface. In Fig. 5.4(a), we plot the amplitude of the Josephson current as a function
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of temperature for px-, py-, dx2−y2 - and dxy-wave SIS junctions. The results for
px- and dxy-wave junctions show that the Josephson current increases rapidly with
the decrease of temperature for T < 0.5Tc . In Fig. 5.4(b), we show the current-
phase relationship in a px-wave SIS junction. The relation is sinusoidal just below
Tc , whereas is becomes factional at a low temperature T = 0.001Tc . Such unusual
behavior is called low-temperature anomaly of Josephson effect.[49]
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Fig. 5.4 The Josephson critical current is plotted as a function of temperature for px -, py -, dx2−y2 -
and dxy -wave symmetry in (a). The current-phase relationship in a px -wave SIS junction is shown
for several choices of temperatures in (b). The transmission probability of the barrier is about 0.026
as a results of choosing z0 = 5.

It is possible to calculate the Josephson current from the energy spectra E(φ) of
bound states at the interface of a SIS junction based on the relation

J =
2e
ℏ

d
dφ

E(φ). (5.67)

Here we discuss how the surface Andreev bound sates at zero energy affects the
bound state energy E(φ). Here we focus on simple cases shown in Eq. (5.36). We
consider 2 × 2 the BdG Hamiltonian by block diagonalizing the original 4 × 4
Hamiltonian in terms of spin degree of freedom. In the left superconductor, the wave
function localizing at the interface is described by

ϕL(r) =Φ̌L

[(
E + iΩ
∆−

)
e−ikx x A +

(
E − iΩ
∆+

)
eikx xB

]
ex/ξ0 fky (y), (5.68)

with Ω =
√
∆2
k
− E2. The wave function on the right-hand side becomes,

ϕR(r) =Φ̌R

[(
E + iΩ
∆+

)
eikx xC +

(
E − iΩ
∆−

)
e−ikx xD

]
e−x/ξ0 fky (y). (5.69)
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They are connected with each other at x = 0 by the boundary conditions in Eqs. (4.31)
and (4.32). From the Boundary conditions, we obtain the equation

χ k̄(E + iΩ) −χ k̄(E − iΩ) (k̄ − 2iz0)(E + iΩ) −(k̄ + 2iz0)(E − iΩ)
χ∗ k̄∆− −χ∗ k̄∆+ (k̄ − 2iz0)∆+ −(k̄ + 2iz0)∆−

χ(E + iΩ) χ(E − iΩ) −(E + iΩ) −(E − iΩ)
χ∗∆− χ∗∆+ −∆+ −∆−




A
B
C
D


= 0, (5.70)

with χ = eiφ/2. The determinant of the matrix is proportional to

|tn |2
[
−|E + iΩ|2 cos φ + E2 −Ω2]
+ |rn |2

[
E2 −Ω2 − s+s− |E + iΩ|2

]
= 0. (5.71)

The energy of the bound states are calculated to be

E = ±|∆k |
[
|tn |2 cos2

(φ
2

)
+

1 + s+s−
2

(1 − |tn |2)
]1/2

. (5.72)

The negative sign must be chosen for occupied bound states which carry the Joseph-
son current. In the case of s-wave junction (i.e., s+s− = 1), the energy of the Andreev
bound states becomes

E = −∆
[
1 − |tn |2 sin2

(φ
2

)]1/2
. (5.73)

The Josephson current calculated by using Eq. (5.67) is identical to Eq. (5.63)
at T = 0. The energy of the Andreev bound states for a px-wave junction (i.e.,
s+s− = −1) results in

E = −|∆k | |tn | cos
(φ
2

)
. (5.74)

The Josephson current calculated from Eq. (5.67) is identical to Eq. (5.66) at T = 0.
The energy of the Andreev bound states at a Josephson junction are plotted as a
function of the phase difference in Fig. 5.5. In both Eqs. (5.73) and (5.74), the
occupied energy branch takes its minimum at φ = 0.

5.4 Topological classification

A topologically nontrivial state of material is a novel concept in condensed matter
physics. Quantum states of an electron in solid can be characterized in terms of
topological numbers. When we apply the periodic boundary condition to obtain
a solution of a Schroedinger equation, the wave number k indicates place of the
Brillouin zone and the wave function ϕl(k) describes properties of the quantum
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Fig. 5.5 The energy of Andreev bound states at a Josephson junction for |tn | = 0.5. The results for
s+s− = 1 in Eq. (5.73) are 2π periodic. On the other hand, the results for s+s− = −1 in Eq. (5.74)
are 4π periodic. At φ = π, two bound states are degenerate at zero energy.

state labeled by l. In other words, ϕl(k) is a map from the Brillouin zone to the
Hilbert space. In this section, we will calculate a topological number (winding
number) to characterize nodal unconventional superconductors preserving time-
reversal symmetry. Before turning into details, important features of topological
numbers are summarized ,

1. To define a topological number, the electronic states must have gapped energy
spectra. The Fermi energy stays in the gap.

2. Topological number Z is an integer number which can be defined in terms of the
wave functions of all occupied states below the gap.

3. Topological number remains unchanged as long as the gap opens.

As the energy spectra are gapped at the Fermi level, topological materials can be
insulating or superconducting. These features enable us to understand why zero-
energy state appear at a surface of a topologically nontrivial material as shown in
Fig. 5.6(a). The topological number is Z , 0 in the topological material x > 0 and
it is zero (trivial) in vacuum x < 0. Since Z is an integer number, it jumps at x = 0
discontinuously. To change the topological number, the gap must close at the surface.
More specifically, electronic states at the Fermi level are necessary at x = 0. This
argument explains the existence of metallic states (zero-energy states) at a surface
of a topological material. In addition, the number of such surface states at the Fermi
level is identical to |Z|. This fact is called bulk-boundary correspondence.

In what follows, we explain how to topologically characterize nodal supercon-
ductors with focusing on a spin-triplet px-wave superconductor in two-dimension.
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(b) p  -wavex
(c) d     -wavexy

x

0

SCvac.

(a)

0 0

Fig. 5.6 A topologically nontrivial superconductor has a surface at x = 0 in (a). The energy
eigenvalues of a px -wave superconductor and those of a dxy -wave superconductor are plotted as
a function of ky in (b) and (c), respectively. The hardwall boundary condition is applied in the x
direction and the periodic boundary condition is applied in the y direction. As a result of nontrivial
winding numbers in a superconductor, zero-energy states appear between the nodes of the pair
potential.

The mean-field Hamiltonian is given by

H =
∫

dr [ψ†(r),ψ(r)]
[
ξ(r) ∆0

−∂x

ikF

∆0
−∂x

ikF
−ξ∗(r)

] [
ψ(r)
ψ†(r)

]
, (5.75)

and the BdG equation becomes[
ξ(r) ∆0

−∂x

ikF

∆0
−∂x

ikF
−ξ∗(r)

] [
uν(r)
vν(r)

]
= Eν

[
uν(r)
vν(r)

]
, (5.76)

where the superconducting phase is fixed at φ = 0. We consider 2× 2 BdG equation
by focusing on spin ↑ sector with choosing σ̂S = σ̂3 in Eq. (5.19). The Bogoliubov
transformation becomes[

ψ(r)
ψ†(r)

]
=

∑
ν

[
uν(r) v∗ν(r)
vν(r) u∗ν(r)

] [
γν
γ†ν

]
. (5.77)

Here we omit spin ↑ from both the operators and the wave functions.
We first describe the Andreev bound states at a surface of a spin-triplet px-wave

superconductor. By repeating the argument in Sec. 5.2, it is possible to confirm the
presence of the Andreev bound states at a surface of a px-wave superconductor in
Fig. 5.6(a). The wave function of the right-going wave in the superconductor is given
by
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ϕS(r) =
[ [

1
Γ+

]
eikx xC +

[
Γ−
1

]
e−ikx xD

]
e−x/ξ0

√
2
W

sin
(
πly
W

)
, (5.78)

Γ± =
∆±

E +
√

E2 − ∆2
±

, ∆± = ±∆0
kx
kF
, (5.79)

where we consider surface states localized at x = 0 by assuming E < ∆0 and
we apply the hard wall boundary condition in the y direction. From the boundary
condition ϕS(r)|x=0 = 0, Γ+Γ− = 1 is necessary to have the surface bound state. We
find that a bound state stays at E = 0 when

s+s− = −1, (5.80)

is satisfied. The wave function of the bound state can be described by,

ϕE=0,l(r) =
(

eiπ/4

e−iπ/4

)
fl(r), (5.81)

fl(r) =A sin(kx x) e−x/ξ0

√
2
W

sin
(
πly
W

)
, (5.82)

where A is a real constant for normalizing the wave function and l = 1,2, · · · Nc indi-
cates the zero-energy states. The Bogoliubov transformation in Eq. (5.77) connects
the operator of the surface state and the operator of an electron at each propagating
channel l, [

ψl(r)
ψ†
l
(r)

]
= fl(r)

[
eiπ/4 eiπ/4

e−iπ/4 e−iπ/4

] [
γl
γ†
l

]
. (5.83)

Eq. (5.83) is represented as

ψl(r) = eiπ/4γl(r), ψ†
l
(r) = e−iπ/4γl(r), (5.84)

by using an fermion operator

γl(r) ≡ fl(r)(γl + γ†l ), (5.85)

We find the relation

γl(r) = γ†l (r), (5.86)

which is called Majorana relation. An spin-triplet px-wave superconductor hosts
Majorana Fermions at its surface [32]. The presence of more than one zero-energy
state is responsible for the anomalous proximity effect of a spin-triplet superconduc-
tor [46, 14, 28] as we will discuss in Chap. 7.

To define the Brillouin zone clearly, we descrive the BdG equation on a two-
dimensional tight-binding lattice as
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r′

[
ξ(r, r

′) ∆(r, r ′)
−∆∗(r, r ′) −ξ∗(r, r ′)

] [
u(r ′)
v(r ′)

]
= E

[
u(r)
v(r)

]
, (5.87)

ξ(r, r ′) = − t
(
δr ,r′+x̂ + δr ,r′−x̂ + δr ,r′+ŷ + δr ,r′−ŷ

)
+ vrδr ,r′ − ϵFδr ,r′, (5.88)

∆(r, r ′) =i
∆0

2
(
δr ,r′+x̂ − δr ,r′−x̂

)
, r = j x̂ + m ŷ, (5.89)

where t is the hopping integral between the nearest neighbor lattice sites, and the
on-site potential vr is set to be zero. When we apply the periodic boundary condition
in both the x and the y directions, the wave function is represented in the Fourier
series as

u(r) =
∑
kx ,ky

ukx ,ky

√
1
L

eikx j
√

1
M

eikym, kx = 2πn/L, ky = 2πl/M, (5.90)

with −L/2 < n ≤ L/2 and −M/2 < l ≤ M/2, where L and M is the number of
lattice sites in the x and y direction, respectively. The lattice constant is set to be
unity. The wave function represents the eigen state of the BdG Hamiltonian. The
energy eigenvalue is calculated as E = ±

√
ξ2
k
+ ∆2

k
with,

ξk = −2t(cos kx + cos ky − 2) − ϵF , ∆k = ∆0 sin kx . (5.91)

In Fig. 5.6(b), we plot the energy eigenvalues as a function of ky , where we choose
∆0 = t, ϵF = 2t, L = 500 and M = 200. The calculated results show that the pair
potential has nodes on the Fermi surface at ky = ±π/2 for the current parameter
choice. The periodic boundary conditions in both x and y directions means that the
shape of a superconductor is two dimensional spare. There is no edge or surface
in such a superconductor. We note that the eigenvalues at E = 0 between the two
nodal points in Fig. 5.6(b) are absent under such boundary condition. To have edges
or surfaces, we need to apply the hard wall boundary condition in the x direction.
When we introduce the hard wall potential at j = 0 and j = L, zero-energy states
appear as indicated by dots between the two nodal points in Fig. 5.6(b). Namely a
surface of a px-wave superconductor in the x direction hosts bound states at zero
energy as described by the wave function in Eq. (5.81).

Our remaining task is to calculate a topological number under the periodic bound-
ary condition in the two directions. However, it is impossible to apply the naive
topological classification to a px-wave superconductor because the superconducting
gap has nodes on the Fermi surface as shown in Fig. 5.6(b). Namely the energy
spectra are not gapped in the whole Brillouin zone. To topologically characterize
such a nodal superconductor, we apply a theoretical prescription called dimensional
reduction [41]. We fix ky at a certain point other than the nodal points ky = ±π/2 and
consider the one-dimensional Brillouin zone of −π < kx ≤ π. The one-dimensional
Brillouin zone in this case is identical to a sphere in one-dimension S1 because
kx = −π and kx = π indicate an identical quantum state. As we choose ky away
from the nodal ponts, the pair potential opens up the superconducting gap in such
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a one-dimensional Brillouin zone. We have already known the wave function of an
occupied state

ψk =

[
−vk sgn(∆k )

uk

]
, uk =

√
1
2

(
1 +

ξk
Ek

)
, vk =

√
1
2

(
1 − ξk

Ek

)
, (5.92)

with k = (kx, ky). An eigenstate is specified by an angle of −π < αk ≤ π as

cos(αk ) ≡
ξk
Ek
, sin(αk ) ≡

∆k

Ek
, ψk =

[
sin

(
−αk

2
)

cos
(
−αk

2
) ] . (5.93)

The function −π < αk ≤ π represents the mapping from the one-dimensional
Brillouin zone −π < kx ≤ π to the eigenstates as illustrated in Fig. 5.7(a). It is

π
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Fig. 5.7 (a) The winding number Z counts the number how many time αk encircles the one-
dimensional sphere while kx encircles the one-dimensional Brillouin zone once. (b) The dispersion
of two channels are shown. ξ1 is the dispersion of an evanescent channel and is away from the Fermi
level E = 0. ξ2 is the dispersion of a propagating channel and comes across the Fermi level. The
pair potential ∆k is an odd function of kx . (c) The mapping function αk is plotted as a function of
kx . For an evanescent channel, α1 remains around zero, which results in W = 0. For a propagating
channel, α2 changes by −2π while kx moves from −π to π.

possible to define the winding number in terms of the mapping,
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W(ky) =
1

2π

∫ π

−π
dkx ∂kx (−αk ), (5.94)

where W represents how many time αk encircles the one-dimensional sphere while
kx encircles the one-dimensional Brillouin zone once. In Fig. 5.7(b), we show the
dispersion in the normal state and the pair potential in Eq. (5.91) in one-dimensional
Brillouin zone. At ξ1, we choose a ky so that the dispersion is always above the Fermi
level and that the channel is an evanescent mode. On the other hand, at ξ2, we choose
a ky so that the dispersion comes across the Fermi level and the channel becomes
propagating mode. The wave numbers −π/2 < ky < π/2 in Fig. 5.6(b) correspond
to the propagating channels and those π/2 < |ky | < π describe the evanescent
channels. The pair potential ∆k is an odd function of kx . In Fig. 5.7(c), we plot
the mapping function αk for the two transport channels. In an evanescent channel,
α1 depends on kx only slightly. As a consequence, the winding number is zero.
On the other hand in a propagating channel, α2 changes by −2π while kx encircle
the Brillouin zone once, which results in W = 1. According to the bulk-boundary
correspondence, a zero-energy state appears at a surface of superconductor for each
propagating channel. As a result, a px-wave superconductor in two-dimension hosts
highly degenerate surface bound states at zero energy as shown in Fig. 5.6(b) The
degree of the degeneracy at zero energy is equal to the number of the propagating
channels Nc .

To summarize, the winding number is calculated to be

W(ky) = s+
1 − s+s−

2
, (5.95)

when ky indicates a propagating channel away fromm the nodal points of the pair
potential. The factor s± represents the sign of the two pair potentials defined in
Eq. (5.30). In other words, a nodal superconductor is topologically nontrivial for
s+s− = −1 which is identical to the condition for the appearance of a surface
Andreev bound state in Eq. (5.80). The results in Eq. (5.95) can be applies also to
a dxy-wave superconductor. As shown in Fig. 5.6(c), zero-energy states appear at a
surface of a dxy-wave superconductor. The winding number in Eq. (5.95) is positive
unity for ky > 0 and is negative unity for ky < 0 as a result of dxy-wave symmetry.



Chapter 6
Various Josephson junctions

In Secs. 4.3 and 5.3, we discussed the Josephson effect between the two supercon-
ductors which are identical to each other. The Josephson effect, however, depends
sensitively on the relative symmetry difference in two superconductors. A purpose
of this Chapter is to demonstrate such rich properties of the Josephson current. The
wave function in the two superconductors should be described by

ϕL(r) =Φ̌L

[(
uL+σ̂0
ṽL+σ̂

†
L

)
eikx xα +

(
ṽL−σ̂L

uL−σ̂0

)
e−ikx xβ

+

(
uL−σ̂0
ṽL−σ̂

†
L

)
e−ikx x A +

(
ṽL+σ̂L

uL+σ̂0

)
eikx xB

]
fky (y), (6.1)

ϕR(r) =Φ̌R

[(
uR+σ̂0
ṽR+σ̂

†
R

)
eikx xC +

(
ṽR−σ̂R

uR−σ̂0

)
e−ikx xD

]
fky (y), (6.2)

with Eq. (5.59) and

u j± =

√
1
2

(
1 +
Ωn, j±
ℏωn

)
, vj± =

√
1
2

(
1 −
Ωn, j±
ℏωn

)
, ṽj± = vj± sj± (6.3)

∆j± =∆j(±kx, ky), sj± =
∆j±
|∆j± |

, Ωn, j± =
√
ℏ2ω2

n + ∆
2
j±, (6.4)

for j = L or R. The pair potential is described as

∆̂j± = σ̂j ∆j±, σ̂j =

{
iσ̂2 : singlet

id j · σ̂σ̂2 : triplet . (6.5)

By substituting the wave functions into the boundary conditions in Eqs. (4.31) and
(4.32), it is possible to derive the relations among the amplitudes of wave functions,

75
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ǓR

(
C
D

)
=Φ̌

[
ǓL1

(
α
β

)
+ ǓL2

(
A
B

)]
, (6.6)

ǓR k̄ Ť3

(
C
D

)
=Φ̌

[
ǓL1(k̄ Ť3 − 2iz0)

(
α
β

)
+ ǓL2(−k̄ Ť3 − 2iz0)

(
A
B

)]
, (6.7)

ǓL1 =

(
uL+σ̂0 ṽL−σ̂L

ṽL+σ̂
†
L uL−σ̂0

)
, ǓL2 =

(
uL−σ̂0 ṽL+σ̂L

ṽL−σ̂
†
L uL+σ̂0

)
, (6.8)

ǓR =

(
uR+σ̂0 ṽR−σ̂R

ṽR+σ̂
†
R uR−σ̂0

)
, Ť3 =

(
σ̂0 0
0 −σ̂0

)
, Φ̌ = Φ̌∗

R Φ̌L. (6.9)

By eliminating C and D, we find(
A
B

)
= − Y̌−1

ABY̌ab

(
α
β

)
=

(
r̂ee r̂eh
r̂he r̂hh

) (
α
β

)
(6.10)

Y̌ab =
[

k̄
2
(Ť3V̌1 − V̌1Ť3) + iz0V̌1

]
, Y̌AB =

[
k̄
2
(Ť3V̌2 + V̌2Ť3) + iz0V̌2

]
, (6.11)

V̌1 =Ǔ−1
R Φ̌ ǓL1 =

(
â1 b̂1
ĉ1 d̂1

)
, V̌2 = Ǔ−1

R Φ̌ ǓL2 =

(
â2 b̂2
ĉ2 d̂2

)
. (6.12)

The Andreev reflection coefficients can be calculated as

r̂he =
[
−ĉ−1

2 d̂2 + |rn |2â−1
2 b̂2

]−1 [
ĉ−1

2 ĉ1 − |rn |2â−1
2 â1

]
, (6.13)

r̂eh =
[
−b̂−1

2 â2 + |rn |2d̂−1
2 ĉ2

]−1 [
b̂−1

2 b̂1 − |rn |2d̂−1
2 d̂1

]
. (6.14)

The electric Josephson current is given by [8],

J =
e

2ℏ
kB T

∑
ωn

∑
ky

Tr

[
∆̂L+r̂he

Ωn,L+
−
∆̂
†
L−r̂eh

Ωn,L−

]
. (6.15)

6.1 Singlet-singlet junction

Let us consider Josephson junctions consisting of two spin-singlet superconductors.
The results of the Andreev reflection coefficients are summarized as
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r̂he =
(iσ̂2)†
Ξ

[(1 − ΓR+ΓR−)(ΓL− − ΓL+)

+ |tn |2
{
ΓR+ χ

2 + ΓR−ΓL+ΓL−(χ∗)2 − ΓR+ΓR−ΓL+ − ΓL−
}]
, (6.16)

r̂eh =
iσ̂2

Ξ
[(1 − ΓR+ΓR−)(ΓL+ − ΓL−)

+ |tn |2
{
ΓR−(χ∗)2 + ΓR+ΓL+ΓL− χ2 − ΓR+ΓR−ΓL− − ΓL+

}]
, (6.17)

Ξ(φ) =(1 − ΓR+ΓR−)(1 − ΓL+ΓL−)
+ |tn |2

[
ΓR+ΓR− + ΓL+ΓL− − ΓR+ΓL+ χ2 − ΓR−ΓL−(χ∗)2

]
, (6.18)

Γj± =
−i∆j±

ℏωn +Ωn, j±
, χ = exp

[
i
φL − φR

2

]
. (6.19)

The expression above can be applied to any singlet-singlet junctions.
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Fig. 6.1 The Josephson critical current is plotted as a function of temperature for a junction
consisting of a s-wave superconductor and a dxy -wave superconductor in (a). The current-phase
relationship is shown for several choices of temperatures in (b).

We first focus on a junction where an s-wave superconductor stays on the left and
a dxy-wave superconductor stays on the right. We also assume a relation ∆L = ∆ and
∆R = ∆sgn(kxky) for simplicity. The Andreev reflection coefficients in such case
are calculated be

r̂he =
(iσ̂2)† |tn |2

i
∆R(ℏωni sin φ +Ω cos φ) − ∆LΩ

2ℏωnΩ + |tn |2∆L ∆R i sin φ
, (6.20)

r̂eh =
iσ̂2 |tn |2

i
∆R(ℏωni sin φ −Ω cos φ) − ∆LΩ

2ℏωnΩ + |tn |2∆L ∆R i sin φ
. (6.21)

The Josephson current results in



78 6 Various Josephson junctions

J = − e
ℏ

∑
ky

|tn |4∆2 sin(2φ)
4
√

1 − a2

[
1

Ds−
tanh

(
Ds−

2kBT

)
− 1

Ds+
tanh

(
Ds+

2kBT

)]
, (6.22)

Ds± =∆

[√
1 + a ±

√
1 − a

2

]
, a = |tn |2 | sin φ|. (6.23)

Just below Tc , the current is approximately represented as

J ≈ − 1
12

e∆
ℏ

(
∆

2kBT

)3 ∑
ky

|tn |4 sin(2φ). (6.24)

The lowest harmonic J1 in Eq. (4.79) is missing [47]. Phenomenological description
of J1 term

J1 ∝
∑
ky

Tr
[
∆̂L∆̂

†
R

]
=

∑
ky

∆L(k)∆R(k) Tr
[
σ̂L σ̂

†
R

]
, (6.25)

represents the selection rule of Josephson current because it depends sensitively on
the relative pairing symmetries in the two superconductors. In the present case, an s-
wave pair potential is independent of ky , whereas a dxy-wave pair potential is an odd
function of ky . Therefore, J1 vanishes as a result of the summation over propagating
channels. Namely s-wave and dxy-wave symmetries do not meet the selection rule
for the orbital part. We also note that J2 < 0 in most junctions. At T = 0, the current
becomes

J ≈ − e∆
ℏ

∑
ky

|tn |2
1√

1 + |tn |2 | sin φ|
cos(φ)sgn(φ). (6.26)

Figure 6.1(a) shows the Josephson critical current versus temperature. The results
show the low temperature anomaly because of the Andreev bound states originated
from at a surface of a dxy-superconductor. The current-phase relationship is shown
in Fig. 6.1 (b) for several choices of temperature. The results also indicate an unusual
current-phase relationship at a low temperature.

The Josephson effect in unconventional superconductor depends sensitively on
relative configurations of the two pair potentials. In Fig. 6.2, the two d-wave potentials
are oriented by β in the opposite manner to each other. The pair potentials are
represented by

∆L =∆(cos 2θ cos 2β + sin 2θ sin 2β), (6.27)
∆R =∆(cos 2θ cos 2β − sin 2θ sin 2β), (6.28)

where kx = kF cos θ and ky = kF sin θ. The component of ∆ cos 2θ belongs to
dx2−y2 -wave symmetry. On the other hand, ∆ sin 2θ component belongs to dxy-
wave symmetry and causes the low-temperature anomaly. In addition, the dxy-wave
components in the two superconductors have the opposite sign to each other. The
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d-wave
β β

Fig. 6.2 The pair potentials in the two superconductors are oriented by β in the opposite manner to
each other. The Josephson critical current is plotted as a function of temperature for several choices
of β. The current-phase relationship at β = π/10 is shown for several temperatures in (b). The
results at T = 0.15Tc is amplified by five for better visibility.

maximum amplitude of the Josephson current is plotted as a function of temperature
for several choices of β in Fig. 6.2(a). At β = 0, the Josephson current shows saturates
at a low temperature. The results are identical to those with dx2−y2 -wave symmetry
in Fig. 5.4(a) in Sec. 5.3. The Andreev bound states are absent at a surface of two
superconductors because the relation s+s− = 1 holds for all propagating channels.
At β = π/4, the Josephson current shows the low temperature anomaly as a result
of the relation s+s− = −1 for all propagating channels as we already discussed the
results for dxy-wave symmetry at Fig. 5.4(a). The results for intermediate angles
indicate the nonmonotonic dependence on temperature as shown in β = π/10 and
π/8.[50] The dx2−y2 -wave component of two pair potential in Eq. (6.28) has the
same sign in ∆L and ∆R, which causes the Josephson current Jd

x2−y2 sin φ. On the
other hand, the dxy-wave component in ∆L has the opposite sign to that in ∆R, which
generates the Josephson curent −Jdxy sin φ. The amplitude of Jd

x2−y2 saturates at
a low temperature, whereas Jdxy increases rapidly with at a low temperature. As a
result, J1 = Jd

x2−y2 −Jdxy vanishes at some temperature. In Fig. 6.2(a), the Josephson
current at β = π/10 is almost vanishes around T = 0.15Tc , which suggests J1 = 0
happens at T = 0.15Tc . The current-phase relationship for β = π/10 is plotted for
several temperatures in Fig. 6.2(b). The results at T = 0.15Tc shows J ∝ − sin 2φ
and absence of J1. At T = 0.5Tc , the current-phase relationship is sinusoidal as
usual. The results at T = 0.1Tc is also sinusoidal but the current changes its sign.
Such junction is called π-junction because the minimum of the junction energy stays
at φ = ±π. The nonmonotonic dependence of the Josephson critical current on
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temperature in Fig. 6.2(a) is a unique character to unconventional superconductor
junctions, where two pair potentials are oriented as the mirror image of each other.

6.2 Triplet-triplet junction

The Andreev reflection coefficients in spin-triplet junctions have complicated struc-
ture due to spin degree of freedom of a Cooper pair. It is not easy to obtain simple
analytical expression of the Andreev reflection coefficients for general cases. When
d vectors in the two superconductors are identical to each other (i.e., dL = dR),
the expression in Eq. (6.16)-(6.18) can be applied in such triplet-triplet junctions
by changing iσ̂2 → id · σ̂σ̂2. In such situation, the nonmonotonic dependence of
the Josephson current on temperature discussed in Fig. 6.2 can be seen also p-wave
SIS junctions. The results are demonstrated in Fig. 6.3. The characteristic features in
p-wave mirror junctions are essentially the same as those in d-wave mirror junctions.

p-wave  

β β

Fig. 6.3 The results of the mirror type of junction for spin-triplet p-wave symmetry. The Josephson
critical current versus temperature (a) and the current-phase relationship at β = π/10 in (b). The
results at T = 0.09Tc is amplified by ten for better visibility.

To discuss effects of relative spin configuration of two superconductors on the
current, we assume that orbital part of the pair potential ∆k is common in the two
superconductors and satisfies Eq. (5.36). The pair potentials are represented as

∆̂L+ =s+ |∆k |idL · σ̂σ̂2, ∆̂L− = s− |∆k |idL · σ̂σ̂2, (6.29)

∆̂R+ =s+ |∆k |idR · σ̂σ̂2, ∆̂R− = s− |∆k |idR · σ̂σ̂2, (6.30)
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with s± = 1 or −1. The d vectors are oriented from each other as shown in Fig. 6.4(a)
and they are normalized as |dL | = |dR | = 1. The reflection coefficients for s+s− = 1
are calculated as

r̂he =
|tn |2∆̂†L+

2iΞP+ΞP−

[
Ω

2(X cosα − ℏωn) + |tn |2K−(X − ℏωn cosα)

+iΩ(∆2
k cos φ + ℏωnX − |tn |2K−)n · σ̂

]
, (6.31)

r̂eh =
|tn |2

2iΞP+ΞP−

[
Ω

2(X∗ cosα − ℏωn) + |tn |2K−(X∗ − ℏωn cosα)

−iΩ(∆2
k cos φ + ℏωnX∗ − |tn |2K−)n · σ̂∗]

∆̂L−, (6.32)

K± =
∆2
k

2
(cos φ ± cosα), X = ℏωn cos φ + iΩn sin φ, (6.33)

dL · dR = cosα, n = dR × dL, (6.34)

ΞP± =(ℏωn)2 + P2
t±, Pt± = ∆k

√
1 − |tn |2 sin2

(φ ± α
2

)
. (6.35)

The Josephson current in Eq. (6.15) results in

J =
e
ℏ

∑
ky

|tn |2∆2
k

4

[
sin(φ + α)

Pt+
tanh

(
Pt+

2kBT

)
+

sin(φ − α)
Pt−

tanh
(

Pt−
2kBT

)]
. (6.36)

Just below Tc , the current becomes

J ≈ e
2ℏ

∑
ky

|tn |2 |∆k | sin φ cosα. (6.37)

The relation of cosα = dL · dR represents a selection rule of the Josephson charge
current in spin space. Indeed, we find in Eq. (6.25) that

Tr
[
σ̂L σ̂

†
R

]
= 2 cosα. (6.38)

The first order coupling vanishes when the pairing functions in the two supercon-
ductors are orthogonal to each other in spin space. Since s+s− = 1, the Josephson
current is saturate at a low temperature well below Tc . The current-phase relationship
of the Josephson charge current in Eq. (6.36) is plotted for several α in Fig. 6.5(a),
where the temperature is fixed at T = 0.1Tc and the transmission probability of the
barrier is chosen as 0.1. The amplitude of the current decreases with the increase of
α from 0. At α = π/2, the lowest order coupling vanishes as indicated by Eq. (6.37).
For α > π/2, the junction becomes π-junction. Flipping the direction of d vector in
spin space is compensated by the π-phase shift in gauge space.

The Andreev reflection coefficients have a term proportional to n · σ̂, which is
a characteristic feature of spin-triplet superconducting junctions. These reflection
terms represent the flow of spin supercurrents. The spin current flowing through the
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spin-triplet spin-triplet

ϕ
L

ϕ
R

dL
dR

spin-singlet

s-wave

spin-triplet

ϕ
L

ϕ
R

m

d

(a)

(b)

Fig. 6.4 (a) A Josephson junction consisting of two spin-triplet superconductors. An angle between
the two d vectors is denoted by α. (b) A Josephson junction consisting of a spin-singlet s-wave
superconductor and a spin-triplet superconductor, where m represents the magnetic moment at the
insulating barrier. An angle between d vector in a spin-triplet superconductor and m is denoted by
β.

junction can be calculated based on a formula [11, 12]

J s = −1
8

kB T
∑
ωn

∑
ky

Tr

[
∆̂L+ r̂he σ̂ + r̂he ∆̂L+ σ̂

∗

ΩL+
−
∆̂
†
L− r̂eh σ̂

∗ + r̂eh ∆̂
†
L− σ̂

ΩL−

]
.

(6.39)

We recover the formula for the electric current in Eq. (6.15) by replacing

ℏ
2
σ̂ → −eσ̂0, (6.40)

in Eq. (6.39). By substituting the Andreev reflection coefficients in Eqs. (6.31) and
(6.32), the spin current is represented by

J s =
n

8

∑
ky

|tn |2∆2
k

[
sin(φ + α)

Pt+
tanh

(
Pt+

2kBT

)
− sin(φ − α)

Pt−
tanh

(
Pt−

2kBT

)]
.

(6.41)

At T ≲ Tc , the results become

J s ∝ n cos φ sinα. (6.42)
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The spin supercurrent polarized in n = dR × dL direction in spin space flows across
the junction, which is a unique property to spin-triplet superconductor junctions.
Fig. 6.5(b) shows the spin current in Eq. (6.41) plotted as a function of φ for several
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Fig. 6.5 The Josephson charge current (a) and spin current (b) in spin triplet SIS junctions, where α
is the relative angle between the two d vectors in the two superconductors. The current is calculated
at T = 0.1Tc . We choose the transmission probability of the junction interface at 0.1.

α. The spin supercurrent flows even at zero phase difference φ = 0. The spatial
gradient in the d vector generates the spin supercurrent.

For s+s− = −1, the Andreev reflection coefficients are calculated as

r̂he =
|tn |2∆̂†L+

2iΞM+ΞM−

[
2(ℏωn)3 + |tn |2ℏωn

{
∆

2
k (1 + cos φ cosα) − (ℏωn)2 − ℏωnX cosα

}
− |tn |4K+(X + ℏωn cosα) +i |tn |2Ω(ℏωnX − |tn |2K+)n · σ̂

]
, (6.43)

r̂eh =
|tn |2

2iΞM+ΞM−

[
2(ℏωn)3 + |tn |2ℏωn

{
∆

2
k (1 + cos φ cosα) − (ℏωn)2 − ℏωnX∗ cosα

}
− |tn |4K+(X∗ + ℏωn cosα) −i |tn |2Ω(ℏωnX∗ − |tn |2K+)n · σ̂∗]

∆̂L−,
(6.44)

ΞM± =(ℏωn)2 + M2
t±, Mt± = |tn |∆k cos

(φ ± α
2

)
. (6.45)

We only supply the final results of Josephson electric current and spin current which
are obtained by substituting Pt± in Eqs. (6.36) and (6.41) by Mt±. The resonant
transmission through the Andreev bound states causes the low-temperature anomaly
in both the charge current and the spin current [12].
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6.3 Singlet-triplet junction

The selection rule for the spin configuration in Eq. (6.25) indicates that J1 = 0 for
a junction consisting of a spin-singlet superconductor σ̂L = iσ̂2 and a spin-triplet
superconductor σ̂R = id · σ̂ σ̂2 as show in Fig. 6.4(b). The spin of a Cooper pair is
unity in a triplet superconductor, whereas it is zero in a singlet superconductor. The
lowest order coupling vanishes because such two pairing states are orthogonal to each
other in spin space. A magnetically active interface is necessary to have the lowest
order coupling. To understand these properties, let us consider a junction consisting
of spin-singlet s-wave superconductor, a spin-triplet p-wave superconductor, and a
material X in between. We begin this section with an expression of the lowest order
Josephson current in Eq. (4.84),

J =
ie
ℏ

∑
ky

kBT
∑
ωn

Tr
[
r̂eh(L) · t̂hX · r̂he(R) · t̂eX − r̂he(L) · t̂eX · r̂eh(R) · t̂hX

]
. (6.46)

The reflection process relating to the current is illustrated in Fig. 6.6. The Andreev

(  )R(  )Lrhe (  )Rreh (  )L −
^ ^

tX
e^

tX
h^

reh
^

rhe
^

tX
h^

tX
e^

Fig. 6.6 The Andreev reflection process carrying the Josephson current.

reflection coefficient is given in Eq. (5.34) in an NS junction,

r̂he = Γ+σ̂
†
S

e−iφ, r̂eh = Γ−σ̂S, eiφ Γ± =
−i∆±

ℏωn +Ω±
. (6.47)

Here we assume that the interface between a superconductor and the material X is
highly transparent, (i.e., |tn | = 1). The reflection coefficients at the left interface are

r̂he(L) = − i
∆s

ℏωn +Ωs
(iσ̂2)† e−iφL , r̂eh(L) = −i

∆s

ℏωn +Ωs
iσ̂2 eiφL , , (6.48)

where ∆s is the amplitude of a spin-singlet s-wave superconductor on the left-hand
side of a junction and Ωs =

√
ℏ2ω2

n + ∆
2
s . At the right NS interface, the reflection

coefficients can be

r̂he(R) = − i
(∆+id · σ̂σ̂2)†
ℏωn +Ω+

e−iφR , r̂eh(R) = −i
∆−id · σ̂ σ̂2

ℏωn +Ω−
eiφR , (6.49)

∆± =∆(±kx, ky), Ω± =
√
ℏ2ω2

n + ∆
2
±. (6.50)



6.3 Singlet-triplet junction 85

In Eq. (6.46), t̂eX (t̂hX ) is the transmission coefficient of a material X in the electron
(hole) branch. These coefficients are related to each other as

thX =
[
teX

]∗
, (6.51)

because of particle-hole symmetry. When the transmission coefficients of X is inde-
pendent of spin t̂eX = t0σ̂0, it is easy to show that

J ∝ Tr [d · σ̂] = 0, (6.52)

which agrees with the selection rule for the relative spin configuration.
Thus the material X must be magnetically active to generate the lowest order

Josephson coupling. The first example of a magnetically active layer is a ferromag-
netic barrier described by

HFI = δ(x) [v0σ̂0 + m · σ̂] , (6.53)

where m is the magnetic moment as show in Fig. 6.4(b). The transmission coefficients
of such a barrier are calculated as

t̂X =
1
ΞM

k̄
[
k̄ + iz0 − iz · σ̂

]
, (6.54)

r̂X =
1
ΞM

[
(k̄ + iz0)(−iz0) − |z |2 − k̄ iz · σ̂

]
, (6.55)

z0 =
mV0

ℏ2kF
, z =

mm

ℏ2kF
, k̄ = kx/kF > 0, ΞM = (k + iz0)2 + |z |2. (6.56)

By substituting the transmission coefficients to the formula in Eq. (6.46), the Joseph-
son current is represented as

J = − e
ℏ

∑
ky

kBT
∑
ωn

∆s

ℏωn +Ωs

4k̄3d · z
|ΞM |2

[
∆+

ℏωn +Ω+
eiφ − ∆−

ℏωn +Ω−
e−iφ

]
.

(6.57)

We find that

Js/py
= 0, (6.58)

for a py-wave junction because ∆± is an odd function of ky . The selection rule
in the orbital part also affects the Josephson effect. For a px-wave symmetry, by
considering ∆− = −∆+, the current becomes

Js/px
= − e

ℏ
kBT

∑
ωn>0

∑
ky

16k̄3 |z |
|ΞM |2

∆s

ℏωn +Ωs

∆+

ℏωn +Ω+
cos β cos φ. (6.59)
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where β is the angle between d and v [21]. The magnetic moment v ∥ d can supply
spin angular momentum ±1 to a Cooper pair. The current-phase relationship is also
unusual as the current is finite even at φ = 0. Generally speaking, the breakdown of
time-reversal symmetry is a necessary condition for the flow of electric current. In
this junction, the magnetic moment at the interface breaks time-reversal symmetry.

The second example of a magnetically active potential is spin-orbit coupling due
to the nonmagnetic barrier potential,

HSO = δ(x) [v0σ̂0 + λex · (i∇ × σ̂)] , (6.60)

where λ represents the strength of the spin-orbit interaction. The potential gradient in
the x direction (parallel direction to the current) at the interface generates a spin-orbit
interaction. Here we consider a three-dimensional Josephson junction because the
selection rule depends also on the spatial dimension. The transmission coefficient is
given by

t̂eX (k, p) =
k̄
ΞSO

[
k̄ + iz0 − iλSO(kyσ̂3 − kz σ̂2)

]
, (6.61)

t̂hX (k, p) =
k̄
Ξ∗SO

[
k̄ − iz0 − iλSO(kyσ̂3 + kz σ̂2)

]
, (6.62)

ΞSO =(k̄ + iz0)2 + λ2
SO(k2

y + k2
z ), p = (ky, kz). (6.63)

where λSO is the coupling constant. The current is calculated as

J =
ie
ℏ

∑
p

kBT
∑
ωn

∆s

ℏωn +Ωs

4k̄2z0λSO

|ΞSO |2

[
∆+

ℏωn +Ω+
eiφ − ∆−

ℏωn +Ω−
e−iφ

]
× (kyd3 − kzd2). (6.64)

We find that

Js/px
= 0, (6.65)

for a px-wave junction because of the selection rule for the orbital part. In the case
of a py-wave superconductor, the current becomes

Js/py
= − e

ℏ
kBT

∑
ωn>0

∑
p

16k̄2z0λSOky d3

|ΞSO |2
∆s

ℏωn +Ωs

∆+

ℏωn +Ω+
sin φ, (6.66)

with ∆± = ∆t k̄y and ∆t being the amplitude of the spin-triplet pair potential. For a
pz-wave symmetry with ∆± = ∆t k̄z , the Josephson current results in

Js/pz =
e
ℏ

kBT
∑
ωn>0

∑
p

16k̄2z0λSOkz d2

|ΞSO |2
∆s

ℏωn +Ωs

∆+

ℏωn +Ω+
sin φ. (6.67)
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The lowest order Josephson current exists when the pair potential of a spin-triplet
superconductor has components such as ∆t k̄yiσ̂3σ̂2 and ∆t k̄ziσ̂2σ̂2, which is the
selection rule in the presence of a spin-orbit interaction. [38] The current-phase
relationship is always sinusoidal because a spin-orbit interaction preserves time-
reversal symmetry.

The lowest order Josephson coupling depends sensitively on magnetically active
potentials at the interface, the direction of d vector, and the orbital symmetry of
spin-triplet superconductor. Therefore, measurement of the lowest order Josephson
current is a good symmetry tester for a spin-triplet superconductor.

6.4 Chiral and helical superconductors

The most well-established spin-triplet pairing order may be the superfluid phases
of liquid 3He [54]. The orbital part belongs to p-wave symmetry. Two He atoms
can avoid an atomic hard-core repulsive interaction and form a Cooper pair. The
pressure-temperature phase diagram of superfluid 3He has two phases: B-phase
appearing low temperature and low pressure regime and A-phase appearing high
temperature and high pressure regime. In solid state physics, spin-triplet pairs have
been discussed maily on a two-dimensional electron systems in layered compounds.
A chiral order parameter described by

∆̂k = i∆
kx + iχky

kF
σ̂3 σ̂2 =

∆

kF

[
0 kx + iχky

kx + iχky 0

]
, (6.68)

is a two-dimensional analog of 3He A-phase, where χ = ±1 is called chirality of a
Cooper pair. A Cooper pair consists of two electrons with opposite spin to each other
as shown in Eq. (5.17) because d points the perpendicular to the two-dimensional
plane. A chiral p-wave superconductor has been attracted considerable attention in
condensed matter physics because it hosts a Majorana fermion at its surface. The
pair potential in Eq. (6.68) has been a promising candidate of order parameter in a
ruthenate superconductor[36, 40]. A helical order described by

∆̂k = i∆
[

kx
kF

σ̂1 +
ky
kF

σ̂2

]
σ̂2 =

∆

kF

[
−(kx − iky) 0

0 kx + iky

]
, (6.69)

is a two-dimensional analog of 3He B-phase. A Cooper pair with ↑↑-spin has the
negative chirality, whereas that with ↓↓-spin belongs to the positive chirality. In this
section, we discuss transport properties of such unconventional superconductors.
Chiral superconductors are characterized by the pair potential of

∆̂k =∆einθ σ̂S, σ̂S =

{
iσ̂2, n = ±2,±4, . . . ,
id · σ̂ σ̂2, n = ±1,±3, . . . , (6.70)
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where kx = kF cos θ and ky = kF sin θ. An integer n is called Chern number or
TKNN number in solid state physics. The pair potential is even-parity spin-singlet
(odd-parity spin-triplet) when n is an even (an odd) integer number. The pair potential
in Eq. (6.68) corresponds to n = 1.

The Andreev bound states at a surface of a chiral superconductor have very unique
character. Let us consider a surface of a chiral superconductor at x = 0. The wave
function at the surface of superconductor for E < ∆ can be given by

ϕR(x, y) =
[(

E + i
√
∆2 − E2

∆e−inθ σ̂†
S

)
eikx xC +

(
E − i

√
∆2 − E2

∆(−1)neinθ σ̂†
S

)
e−ikx xD

]
eikyye−x/ξ0,

where we have taken into account the relation ∆+ = ∆einθ and ∆− = ∆ein(π−θ). From
the boundary condition at x = 0, the energy of the bound states are obtained as,

E = ∆ sin θ : n = 1,
E = −∆ cos(2θ) sgn(sin 2θ) : n = 2,
E = ∆ sin(3θ) sgn(cos 3θ) : n = 3.

(6.71)

Figure 6.7 shows the dispersion of the bound states. The number of the bound states
at E = 0 is |n| according to the bulk-boundary correspondence. These bound states
carry the electric current along the surface of a superconductor as schematically
shown in Fig. 6.7(d). When the sign of the Chern number is inverted, the dispersion
changes its sign and the electric current changes its direction of flow. The tunnel
spectra of a chiral superconductor can be calculated from the reflection coefficients
of an NS junction,

r̂ee =
rn(1 − Γ+Γ−)
1 − |rn |2Γ+Γ−

σ̂0, r̂he =
|tn |2Γ+σ̂†

S
e−iφ

1 − |rn |2Γ+Γ−
, (6.72)

Γ+ =
∆∗+

E +Ω
, Γ− =

∆−
E +Ω

, Ω =
√

E2 − ∆2. (6.73)

The tunnel spectra for a chiral p-wave superconductor n = 1 displayed in Fig. 6.8(a).
The results with z0 = 5 have a dome-shaped broad peak below the gap. It may be
possible to say that the subgap spectra are a result of the enhancement at the surface
density of states due to a chiral edge mode. For a chiral d-wave superconductor
n = 2, however, the tunnel spectra in Fig. 6.8(b) only have a shallow broad dip at the
subgap energy region. The dispersion of the subgap states makes the subgap spectra
complex. When we increase Chern number more, the results for n = 3 in Fig. 6.8(c)
shows almost no specific subgap structure in the tunnel spectra. The density of
states is independent of energy for a quasiparticle with the linear dispersion in one-
dimension. Therefore, the subgap spectra for higher n become more flat and closer
to the normal density of states.

The Josephson effect depends on two Chern numbers (n and m) in the two chiral
superconductors. Namely, the index theorem suggests that the number of zero-energy
states is |n − m| at the junction interface [53]. The wave function on either side of
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x

y

(d)

       chiral

 superconductor

Fig. 6.7 The dispersion of the bound states at a surface of a chiral superconductor. (a) chiral p-wave
n = 1, (b) chiral d-wave n = 2, and (c) chiral f -wave n = 3. A chiral edge mode of a chiral p-wave
superconductor carries the electric current as shown in (d).
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Fig. 6.8 The conductance spectra of an NS junction consisting of a chiral superconductor. (a) chiral
p-wave n = 1, (b) chiral d-wave n = 2, and (c) chiral f -wave n = 3. The transmission probability
of the barrier is about 0.026 as a results of choosing z0 = 5.

the junction are given in Eqs. (6.1) and (6.2), with

∆L+ = ∆einθ, ∆L− = (−1)n∆e−inθ, ∆R+ = ∆eimθ, ∆R− = (−1)m∆e−imθ . (6.74)

The Andreev reflection coefficients are shown in Eq. (6.16) and (6.17) for singlet-
singlet junctions. In the case of a triplet-triplet junction, iσ̂2 should be replaced by
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σ̂S . Here we consider triplet-triplet junctions where both n and m are odd integers.
The Josephson current is calculated in terms of the energy of the Andreev bound
states ϵ± as,

J =
e∆
2ℏ

∑
ky

∆|tn |2 sin φ
2 sinαnm

×
[
sin(2X+)

ϵ+
tanh

[
ϵ+

2kBT

]
+

sin(2X−)
ϵ−

tanh
[
ϵ−

2kBT

] ]
, (6.75)

ϵ± = ∓ ∆sgn[cos(X±)] sin(X±), X± =
αnm ± (n − m)θ

2
, (6.76)

cosαnm =(1 − |tn |2) cos {(n + m)θ} − |tn |2 cos φ, 0 ≤ αnm ≤ π. (6.77)

From the expression of the bound state energy ϵ±, it is easy to count the number of

-4.0

-2.0

0.0

2.0

4.0

-0.5 0.0 0.5

ϕ =1.3 π

 z0  = 3

 

 n = 1

 m = 3

 (a)

θ / π

n=1 m = 3

(b) 2

1

0
 J

c
 /
 J

0

1.00.50.0
T / Tc

m = - 3
 - 1
  1
 3

n=1, z0=5

(c)

E
 /

 Δ

Fig. 6.9 (a) The left- and the right-hand side of Eq. (6.79) are plotted with a solid line and two
broken lines, respectively. We choose n = 1, m = 3, z0 = 3, and φ = 1.3π. (b) Schematic picture
of the chiral edge currents in the two superconductors. (c) The Josephson critical current versus
temperature for z0 = 5. We fix the Chern number at n = 1 in the left superconductor. The Chern
number in the right superconductor is m

Andreev bound states at zero energy. At |tn | = 0, the bound state energy

ϵ+ = − ∆sgn(cos nθ) sin nθ, ϵ− = ∆sgn(cos mθ) sin mθ, (6.78)

represent the dispersion of the surface bound states of the two isolated superconduc-
tors. It is easy to confirmed that the number of zero-energy surface states of ϵ+ is |n|
and that of ϵ− is |m|. At finite |tn |, the solutions of ϵ± = 0 in Eq. (6.76) requires the
relation

tan
{
(n − m)θ

2

}
= ± tan

(αnm
2

)
. (6.79)

The left hand side of Eq. (6.79) goes positive infinity |n−m|/2 times and goes negative
infinity |n − m|/2 times at the interval of −π/2 ≤ θ ≤ π/2. Since 0 ≤ αnm ≤ π,
tan

(αnm

2
)

is always positive. Thus the number of the solutions of Eq. (6.79) is
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|n − m| which corresponds to the difference in the Chern numbers between the two
superconductors. In Fig. 6.9(a), we plot the left hand side of Eq. (6.79) with a solid
line and the right hand side with two broken lines, where we choose n = 1, m = 3,
z0 = 3, and φ = 1.3π. The results show that there are only two solutions, (i.e.,
2 = |1 − 3|). The number of the solutions is independent of the junction parameters
such as z0 and φ. As schematically illustrated in Fig. 6.9(b), there are four chiral edges
at |tn | = 0. The chiral current in the left superconductor flows the opposite direction
to those in the right superconductor. For |tn | > 0, two chiral currents flowing the
opposite direction cancel each other and the two Andreev bound states remain at
zero energy.

The Josephson current at T = 0 is expressed by

J =
e∆
2ℏ

sin φ
∑
ky

∆|tn |2
sinαnm

[−| cos X+ | + | cos X− |] . (6.80)

The zero-energy states at the junction interface do not affet the Josephson current at
low temperature because the zeros of ϵ± at the denominator in Eq. (6.75) is removed
by the numerator. As a result, the zeros at sinαnm governs the low temperature
anomaly of the Josephson current. In Fig. 6.9(c), we plot the critical value of the
Josephson current as a function of temperature for z0 = 5, where we choose n = 1 in
the left superconductor. The Josephson current for m = 1 increases logarithmically
with decreasing temperature. [15, 10] The low-temperature anomaly becomes weak
when the chirality of the two superconductors are opposite to each other as shown
with the results for m = −1. The results with a chiral f -wave superconductor m = 3
show the similar behavior to those with m = 1. The low-temperature anomaly is
totally absent in the results for m = −3.

The Josephson effect between a chiral p-wave superconductor and s-wave super-
conductor (∆iσ̂2) tells us the finger print of breaking time-reversal symmetry in a
chiral p-wave superconductor. [13] By taking into account ∆∗+ = ∆(kx − iky)/kF
and ∆− = −∆(kx − iky)/kF at χ = 1, we find that the Josephson current in such a
junction results in

Js/chiral−p =
e
ℏ

kBT
∑
ωn>0

∑
ky

16k̄2z0λSOk2
y

|ΞSO |2kF

∆2

(ℏωn +Ω)2
cos φ, (6.81)

where we consider spin-orbit coupling in Eq. (6.60) at the junction interface. The
Josephson current is proportional to cos φ, which reflects the breakdown of time-
reversal symmetry in a chiral p-wave superconductor. The presence of the first order
term suggests that d is in perpendicular direction to the two-dimensional plane.

The order parameter of a helical superconductor in two-dimension can be repre-
sented as

∆̂k =
∆

kF

[
−(kx − iχky) 0

0 kx + iχky

]
, (6.82)
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where χ = ±1 is referred to as "helicity". Thus it would be possible to say that a

x

y

       helical

 superconductor
(a) (b)helical p

Fig. 6.10 (a) The dispersion of the bound states at a surface of a helical p-wave superconductor. (b)
Schematic illustration of the helical edge current. A spin-↓↓ (-↑↑) pair carries the current clockwise
(counterclockwise). As a result, the electric current vanishes and the spin current flows.

Cooper pair with spin-↑↑ belongs to the chirality (χ) and that with spin-↓↓ belongs
to the chirality (−χ). As a result of the coexistence of the two chiral states, helical
superconductivity preserves time-reversal symmetry. The tunnel spectra of an NS
junction consisting of a helical superconductor are identical to the results displayed
in Fig. 6.8(a). The Josephson effect between two helical superconductors indicates
similar property to that between two chiral superconductors. Thus it is impossible dis-
tinguish between a helical superconductor and a chiral superconductor by measuring
the tunnel spectra and Josephson current. The Josephson coupling to a spin-singlet
s-wave may tell us symmetry information of a spin-triplet superconductor. The An-
dreev reflection coefficients of a helical superconductor is r̂he(R) ∝ i(kxσ̂1+kyσ̂2)σ̂2.
Together with the transmission coefficients in Eqs. (6.63)-(6.62), and the Andreev
reflection coefficients in Eq. (6.48), we find that the first term in the current formula
in Eq. (6.46) vanishes

Js/helical−p = 0. (6.83)

Thus the lowest order coupling is absent and the current-phase relationship is J =
−J2 sin(2φ) in the case of a helical superconductor. The last property enables us to
distinguish a helical superconductor from a chiral one.



Chapter 7
Proximity effect in a normal metal

When a superconductor is attached to a normal metal, a Cooper pair penetrates
into the normal metal. As a result, the normal metal possess superconducting-like
properties such as screening of magnetic fields and decreasing its electric resistance.
Such phenomenon is called proximity effect and has been a central issue in physics
of superconductivity. To describe the proximity effect correctly, we need to use
the Green’s function technique. Here, however, we try to explain the essence of the
proximity effect phenomenologically by applying the physical picture of the Andreev
reflection.

7.1 A Cooper pair in a clean metal

r 2

θ2

r0

normal metal superconductor

L
x=0

x

y

θ1

r 1

normal metal superconductor

L

superconductor

(b)(a)

Fig. 7.1 Ballistic motion of a quasiparticle near an NS interface in (a). Two typical trajectories are
illustrated, where θ j is the incident angle of a quasiparticle to the NS interface at r j . The angle is
measured from the x axis. In (b), the second superconductor is attache to the normal metal to make
an SNS junction.

In Fig. 7.1(a), we illustrate the classical trajectories of a quasiparticle departing
from r0 in a normal metal and reaching at r j at the NS interface. We assume that the

93
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metal is free from any potential disorder and is in the ballistic transport regime. The
pair potential is in spin-singlet dxy-wave symmetry. The penetration of a Cooper
pair into a metal is described by the Andreev reflection. The Andreev reflection
coefficient in Eq. (5.34) is summarized as,

r̂he(θ) =
|tn |2Γ+e−iφ

1 − |rn |2Γ+Γ−
σ̂†
S
, Γ± ≡ v±

u±
s± =

−i∆±
ℏωn +Ωn,±

, (7.1)

∆+ =∆(θ), ∆− = ∆(π − θ), (7.2)

where ky = kF sin θ and we apply the analytic continuation E → iℏωn. The retrore-
flectivity of a quasiparticle plays a key role in the proximity effect. Let us count the
total phase shift of the wave function along the retoreflective trajectories in Fig. 7.1.
The wave function at r0 is proportional to eik ·r0 . On the way to a place of r1 on the
NS interface, the electron gains the phase eiϕe with

ϕe =

∫ r1

r0

d l · k, (7.3)

where l represents a ballistic trajectory between the two points as shown in Fig. 7.1(a).
At the interface, the Andreev reflection coefficient at r1 would be given by r̂he(θ1) in
Eq. (7.1). Finally, on the way back from r1 to r0, a hole gains the phase eiϕh , with

ϕh =

∫ r0

r1

d l · k = −ϕe . (7.4)

In the Andreev reflection, the wave number remains unchanged and the velocity flips
its direction. After traveling along the retroreflective trajectory, a quasiparticle gains
the phase factor,

p(r0, θ1) = eiϕh e−iφ Γ+(θ1) eiϕe = e−iφΓ+(θ1), (7.5)

where we have assumed that the NS interface is transparent perfectly, (i.e., |tn | = 1).
The results depend sensitively on the traveling direction of a quasiparticle. By
propagating along the retroreflective trajectory between r0 and r2, the phase shift of
a quasiparticle becomes

p(r0, θ2) = e−iφΓ+(θ2). (7.6)

The phase factor at r0 depends on the direction of the quasiparticle’s motion θ and
is proportional to ∆+(θ). In other wards, the Andreev reflection copies the dxy-wave
pair potential in a superconductor to the palce of r0 in a normal metal. The pair
potential in real space

∆α,β(r1, r2) eiφ =g(r1 − r2) fα,β(r1 − r2), fα,β(r1, r2) = ⟨ψα(r1)ψβ(r2)⟩, (7.7)

defines the relation among the pair potential ∆, an attractive interaction g, and the
pairing correlation f . Since the attractive interactions are absent in a normal metal,
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the pair potential is zero. However, the pairing correlation

fα,β(r1, r2) = f (r,ρ) = 1
Vvol

∑
k

f (r, k) eik ·ρ, (7.8)

with r = (r1 + r2)/2 and ρ = r1 − r2 describes the existence of a Cooper pair
in a metal. The phase factor p(r, θ) corresponds to the correlation function f (r, k).
The results in Eqs. (7.5) and (7.6) suggest that the pairing correlation at r0 belongs
to a dxy-wave symmetry. Namely, a Cooper pair of spin-singlet d-wave symmetry
penetrates into a clean normal metal as schematically illustrated in Fig. 7.1(a).

Since the pair potential is absent in a normal metal, the phase coherence of a
quasiparticle supports a Cooper pair. At finite temperature, however, the thermal
broadening of the Fermi level destroys the phase coherence. When an energy of an
electron is distributed in a range of ℏωn = (2n + 1)πkBT around ϵF , the relation

ℏ2(kF + δk)2
2m

≈ ϵF + ℏωn, (7.9)

represents how the thermal broadening modifies the wave number. We obtain δk =
ωn/vF . When an electron comes into a normal metal from x = 0 and propagates
to x = L, the wave function of a quasiparticle just at the Fermi level is given by
exp{ikF L}. The wave function of the quasiparticle at an energy ϵF + ℏωn can be
described by exp{i(kF + δk)L}. A relation δkL < 1 must be satisfied so that the two
partial waves of a quasiparticle can interfare with each other. This argument at the
lowest Matsubara frequency gives a length scale

ξCT =
ℏvF

2πkBT
, (7.10)

which limits the spatial range of the phase coherence of a quasiparticle in a clean
metal.

When an another superconductor is attached to a normal metal as shown in
Fig. 7.1(b), a Cooper pair penetrates from the left superconductor, propagates a
normal metal, and transmits to the right superconductor. This process explains
the Josephson effect in a clean superconductor/normal-metal/superconductor (SNS)
junction. The Andreev reflection coefficients in the lowest order process in Fig. 4.7(b)
can be calculated as

A1 =
ie
ℏ

∑
ky

kBT
∑
ωn

Tr
[
Γ+ e−iφR · tN e−ωnL/ℏvF · Γ+ eiφL · tN e−ωnL/ℏvF − c.c.

]
,

(7.11)

=
4e
ℏ

∑
ky

kBT
∑
ωn

sin(φ)(−1)e−2ωnL/ℏvF
(
∆+

ωn +Ω+

)2
, (7.12)
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where tN = 1 is the transmission coefficient at the normal metal. In a clean SNS
junction, the higher order processes such as in Fig. 4.7(c) also contribute to the
Josephson current. It is possible to describe the total Josephson current as

J =
4e
ℏ

∑
ky

kBT
∑
ωn

∞∑
m=1

sin(mφ)(−1)me−2ωnmL/ℏvF
(
∆+

ωn +Ω+

)2m
. (7.13)

Since ∆2
+ enters the current expression, the sign change of the pair potential does not

play any important role in Eq. (7.13). Thus we replace ∆+ by ∆ approximately. The
summation over the Matsubara frequency at T = 0 can be replaced by the integration

J =
4e
ℏ

Nc

∞∑
m=1

sin(mφ)(−1)m 1
π

∫ ∞

0
dω e−2ωmL/ℏvF

(√
ω2 + ∆2 − ω
∆

)2m

, (7.14)

with
∑

ky = Nc . The integrand is a product of two functions which have a peak at
ω = 0. The decay energy of the exponential function is ℏvF/L and that of power
function is ∆. When ℏvF/L ≫ ∆, the integration can be carried out as

J =
e∆
ℏ

Nc

∞∑
m=1

sin(mφ) (−1)m+1

π

8m
(2m + 1)(2m − 1) =

e∆
ℏ

Nc sin
[φ
2

]
. (7.15)

because of Eq. (4.80). The results were derived by Kulik and Omel’yanchuk [34].
The condition ℏvF/L ≫ ∆ is identical to L ≪ ξ0 with ξ0 = ℏvF/π∆ ≃ ℏvF/2πkBTc

being the coherence length. On the other hand in the long junction limit L ≫ ξ0, we
obtain

J =
e vF
πL

Nc

∞∑
m=1

sin(mφ)2(−1)m+1

m
=

e vF
L

Nc
φ

π
. (7.16)

Such linear current-phase relationship was first discussed by Ishii [30]. In a SNS
junction in the ballistic regime, Eqs. (7.15) and (7.16) represent the Josephson current
between two identical superconductors independent of their pairing symmetries.

7.2 Andreev reflection and diffusive motion

The potential disorder in a normal metal plays an crucial role in the low-energy
transport properties in an NS junction consisting of an unconventional superconduc-
tor. Let us begin with a schematic illustration of the Andreev reflection into a dirty
normal metal. The motion of a quasiparticle in a random media is described by the
diffusion equation (

D∇2 − ∂t
)

F(r, t) = 0, F(r,0) = F0 δ(r). (7.17)
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Fig. 7.2 (a) Diffusion motion of a quasiparticle near an NS interface. Two typical trajectories are
illustrated, where θ j is the incident angle of a quasiparticle into a superconductor at r j . The pair
potential is shown only for kx > 0 in (a) and (b) because such part is copied to a normal metal by
the Andreev reflection.

The diffusion constant D is given by

D =
v2
Fτ

d
=

vFℓ

d
, ℓ = vF τ, (7.18)

where d = 1 − 3 denotes the spatial dimension, vF = ℏkF/m is the Fermi velocity,
and τ is the mean free time due to the elastic scattering by random impurities. The
mean free path defined by ℓ = vFτ characterizes the smallest length scale of the
diffusion equation. The solution of the diffusion equation

F(r, t) = F0

(4πDt)d/2
exp

(
− |r |2

4Dt

)
. (7.19)

tells us characteristic features of a quasiparticle’s motion. The diffusive motion is
isotropic in real space. Although the velocity of a quasiparticle is vF , it takes L2/D
(sec) to propagate a distance L. Therefore the total length of such a diffusive trajectory
becomes L ′ = (L2/D)vF while an electron diffuses L. The thermal broadening of the
Fermi distribution function is a source of the decoherence. As we discussed below
Eq. (7.9), δkL ′ < 1 is necessary for a quasiparticle to keep its phase coherence.
Therefore

ξDT =

√
ℏD

2πkBT
, (7.20)

limits the length scale for phase coherent phenomena in a diffusive metal and is called
thermal coherence length. Energetically, ETh = ℏD/L2 called Thouless energy which
limites the critical energy scale for the phase coherent phenomena.

As shown in Fig. 4.4, the retroreflectivity of a quasiparticle is a key feature of the
proximity effect. In Fig. 7.2(a), we illustrate two classical retroreflective trajectories
of a quasiparticle departing from a point r0 and reaching the NS interface at r j . We
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count the phase shift of a quasiparticle moving along a retorreflective trajectory. On
the way to the NS interface, an electron gains the phase of eiϕe with

ϕe =

∫ r1

r0

d l · k =
∫ R1

r0

d l1 · k1 +

∫ R2

R1

d l2 · k2 + · · · +
∫ r1

RN

d lN · kN , (7.21)

where l j represents a classical trajectory between two impurities at R j−1 and R j as
shown in Fig. 7.2(a). The direction of momentum k j changes at every scattering
event by an impurity. At the interface, the Andreev reflection coefficient at r1 would
be given by r̂he(θ1) in Eq. (7.1). Finally, on the way back from r1 to r0, a hole gains
the phase of eiϕh , with

ϕh =

∫ RN

r1

d lN · kN + · · · +
∫ R1

R2

d l2 · k2 +

∫ r0

R1

d l1 · k1 = −ϕe . (7.22)

The two phases ϕe and ϕh cancel to each other even in the diffusive trajectories.
After traveling along a retroreflective trajectory, a quasiparticle wave function gains
a pairing factor,

p1(r0) = r̂he(ky1 ) e−2L/ξD
T , (7.23)

where Here ky1 = kF sin θ1. The results depend on the incident angle θ1 into the
NS interface at r1 but are independent of direction of traveling angle ϕ1 at r0.
As shown in Fig. 7.2(a), another part of such a quasiparticle travels along another
retroreflective trajectory reaching r2 at the NS interface. Such partial wave function
gains the pairing factor

p2(r0) = r̂he(ky2 ) e−2L/ξD
T , (7.24)

with ky2 = kF sin θ2. The pairing factor at r0 should be averaged over all posible
diffusive trajectories as

⟨p(r0)⟩ =
1

Nc

∑
ky

r̂he(ky) e−2L/ξD
T =

1
2

∫ π/2

−π/2
dθ cos θ r̂he(θ) e−2L/ξD

T . (7.25)

The Andreev reflection copies the pair potential average over θ for kx = kF cos θ > 0.
As a result of averaging, the pairing factor in Eq. (7.25) at r0 is isotropic in momentum
space independent of the initial momentum direction ϕ in Fig. 7.2(a), which implies
the pairing correlation function at r0 belongs to s-wave symmetry irrespective of
orbital symmetries in the pair potential.

Even so, the properties of the pairing correlation at r0 depends sensitively on the
symmetry of the pair potential. Here, we consider the limit of the low frequency
ℏωn ≪ ∆ at zero temperature. The coherence factor becomes Γ+ → −i e−iφs+ with
s+ = sgn[∆+(θ)]. We also assume that the transparency of the NS interface is small,
(|tn | ≪ 1). In an NS junction of a s-wave superconductor, we obtain
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⟨ps(r0⟩ = −i e−iφ
1
2
|tn |2 iσ̂2. (7.26)

The Andreev reflection copies also the spin configuration of a Cooper pair and the
superconducting phase as shown in Eq. (7.1). The results imply that a spin-singlet
s-wave Cooper pair penetrates in to a metal. In a spin-singlet dx2−y2 -wave case as
shown in Fig. 7.2(a), the pairing factor at r0 becomes

⟨pd
x2−y2 (r0)⟩ = −i e−iφ

(√
2 − 1

)
|tn |2iσ̂2. (7.27)

The amplitude of Eq. (7.27) is slightly smaller than that of Eq. (7.26) because the
pair potential changes its sign on the Fermi surface. The diffusive impurity scatter-
ings make physics isotropic in real space. In other wards, impurities destroy such
unconventional Cooper pairs as p-wave and d-wave symmetry. In a dxy-symmetry,
we find

⟨pdxy (r0)⟩ = −i e−iφ i σ̂2
1
2

∫ π/2

−π/2
dθ cos θ sgn [sin 2θ] = 0, (7.28)

because the pair potential ∆ sin 2θ is an odd function of θ. Namely the proximity
effect is absent in a metal attached to a dxy-wave superconductor. [9] In the same
manner, the proximity effect is absent in a metal attached to a py-wave superconductor
because

⟨ppy (r0)⟩ = −i e−iφ σ̂S
1
4
|tn |2

∫ π/2

−π/2
dθ cos θ sgn [sin θ] = 0, (7.29)

Thus the presence or absence of the proximity effect depends on an orienta-
tion angle of the pair potential to the NS interface. Finally in spin-triplet px-wave
symmetry, we find

⟨ppx (r0)⟩ = −i e−iφσ̂S . (7.30)

The amplitude of the pairing function is much larger than that of a s-wave junc-
tion because of the resonant stansmission through the Andreev bound states at the
NS interface. The orbital part is even-parity s-wave symmetry and the spin part is
spin-triplet symmetry class. At the first glance, such a Cooper pair does not meet the
requirement of the Fermi-Dirac statistics of electrons because both the spin and or-
bital parts of the pairing correlation are even under the permutation of two electrons.
It was pointed out that such pairing correlation function can be antisymmetric under
the permutation of two "times" of electrons [17]. In the Matsubara representation, the
pairing function of such a Cooper pair is an odd function of ωn. An odd-frequency
spin-triplet even-parity s-wave pair penetrates into a dirty metal. Unfortunately, the
Green’s function technique is necessary to discuss the frequency symmetry of a
Cooper pair. Instead of going into theoretical details, We explain the anomalous
transport property due to an odd-frequency pair.
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7.3 Anomalous proximity effect

s, dx2−y2 dxy py px

Surface ABS - ⃝ - ⃝
Proximity effect ⃝ - - ⃝

Table 7.1 The relation between pairing symmetries and two phase coherent phenomena in a two-
dimensional junction consisting of a superconductor x > 0 and a dirty normal metal x < 0 as
shown in Fig. 7.2(a). At the first row, "⃝" means the presence of zero-energy Andreev bound states
localizing at a surface of a superconductor. The pair potential must be an odd function of kx to host
the Andreev bound states. At the second row, "⃝" means the penetration of a Cooper pair in a dirty
metal. When the pair potential have a part of being even in ky , the proximity effect can be expected
in a metal. A dx2−y2 -wave pair potential belongs to the same class as an s-wave pair potential.

In Chap. 5, we discuss the formation of the Andreev bound states at a surface of an
unconventional superconductor. In Sec. 7.2, we discuss the presence or the absence
of the proximity effect in a normal metal attached to an unconventional supercon-
ductor. These phenomena depends sensitively on how the pair potential changes
sign under inversion of junction geometries. For two-dimensional unconventional
superconductors as shown in Fig. 5.1, the relation

∆(−kx, ky) = −∆(kx, ky), (7.31)

represents a condition for the appearance of Andreev bound states at a surface parallel
to the y direction. Another relation

∆(kx,−ky) = −∆(kx, ky), (7.32)

describes the absence of the proximity effect in a normal metal attached to the super-
conductor at x = 0. Table 7.1 shows the relation between these coherent phenomena
and the pairing symmetries. The surface Andreev bound states are possible in a
dxy-wave superconductor and a px-wave superconductor. The proximity effect is
present in an s-wave junction and a px-wave junction. Two coherent phenomena are
possible simultaneously in a px-wave junction. In this Section, we will show that
a px-wave junction exhibits unusual low-energy transport properties as a result of
interplay between the formation of Andreev bound states and the penetration of a
Cooper pair into a normal metal.

In Fig. 7.3(a), we plot the total resistance of a NS junction RNS as a function
of the normal resistance of a metal RN, where R0 = (2e2Nc/h)−1 is the Sharvin
resistance of the junction. The resistance is calculated by using the quasiclassical
Green’s function method [33]. Theoretical details are given in Ref. [46]. In classical
mechanics, two resistances contribute to RNS independently as

RNS = RN + RB, (7.33)
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where the RN is resistance in the normal metal and RB ≃ 7.56R0 indicated by an
arrow is the resistance of the potential barrier at the NS interface. The results for a
py-wave junction increases linearly with RN and obeys the classical relationship in
Eq. (7.33). In a py-wave NS junction, both the proximity effect in a metal and the
Andreev bound states at the surface are absent. The deviation of RNS from Eq. (7.33)
would be expected in the presence of phase coherent effects. In a dxy-wave case,
the results show that RNS = RN + R0/2 holds instead of Eq. (7.33). Although the
proximity effect is absent in a metal, the resonant transmission through the Andreev
bound states reduces the resistance at the interface to R0/2. In a s-wave junction,
RNS first decreases from RB with the increase of RN then increases. Such reentrant
behavior is a result of the usual proximity effect in a metal. Impurities near the
interface enhance the Andreev reflection probability, which explains the suppression
of RNS for RN < RB. In this range, the dirtier junction has the smaller resistance.
Finally for a px-wave symmetry, RNS is constant at R0/2 independently of RN. The
differential conductance at zero bias is given by

GNS = R−1
NS =

4e2

h
Nc, (7.34)

where Nc is the number of propagating channels per spin. The results imply as if a
normal metal looses its resistance due to the interplay between the two phase coherent
effects. The argument in Chapter. 5 suggests that the low-temperature anomaly would
be expected also in a SNS junction consisting of two px-wave superconductors. The
results in Fig. 7.3 (b) show the Josephson current in such an SNS junction plotted
as a function of the phase difference between two superconductors [14]. At a very
low temperature, the current-phase relationship becomes fractional J = Jc sin(φ/2)
as a result of the perfect transmission of a Cooper pair through a dirty normal metal.
Such unusual transport phenomena are called anomalous proximity effect.

(a) Total resistance of a NS junction

ℏ
n

(b) Current-phase relationship in a p -wave SNS junctionx

Fig. 7.3 (a) The total resistance of a dirty NS junction is plotted as a function of the resistance in a
normal metal, where R0 = (2e2/h)−1 is the Sharvin resistance of the junction. We attach a lead wire
for x < −L to measure the conductance of a junction in Fig. 7.2. (b) The current-phase relationship
in a dirty SNS junction for a px -wave symmetry. We attach another px -wave superconductor to
the normal metal at x = −L in Fig. 7.2.
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The mechanism of the anomalous proximity effect is explained as follows. Since
the Andreev bound states at a surface play a major role in the anomalous proximity
effect, we consider an NS junction of a px-wave superconductor and that of a dxy-
wave superconductor. For simplicity, we choose 2 × 2 particle-hole space by extract
↑-spin sector in a px-wave superconductor. In a dxy-wave case, we choose 2 × 2
particle-hole space for spin-↑ electron and spin-↓. The Hamiltonian of such an NS
junction in Fig. 7.2(a) is given by,

Ĥ =
[

hr ∆(r)
∆(r) −hr

]
= hr τ̂3 + ∆(r)τ̂1, (7.35)

∆(r) =
{
∆Θ(x) −i

kF
∂
∂x : px−wave

∆Θ(x) −1
k2
F

∂2

∂x∂y
: dxy−wave, (7.36)

hr =ξr + v0δ(x) + Vimp(r)Θ(−x), (7.37)

ξr = −
ℏ2∇2

2m
− ϵF , Vimp(r) =

∑
r i

vimpδ(r − r i), (7.38)

where τ̂j for j = 1− 3 is the Pauli matrix in particle-hole space. Chiral symmetry of
the Hamiltonian is described by{

Ĥ, Λ̂
}
= 0, Λ̂ = −τ̂2. (7.39)

Since Λ̂2 = 1̂, the eigenvalue of Λ̂ is either λ = 1 or λ = −1. In what follows, we
referer λ as chirality. The eigenstate vectors are

1
√

2

[
1
−i

]
,

1
√

2

[
1
i

]
, (7.40)

for λ = 1 and λ = −1, respectively. Here we summarize two important features of
the eigenstates of Ĥ preserving chiral symmetry [41].
(i) The eigenstates of Ĥ at zero energy are simultaneously the eigenstates of Λ̂.

Namely, the eigenvectors at zero energy ψν0 ,λ(r) satisfy

Ĥ ψν0 ,λ(r) = 0, Λ̂ψν0 ,λ(r) = λ ψν0 ,λ(r), (7.41)

where ν0 labels a zero-energy state.
(ii)In contrast to the zero-energy states, the nonzero-energy states are not the eigen-

states of Λ̂. They are described by the linear combination of two states: one has
λ = 1 and the other hasλ = −1 as

ψE,0 = a+

[
1
−i

]
+ a−

[
1
i

]
. (7.42)

In addition, the relation |a+ | = |a− | is always satisfied. A positive chiral zero-
energy state and a negative chiral zero-energy state couple one-by-one and form
two nonzero energy states.
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Below we will prove the robustness of the highly degenerate zero-energy states in a
dirty normal and the perfect Andreev reflection by taking these features into account.

By repeating the argument at Eq. (5.55), the wave function of the surface bound
states at zero energy is described by

ψky (r) = C
[

1
−i s+

]
sin(kx x) e−x/ξ0 eikyy, s+ =

∆k

|∆k |
. (7.43)

It is easy to confirm property (i) because this wave function is the eigenstate of Λ
belonging to λ = s+. By applying property (ii), we discuss the robustness of highly
degenerate zero-energy states in the presence of potential disorder. In quantum
mechanics, large degree of degeneracy at quantum states are a consequence of high
symmetry of Hamiltonian. Generally speaking, degeneracy is lifted by adding pertur-
bations breaking the symmetry. In the present case, both px- and dxy-superconductors
host Nc-fold degenerate bound states at zero energy. Such highly degenerate states
are stable because translational symmetry in the y-direction is preserved in a clean
superconductor. The highly degenerate zero-energy states would be fragile in the
presence of potential disorder because random impurities break translational sym-
metry. In a dxy-wave case, zero-energy states for ky > 0 belong to the positive
chirality, whereas those for ky < 0 belong to the negative chirality. According to
property (ii), a positive chiral zero-energy state and a negative chiral zero-energy
state can be paired by impurity scatterings and form two nonzero energy states. As a
result, all the zero-energy states disappear in the presence of potential disorder. On
the other hand, in a px-wave superconductor, all the zero-energy states belong to the
positive chirality. Property (ii) suggests that the degeneracy of such pure chiral states
are robust even in the potential disorder because their chiral partners for forming
nonzero energy states sare absent. The number of zero-energy states in the presence
of potential disorder can be described by the absolute value of

NZES = N+ − N−, (7.44)

where N± is the number of zero-energy states belonging to λ = ±1. The index
NZES is an invariant as far as the Hamiltonian preserves chiral symmetry. Thus
NZES calculated in the absence of potential disorder remains unchanged even in the
presence of potential disorder. In mathematics, the resulting index NZES is known to
as an invariant in terms of the solutions of a differential equation. Simultaneously,
the index is identical to the summation of the winding number over ky as

NZES =
∑
ky

W(ky), (7.45)

where the winding number is defined in Eq. (5.94) and is calculated as Eq. (5.95).
Namely, the index is a topological invariant. In mathematics, such integer number
NZES is called Atiyah-Singer’s index. We find NZES = 0 for a dxy-wave supercon-
ductor and NZES = Nc for a px-wave superconductor.
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The remaining task is to show why the zero-bias conductance in Eq. (7.34)
becomes

GNS =
4e2

h
NZES, (7.46)

in the limit of RN → ∞ [28]. In a normal metal, the wave function at E = 0 can be
exactly represented as

ψN(r) =
∑
ky

[(
1

rhe(ky)

)
eikx x +

(
ree(ky)

0

)
e−ikx x

]
eikyy, (7.47)

where the reflection coefficients are given in Eqs. (5.33) and (5.34). They become

ree = 0, rhe = −is+, (7.48)

in the limit of E → 0 for a px-wave NS junctions. By substituting the coefficients
into the wave function, we find that the zero-energy states in a clean metal

ψN(r) =
∑
ky

(
1

−is+

)
eikx xeikyy =

(
1
−i

) ∑
ky

eik ·r , (7.49)

belongs to λ = 1. As a result, all the zero-energy states in the normal metal have the
positive chirality. In other words, the Andreev reflection copies the chirality of the
zero-energy states at a surface of a px-wave superconductor to the zero-energy states
in a normal metal. This argument is valid even in the presence of potential disorder
because the pure chiral zero-energy states can retain their high degeneracy. In a dirty
normal metal, it is not easy to represents how the orbital part of the wave function
depends on r . The vector part of the wave function, however, remains unchanged
from that in Eq. (7.49). In the vector part, 1 at the first row is the amplitude of the
incoming wave into the NS interface and −i at the second row is necessary for the
vector to be an eigenstate of Λ̂. More importantly, the −i is drived from the perfect
Andreev reflection, which explains the quantization of the zero-bias conductance
in a dirty NS junction. For the perfect Andreev reflection taking place, the wave
functions at zero energy must be extended whole the dirty metal. Chiral symmetry
of the BdG Hamiltonian is responsible for the high degeneracy at the zero-energy
states in a dirty metal.

Finally, we summarize our present knowledge on the anomalous proximity effect
as follows. The quantization of the conductance in Eq. (7.46) and the low-temperature
anomaly in the Josephson effect in Fig. 7.3 are a part of the anomalous proximity
effect. The zero-energy Andreev bound states at an interface of a px-wave super-
conductor can penetrate into a dirty normal metal while retaining their high degree
of degeneracy [14]. Such zero-energy states can be observed as a large zero-energy
peak in the quasiparticle density of states [46]. A quasiparticle at zero energy always
accompanies an odd-frequency Cooper pair. In a px-wave junction, an odd-frequency
spin-triplet s-wave Cooper pair penetrates into a dirty normal metal [45]. It has been
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known that an odd-frequency pair is thermodynamically unstable and paramagnetic.
A small unconventional superconductor may indicate paramagnetic response to mag-
netic fields due to an odd-frequency Cooper pair at its surface [43]. Experimental
studies are desired to confirm such theoretical predictions.

7.4 Fluctuations of Josephson current

The sample-to-sample fluctuations of the conductance in diffusive normal metals is
a result of the phase coherence of an electron [35, 3]. To measure the conductance
in a diffusive metal in experiments, we prepare a number of samples of metallic
wires. Let us assume that we fabricate all of them to have the same length L and the
same cross section S and that we measure the conductance of all the samples. The
ensemble average of the conductance is calculated as

⟨G⟩ = 1
Ns

Ns∑
j=1

G(j), (7.50)

where G(j) is the conductance measured for the j th diffusive metal and Ns is the
number of measured samples. The ensemble average of conductance should be

⟨G⟩ = GN ≡ S
L
σD, σD = 2e2N0D, (7.51)

where σD is Drude’s conductivity, N0 is the density of states per unit volume per spin
at the Fermi level, and D is the diffusion constant of the diffusive metal. In addition,
the relation G(j) = GN is expected for all the macroscopic samples with L ≫ ξDT .
Namely, the sample-to-sample fluctuations of conductance

δG =
√
⟨G2⟩ − ⟨G⟩2, (7.52)

is zero at kBT ≫ ETh, where

ETh =
ℏD
L2 , (7.53)

is Thouless energy of a conductor. At a low temperature kBT < ETh, however, the
conductance measured in a sample is slightly different from those in another samples.
The conductance fluctuations are originated from the microscopic realization of
impurity configuration in metals which is memorized in the phase of an electron wave
function. [29] A temperature must be low enough so that an electron preserve its
phase memory while traveling across the sample. The fluctuations at zero temperature
can be described as
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δG =
e2

h
CG, (7.54)

where CG is a constant of the order of unity. This fact is called universal conductance
fluctuations because CG depends on the spatial dimensionality of a conductor and the
symmetry of Hamiltonian but it is independent of microscopic parameters included
in the Hamiltonian. [35, 3] The relation GN ≫ δG holds true because the number of
propagating channels is much larger than unity in metallic conductors.

The similar mesoscopic fluctuations exist in the Josephson current in SNS junc-
tions where two spin-singlet s-wave superconductors sandwich a dirty normal metal
with the length being L. The ensemble average of the Josephson critical current is
described well by

Jc =
∆

e
GN. (7.55)

The fluctuations of the critical current is given by [4]

δJc =
eETh

ℏ
CJ, (7.56)

for L ≫ ξ0, where ETh is the Thouless energy of a conductor and CJ is a constant of
the order of unity depending slightly on the sample geometry. In usual mesoscopic
metals, δJc ≪ Jc holds true. In experiments, the Josephson current is measured for
a single sample with a specific random impurity configuration. The current-phase
relationship for the j sample would be given by

J(j)(φ) = J(j)1 sin φ − J(j)2 sin 2φ. (7.57)

When the two superconductors belong to spin-singlet s-wave symmetry class, the
relation

J(j)1 ≫ J(j)2 > 0, (7.58)

holds true for all samples. Thus the ensemble averaged value of the Josephson current
in theories

⟨J(φ)⟩ = Jc sin φ, δJ(φ) = δJc sin φ, (7.59)

would describe well a experimental result in a single sample. In Fig. 7.4(a), we plot
the numerical results of the Josephson current in s-wave SNS junctions, where the
Josephson current is calculated for 500 samples as a function of φ. The results show
the ensemble average ⟨J⟩ and the fluctuations. The current-phase relationship of ⟨J⟩
deviates from the sinusoidal function due to the second harmonic. The results for
s-wave junction show ⟨J⟩ < δJ.

The unconventional superconductors enrich the variety of mesoscopic transport
phenomena in SNS junctions. We consider a SNS junction consisting of two spin-
singlet dxy-wave superconductor. As discussed at Eq. (7.28), the proximity effect



7.4 Fluctuations of Josephson current 107

is absent in a normal metal attached to a dxy-wave superconductor. However, this
statement is valid only when we consider the pairing correlations after ensemble
averaging. In Eq. (7.28), the integral over the incident angle of a quasiparticle into
the interface corresponds to the average over different samples. Namely, the absence
of the lowest order coupling ⟨J1⟩ = 0 and

⟨J(φ)⟩ = −⟨J2⟩ sin 2φ, (7.60)

is expected in dxy-wave SNS junctions. The results in a numerical simulation agree
with the prediction in Eq. (7.60). In Fig. 7.4(b), we plot ⟨J⟩ and δJ as a function of
φ for dxy-wave SNS junctions. The the lowest harmonics is absent and the second
harmonic is dominant in the average. Simultaneously, the numerical results show the
relation

δJ ≫ ⟨J⟩. (7.61)

This relation means that the results after ensemble averaging cannot predict the
current-phase relationship in a specific sample in experiments. In the numerical
simulation, we find that |J(j)1 | ≫ J(j)2 > 0 holds true for most of the samples. The
relation ⟨J1⟩ = 0 indicates that a half of samples of are 0-junction and the lest
half of samples are π-junction. The relation in Eq. 7.61 holds in various Josephson
junction such as py-wave SNS junctions and SFS junction [55] with F denoting a
ferromagnet.
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Fig. 7.4 Numerical results by using the lattice Green’s function method for s-wave SNS junctions
in (a) and dxy -wave SNS junctions in (b). The ensemble average of the Josephson current and its
fluctuations are plotted as a function of phase difference across the junction. The number of sample
used for the ensemble average is Ns = 500 and the temperature is chosen as T = 0.01Tc .





Appendix A
Pair potential near the transition temperature

The dependence of ∆ on temperature near Tc can be described analytically. Using
an identity,

kBT
∞∑

n=−∞

1
ℏ2ω2

n + a2
=

1
2a

tanh
(

a
2kBT

)
, ωn = (2n + 1)πkBT/ℏ, (A.1)

we first derive a relation from the gap equation,

(gN0)−1 =

∫ ℏωD

0
dξ

1
E

tanh
(

E
2kBT

)
= kBT

ωD∑
ωn

∫ ∞

−∞
dξ

1
ℏ2ω2

n + ξ2 + ∆2
, (A.2)

with E =
√
ξ2 + ∆2. Here we introduce a high-energy cut-off ℏωD to either the

summation or the integration so that the summation and integration converges. At
T = Tc , by putting ∆ = 0, the equation results in,

(gN0)−1 =kBTc

ωD∑
ωn

∫ ∞

−∞
dξ

1
ω2
n + ξ2

, (A.3)

=kBTc

ωD∑
ωn

π

|(2n + 1)πkBTc |
=

NTc∑
n=0

1
n + 1/2 , (A.4)

=

NT∑
n=0

1
n + 1/2 +

NTc∑
n=0

1
n + 1/2 −

NT∑
n=0

1
n + 1/2 , (A.5)

≈
NT∑
n=0

1
n + 1/2 + log

(
T
Tc

)
, (A.6)

where we have used a relation
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N∑
n=0

1
n + 1/2 ≈ γ + log N + 2 log 2 +O

(
1

N2

)
, (A.7)

NTc =

[
ℏωD

2πkBTc

]
G
, NT =

[
ℏωD

2πkBT

]
G
, (A.8)

for N ≫ 1. Here γ = 0.577215 · · · is the Eular constant and [· · · ]G is the Gauss’s
symbol meaning the integer part of argument. For T ≲ Tc , ∆ is much smaller than
Tc . Thus it is possible to expand the integrand with respect to ∆/ωn,

(gN0)−1 =2kBT
ωD∑
ωn>0

∫ ∞

−∞
dξ

1
ℏ2ω2

n + ξ2 + ∆2
, (A.9)

≈2kBT
ωD∑
ωn>0

∫ ∞

−∞
dξ

[
1

ℏ2ω2
n + ξ2

− ∆2

(ℏ2ω2
n + ξ2)2

+ · · ·
]
, (A.10)

=πkBT
ωD∑
ωn>0

[
1

ℏωn
− 1
(ℏωn)3

∆2

2

]
, (A.11)

=

NT∑
n=0

1
n + 1/2 −

(
∆

πkBT

)2 ∞∑
n=0

1
(2n + 1)3

. (A.12)

Using the definition of the ζ-function,

ζ(n) =
∞∑
j=1

1
jn
,

∞∑
n=0

1
(2n + 1)m =

2m − 1
2m

ζ(m), (A.13)

we reach at a relation of

log
(

T
Tc

)
= −

(
∆

πkBT

)2 7ζ(3)
8

. (A.14)

Finally, we obtain an expression of the pair potential near the transition temperature,

∆ = πkBTc

√
8

7ζ(3)

√
Tc − T

Tc
. (A.15)



Appendix B
Conductance formula and transport channels

The derivation of the Landauer’s conductance formula is intuitive. To measure the
conductance, we consider one-dimensional junction as shown in Fig. B.1, where
a sample is connected two perfect read wires which are connected to reservoirs.
The perfect lead wire is free from any scattering events. The reservoir is always in
equilibrium characterized by a chemical potential and absorbs any incoming waves.
In Fig. B.1, the chemical potential on the left (right) reservoir is µL (µR). The sample
is shorter than any inelastic scattering lengths. An electron at the left reservoir can

μ
L

μ
R

sample
(scatterer)

lead

wire

lead

wire

R
T

Fig. B.1 A Schematic picture of a junction considered in the Landauer’s conductance formula.

go into the sample and reach at the right reservoir. Since all the states with energy
below µR are occupied, an electron at the energy window µL − µR = eV ≪ µR
can penetrate into the left lead wire and the sample. The electron number in such an
energy window is estimated as

N =
eV
πℏvF

, (B.1)

where (πℏvF )−1 is the density of states per unit length per spin in one-dimensional
conductor. Among them, an electron with the positive velocity vF penetrates into
the sample and
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N
2
vFT =

eV
πℏvF

vF
1
2

T, (B.2)

can transmit to the right reservoir, where T denotes the transmission probability of
the sample. The electric current is calculated as

J = e
N
2
vFT =

e2

h
TV . (B.3)

The conductance defined by the relation J = GV results in

G =
e2

h
T . (B.4)

The transmission probability T and the reflection probability R are the character-
istic physical values of waves. The current conservation law implies T + R = 1.
The interference effect of an electron is taken into account through these transport
probabilities. The product of the velocity and the density of states gives a constant,
which is a characteristic feature in one-dimensional conductors. Thus the formula
can be applied to any quasi-one-dimensional structures which have more than one
transport channel in lead wires. The formula for such case is given by,

G =
e2

h

∑
m

Tm, (B.5)

where Tm is the transmission probability of an electron which is incoming to the
sample from the m th propagating channel as shown in Fig. B.2.

The perfect read wires are necessary for defining transmission coefficients. To see
this, let us consider a conductor in quasi one-dimension. The Schrödinger equation
is given by, [

−ℏ2∇2

2m
− ϵF + V(r)

]
ϕ(x, y) = Eϕ(x, y), (B.6)

where V(r) represents scattering potential in the sample and confining potential
for a quasi-one dimensional junction. We apply the periodic boundary condition in
the transverse direction to the current (y direction), which implies a conductor is
confined within a finite region W in the y direction.

As shown in Fig. B.2(a), the sample is connected to two lead wires. To define the
transport channels clearly, we assume that the lead wires are free from any scatterers.
The solution of the Schrödinger equation at the lead wire can described as

ϕ(x, y) =eikx fp(y), fp(y) =
eipy
√

W
, (B.7)

Ek ,pm =
ℏ2

2m

(
k2 + p2

m

)
, pm =

2πm
W

, m = 0,±1,±2, . . . . (B.8)
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y W

m=0
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3
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E
k p

|m|=1

k

sample

m

l

l
tl,m

rl,m

lead wire lead wire

(a)

(b)(c)

Fig. B.2 (a) The transport channels can be defined in perfect lead wires, where l and m indicate
the propagating channels. (b) The subband structures in a lead wire in quasi-one dimension. (c)
Two lead wires are separated by a potential barrier at x = 0, where the width of the junction is W .

In Fig. B.2(b), we plot the energy Ek ,p as a function of the wave number in the x
direction k. The kinetic energy in the y direction is quantized due to the confinement
potential as shown with m = 0, m = ±1..... Thus the dispersion shows the subband
structures, where m specifies a subband. The horizontal line indicates the Fermi
level. At the Fermi level, the relation Ek ,p = ϵF defines the wave number in the x
direction

k2
m =

2mϵF
ℏ2 − p2

m. (B.9)

When km is real, the wave function is a plane wave with the group velocity of
vl = ℏkm/m. Such a transport channel is called a propagating channel which can
carry the current between the reservoir and the sample. When km is imaginary, on the
other hand, the wave function dumps exponentially in the x direction. Such a channel
is called an evanescent channel which cannot carry the current. In this picture, nine
subbands m = 0,±1,±2,±3,±4 have are propagating channels and the subband with
|m| ≥ 5 are the evanescent channels. The transport coefficients are defined among
the propagating channels.

Next we consider a situation where an electron is incident from a channel of m at
the left lead wire. The incident electron is transmitted to the right lead wire partially
and reflected to the left lead wire partially. The wave functions can be described as

ϕLm(x, y) =eikmx fm(y) +
∑
l

rl,me−ikl x fl(y), (B.10)

ϕRm(x, y) =
∑
l

tl,meikl x fl(y), (B.11)
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where tl,m is the transmission coefficient to the l-th channel at the right lead wire and
rl,m is the reflection coefficient to the l-th channel at the left lead wire. The outgoing
channel l is not necessary to identical to the incoming channel m when an incident
electron are scattered by random potentials at the sample. The electric current flows
in the lead wires are described as

Jj =
∫ W

0
dy

eℏ
2mi

[
(ϕ j

m)∗
d
dx
ϕ
j
m − d

dx
(ϕ j

m)∗ ϕ j
m

]
, (B.12)

for j = L and R. The current conservation law implies JL = JR, which leads to∑
l

|tl,m |2
vl

vm
+ |rl,m |2

vl

vm
= 1, vl =

ℏkl
m
, (B.13)

where we have used the orthonormality of the wave function∫ W

0
dy f ∗n (y) fl(y) = δn,l . (B.14)

These transport coefficients are calculated from the boundary condition of wave
function. In Fig. B.2(c), we consider a practical situation where the sample is repre-
sented by the potential barrier of v0δ(x). A boundary condition for the wave functions

ϕLm(0, y) = ϕRm(0, y), (B.15)

means that the wave function must be single-valued. By substituting Eqs. (B.10) and
(B.11) into the boundary condition and carrying out the integration along y after
multiplying f ∗n (y), we find

δn,m + rn,m = tn,m. (B.16)

To derive the second boundary condition, we integrate the Schrödinger equation at
an interval of −γ < x < γ and take the limit of γ → 0.

lim
γ→0

∫ γ

−γ
dx

[
− ℏ2

2m

(
∂2

∂x2 +
∂2

∂y2

)
− ϵF + v0δ(x)

]
ϕ(x, y)

= lim
γ→0

∫ γ

−γ
dx Eϕ(x, y). (B.17)

Since the right-hand side becomes zero, we obtain

− ℏ2

2m

[
∂

∂x
ϕR(x, y)

����
x=0

− ∂

∂x
ϕL(x, y)

����
x=0

]
+ v0ϕ

R(0, y) = 0. (B.18)

By substituting Eqs. (B.10) and (B.11) into the boundary condition and carrying out
the integration along y after multiplying f ∗n (y), we find the relation
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k̄m δn,m − k̄n rn,m = (k̄n + 2iz0)tn,m, (B.19)

z0 =
m v0

ℏ2kF
, k̄m =

km
kF
,

ℏ2k2
F

2m
= ϵF . (B.20)

From (B.16) and (B.19), the transport coefficients are calculated as

tn,m =
k̄m

k̄m + iz0
δn,m, rn,m =

−iz0

k̄m + iz0
δn,m. (B.21)

Since the barrier potential preserves translational symmetry in the y direction, the
transport coefficients are diagonal with respect to the channel indices. The conduc-
tance of the potential barrier results in

G =
2e2

h
Tr

[
t̂ t̂†

]
=

2e2

h

∑
m

|tm,m |2, (B.22)

where we multiply 2 to the conductance by taking the spin degeneracy into account.
Since pm = 2πm/W , the summation over m can be replaced by the integral for wave
number in the y direction for W kF ≫ 1,∑

m

=
W
2π

∫ kF

−kF
dp =

[
W kF
π

]
G
= Nc, (B.23)

where [· · · ]G is the Gauss’s symbol and Nc represents the number of propagating
channels on the Fermi surface. When the potential barrier is absent, the transmission
probability is unity for all propagating channels. The conductance of such a perfect
conductor remains finite value of

G =
2e2

h
Nc, (B.24)

because the width of lead wires are finite. The conductance in Eq. (B.24) is called
Sharvin conductance in mesoscopic physics.

Normal transport coefficients through a magnetic potential barrier

Let us consider the transmission of an electron through an insulating barrier
between two metals. The Hamiltonian reads,

ĤN(r) =
{
−ℏ2∇2

2m
− ϵF + V0δ(x)

}
σ̂0 + V · σ̂δ(x), (B.25)

where σ̂j for j = 1 − 3 is the Pauli’s matrix in spin space. The wave function of an
electron on either side of the interface can be described as
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ψL(r) =
[
aeikx x + Ae−ikx x

]
eip ·ρ, (B.26)

ψR(r) =
[
be−ikx x + Beikx x

]
eip ·ρ, (B.27)

a =

[
α↑
α↓

]
, b =

[
β↑
β↓

]
, A =

[
A↑
A↓

]
, B =

[
B↑
B↓

]
, (B.28)

where r = (x,ρ), k2
x + p2 = k2

F = 2mϵF/ℏ2, a and b are spinor representing the
amplitudes of incoming wave into the interface. On the other hand, A and B are
spinor representing the amplitudes of outgoing wave from the interface. The two
wave functions are connected by the the boundary conditions at x = 0,

ψL(0,ρ) = ψR(0,ρ), (B.29)

− ℏ2

2m

[
∂

∂x
ψR(r) −

∂

∂x
ψL(r)

]
x=0
+ (V0 + V · σ̂)ψL(0,ρ) = 0. (B.30)

The boundary conditions relate the outgoing waves and incoming ones as[
A
B

]
=

[
r̂N t̂ ′N
t̂N r̂ ′N

] [
a
b

]
, (B.31)

t̂N =t̂ ′N =
1
Ξ

k [k + iz0 − iz · σ̂] , (B.32)

r̂N =r̂ ′N =
1
Ξ

[
(k + iz0)(−iz0) − |z |2 − k iz · σ̂

]
, (B.33)

z =
mV

ℏ2kF
, Ξ = (k + iz0)2 + |z |2. (B.34)

The current conservation law implies

t̂N t̂†N + r̂Nr̂†N = σ̂0. (B.35)

The transport coefficients in the hole branch of BdG picture results in

t̂N =
1
Ξ∗

k [k − iz0 + iz · σ̂∗] = t̂∗N, (B.36)

r̂N =
1
Ξ∗

[
(k − iz0)(iz0) − |z |2 + k iz · σ̂∗] = r̂∗N. (B.37)



Appendix C
Mean-field theory in real space

The Hamiltonian for an electrons in the presence of interactions is represented by

H =HN +HI, (C.1)

HN =

∫
dr

∑
α,β

ψ†
α(r)ξα,β(r)ψα(r), (C.2)

ξ̂α,β(r) =
{
− ℏ2

2m

(
∇ − ie

ℏc
A

)2
− ϵF + V0(r)

}
σ̂0 + V (r) · σ̂

+ iλ(r) × ∇ · σ̂, (C.3)

HI =
1
2

∫
dr

∫
dr ′

∑
α,β

ψ†
β(r

′)ψ†
α(r) [−g(r − r ′)]ψα(r)ψβ(r ′), (C.4)

where V0 is the spin-independent potential, V is the Zeeman potential, λ represents
the spin-orbit potential, and g(r − r ′) = g(r ′ − r) > 0 is the attractive interaction
between two electrons. The pair potential is defined as

∆α,β(r, r ′) = − g(r − r ′)
〈
ψα(r)ψβ(r ′)

〉
, (C.5)

∆
∗
α,β(r, r ′) = − g(r − r ′)

〈
ψ†
β(r

′)ψ†
α(r)

〉
= g(r − r ′)

〈
ψ†
α(r)ψ†

β(r
′)
〉
. (C.6)

The pair potential satisfies the antisymmetric property

∆α,β(r, r ′) = −∆β,α(r ′, r), (C.7)

because of the anticommutation relation among the electron operators. The interac-
tion Hamiltonian is decoupled by the mean field approximation. The operators are
replaced by the order parameters as
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ψ†
β(r

′)ψ†
α(r) = −

∆∗α,β(r, r ′)
g(r − r ′) +

[
ψ†
β(r

′)ψ†
α(r) +

∆∗α,β(r, r ′)
g(r − r ′)

]
, (C.8)

ψα(r)ψβ(r ′) = −
∆α,β(r, r ′)
g(r − r ′) +

[
ψα(r)ψβ(r ′) +

∆α,β(r, r ′)
g(r − r ′)

]
. (C.9)

The first term is the average of the operator and the second term represents the
fluctuations. The mean-field expansion is carried out up to the first order of the
fluctuations,

HI →
1
2

∫
dr

∫
dr ′

∑
α,β

ψ†
α(r)∆α,β(r, r ′)ψ†

β(r
′) − ψα(r)∆∗α,β(r, r ′)ψβ(r ′)

−
|∆∗α,β(r, r ′)|2

g(r − r ′) . (C.10)

As a result, the mean-field Hamiltonian of superconductivity is represented as

HMF =
1
2

∫
dr

∫
dr ′

∑
α,β

[
ψ†
↑(r),ψ

†
↓(r),ψ↑(r),ψ↓(r)

]

×
[
δ(r − r ′) ξ̂(r ′) ∆̂(r, r ′)
−∆̂∗(r, r ′) −δ(r − r ′) ξ̂∗(r ′)

] 
ψ↑(r ′)
ψ↓(r ′)
ψ†
↑(r

′)
ψ†
↓(r

′)


. (C.11)

The BdG equation reads,∫
dr ′

∑
α,β

[
δ(r − r ′) ξ̂(r ′) ∆̂(r, r ′)
−∆̂∗(r, r ′) −δ(r − r ′) ξ̂∗(r ′)

] [
ûν(r ′)
v̂ν(r ′)

]
=

[
ûν(r)
v̂ν(r)

]
Êν, (C.12)

Êν =

[
Eν,1 0

0 Eν,2

]
,

[
ûν(r)
v̂ν(r)

]
=


uν,↑,1(r) uν,↑,2(r)
uν,↓,1(r) uν,↓,2(r)
vν,↑,1(r) vν,↑,2(r)
vν,↓,1(r) vν,↓,2(r)

 . (C.13)

The wave function [
v̂∗ν(r)
û∗ν(r)

]
(C.14)

belongs to the eigenvalue of −Êν . The wave function satisfies the orthonormality
and the completeness,
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dr

[
û†λ(r), v̂

†
λ(r)

] [
ûν(r)
v̂ν(r)

]
= δλ,ν, (C.15)∫

dr
[
û†λ(r), v̂

†
λ(r)

] [
v̂∗ν(r)
û∗ν(r)

]
= 0, (C.16)∑

ν

[
ûν(r)
v̂ν(r)

] [
û†ν(r ′), v̂†ν (r ′)

]
+

[
v̂∗ν(r)
û∗ν(r)

] [
v̂T
ν (r ′), ûT

ν (r ′)
]
= 1̌4×4 δ(r − r ′). (C.17)

Let us assume that V , λ are uniform, and A = V0 = 0. It is possible to derive the
mean-field Hamiltonian in momentum space by substitute the Fourier transformation

ψα(r) =
1

√
Vvol

∑
k

ψk ,αeik ·r , (C.18)

∆α,β(r − r ′) = 1
Vvol

∑
q

∆α,β(q)eik ·(r−r
′), (C.19)

into Eq. (C.11),

HMF =
1
2

∫
dr

∫
dr ′

∑
α,β

1
Vvol

∑
k ,k′

[
ψ†
k′,↑,ψ

†
k′,↓,ψ−k′,↑,ψ−k′,↓

]
e−ik

′ ·r

×
[

δ(r − r ′) ξ̂(r ′) 1
Vvol

∑
q ∆̂(q)eiq ·(r−r

′)

− 1
Vvol

∑
q ∆̂

∗(q)e−iq ·(r−r′) −δ(r − r ′) ξ̂∗(r ′)

]
eik ·r

′


ψk ,↑
ψk ,↓
ψ†
−k ,↑
ψ†
−k ,↓


, (C.20)

=
1
2

∫
dr

∑
α,β

1
Vvol

∑
k ,k′

[
ψ†
k′,↑,ψ

†
k′,↓,ψ−k′,↑,ψ−k′,↓

]
e−ik

′ ·r

×
[

ξ̂(r) ∆̂(k)
−∆̂∗(−k) −ξ̂∗(r)

]
eik ·r


ψk ,↑
ψk ,↓
ψ†
−k ,↑
ψ†
−k ,↓


, (C.21)

=
1
2

∑
α,β

∑
k

[
ψk ,↑,ψ

†
k ,↓,ψ−k ,↑,ψ−k ,↓

] [
ξ̂k ∆̂(k)

−∆̂∗(−k) −ξ̂∗−k

] 
ψk ,↑
ψk ,↓
ψ†
−k ,↑
ψ†
−k ,↓


, (C.22)

ξ̂k =ξk σ̂0 + V · σ̂ − λ × k · σ̂, ξk =
ℏ2k2

2m
− ϵF . (C.23)

The examples of the pair potential are shown below,

∆̂(k) =

∆iσ̂2 : s-wave
∆(k̄2

x − k̄2
y)iσ̂2 : dx2−y2 -wave

∆2k̄x k̄yiσ̂2 : dxy-wave
, (C.24)
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for spin-singlet even-parity order with k̄ j = k j/kF for j = x, y, z and

∆̂(k) =


∆k̄x id · σ̂ σ̂2 : px-wave
∆(k̄yσ̂1 − k̄xσ̂2) iσ̂2 : 2D Helical p-wave
∆(k̄x + i k̄y)d · σ̂ iσ̂2 : 2D chiral p-wave
∆(k̄xσ̂1 + k̄yσ̂2 + k̄z σ̂3) iσ̂2 : Superfluid 3He B phase

, (C.25)

for spin-triplet odd-parity order.
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