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We discuss the symmetry property of a nodal superconductor that hosts robust flat-band zero-energy states at
its surface under potential disorder. Such robust zero-energy states are known to induce the anomalous proximity
effect in a dirty normal metal attached to a superconductor. A recent study has shown that a topological index
NZES describes the number of zero-energy states at the dirty surface of a p-wave superconductor. We generalize
the theory to clarify the conditions required for a superconductor that enables NZES �= 0. Our results show that
NZES �= 0 is realized in a topological material that belongs to either the BDI or CII class. We also present two
realistic Hamiltonians that result in NZES �= 0.
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I. INTRODUCTION

In the past decade, topologically nontrivial superconductors
have attracted enormous attention due to the existence of
exotic bound states at their surfaces [1–3]. Early studies
on this topic focused mainly on the topological phase of a
fully gapped superconductor listed in the tenfold topological
classification [4]. The bulk-boundary correspondence suggests
the equivalence between the number of surface bound states
and the absolute value of a topological invariant Z defined
in the bulk states [5]. A unique physical consequence of
such a topological superconductor might be the zero-bias
conductance quantization at GNS = (2e2/h)|Z| in a normal-
metal/superconductor (NS) junction. In experiments, however,
it is not easy to observe conductance quantization clearly for
the following reasons. The invariant Z is usually limited to
small numbers in real fully gapped superconductors, whereas
the number of propagating channels Nc is much larger than
unity in two- or three-dimensional NS junctions. Therefore, the
electric current passing through normal propagating channels
would smear the effects of resonant transmission through the
topological bound states.

Today, superconductors characterized by such unconven-
tional pairing symmetry as spin-singlet d-wave and spin-triplet
p-wave are considered to be topologically nontrivial, although
their gap functions have nodes on the Fermi surface [6–26]. The
most striking feature of such a nodal superconductor is that it
hosts flat-band zero-energy states (ZESs) at its clean surface.
It has been well established that the conductance of an NS
junction consisting of such an unconventional superconductor
is quantized at GNS = (2e2/h)Nclean [6,7,20,27–29]. Here
Nclean is the number of surface bound states at zero energy
and is of the order of Nc. In addition to zero-bias conductance
quantization, the fractional Josephson effect [30–34], the
paramagnetic response at a surface [35–40], and the anomalies

in heat transport [41] are physical phenomena unique to a
nodal superconductor. Since Nclean is the same order as Nc,
the effects of the surface bound states on the electromagnetic
phenomena in a nodal superconductor can be more noticeable
than those in a fully gapped topological superconductor.
However, these statements are true as long as the surface or
the junction interface of the superconductor is sufficiently
clean. In experiments, potential disorder is inevitable at the
surface of a superconductor and may lift the degeneracy of the
flat-band bound states at zero energy. Actually, the flat-band
ZESs at a surface of the d-wave superconductor are fragile
under potential disorder [42,43]. On the other hand, the flat-
band ZESs of the p-wave superconductor are robust [27,33].
The question is how to distinguish these two types of nodal
superconductors.

A key theoretical method with which to solve the problem
is called dimensional reduction, and it is a useful theoretical
tool for characterizing a nodal superconductor topologically.
In a d-dimensional nodal superconductor, we can still find a
fully gapped one-dimensional partial Brillouin zone by fixing
the (d − 1)-dimensional momentum at a certain point (say,
k). In such a one-dimensional Brillouin zone, it is possible to
define a winding number w(k) in terms of the wave function of
the occupied states below the gap [8,9]. A nonzero winding
number w(k) suggests |w(k)|-fold-degenerate ZESs at the
surface for each k. Therefore,Nclean = ∑

k |w(k)| describes the
number of ZESs at the clean surface of a nodal superconductor.
In contrast to the topological invariant of a fully gapped
topological superconductor, Nclean cannot predict the number
of ZESs at a dirty surface [44]. With the dimensional reduction,
translational symmetry is necessary to define the winding
number in a one-dimensional Brillouin zone. However, such
partial Brillouin zones themselves are not well defined at
all because the momentum k is no longer a good quantum
number under potential disorder. Nevertheless, two of the
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present authors have shown that an alternative index, NZES =∑
k w(k), describes the number of ZESs at a dirty surface [45].

In other words, NZES represents the bulk-boundary correspon-
dence of a nodal superconductor in the dirty case. Moreover,
a nodal superconductor with NZES �= 0 is known to induce
the anomalous proximity effect in dirty proximity structures
such as conductance quantization at GNS = (2e2/h)|NZES|
in a dirty NS junction [27], the fractional Josephson effect
in a dirty Josephson junction [33], and the paramagnetic
Meissner response at a dirty surface of a superconductor
[39]. To our knowledge, NZES becomes nonzero in several
nodal superconductors characterized by spin-triplet p- and
f -wave pairing symmetries. Namely, spin-triplet p- and f -
wave superconductivity is a sufficient condition for NZES �= 0.
However, we do not know any necessary conditions forNZES �=
0. Such conditions would provide us with a design guide for
topologically nontrivial artificial superconductors, which may
be realized by applying the fabrication technique to existing
materials. This paper will clarify the necessary conditions for
NZES �= 0.

In this paper, we first study the relationship between the
symmetry class of the Bogoliubov–de Gennes (BdG) Hamil-
tonian and the possibility of a nonzero index NZES. Within the
tenfold topological classification, the classes BDI, CII, DIII,
and CI are the target symmetry classes of this paper because a
nodal superconductor belonging to these symmetry classes is
able to host flat-band ZESs at their clean surfaces. We find
that NZES = 0 identically in classes DIII and CI, whereas
NZES �= 0 is realized in classes BDI and CII. The results
are summarized in Table. I. On the basis of this conclusion,
we also seek practical examples of the BdG Hamiltonian in
class BDI. As a result, we find two realistic models which
describe a Dresselhaus [110] superconductor [19,20] and a
helical p-wave superconductor with an in-plane magnetic field
[21,22]. Thus, we conclude that these superconductors host
|NZES|-fold-degenerate ZESs at their dirty surfaces.

This paper is organized as follows. In Sec. II, we discuss
the possible symmetry class of a nodal superconductor that
possesses the nonzero index NZES. On the basis of the general
conclusion in Sec. II, we present realistic models of a nodal
superconductor in class BDI in Sec. III. We summarize this
paper in Sec. IV.

TABLE I. Relationship between the symmetry class of a nodal
superconductor and the number of flat-band zero-energy states (ZESs)
at its surface. The first column lists the relevant symmetry classes
of the nodal superconductor. The second and third columns indicate
the sign of T 2 and C2, respectively. The fourth column indicates
the presence of chiral symmetry by S2 = +1. The fifth column
represents the number of flat-band ZESs at a clean surface of a nodal
superconductor Nclean = ∑

k‖
′|w(k‖)|. The sixth column denotes the

number of the ZESs at a dirty surface of a nodal superconductor
evaluated by the index NZES = ∑

k‖
′
w(k‖).

TRS PHS CS Clean Dirty

BDI +1 +1 +1 Nclean |NZES|
CII −1 −1 +1 Nclean |NZES|
DIII −1 +1 +1 Nclean 0
CI +1 −1 +1 Nclean 0

II. SYMMETRY CLASS AND TOPOLOGICAL INDEX

A. Preliminary

First, we briefly review the topological property of a time-
reversal-invariant nodal superconductor. The BdG Hamilto-
nian in momentum space is generally given by

H(k) =
[

h(k) �(k)
−�∗(−k) −h∗(−k)

]
, (1)

where h(k) denotes the N × N normal-state Hamiltonian
of an electron, �(k) is the N × N pair potential, and N

represents the number of degrees of freedom such as spins
and conduction bands. Time-reversal symmetry (TRS) and
particle-hole symmetry (PHS) of H(k) are represented by

T H(k) T −1 = H(−k), T = UT K, T 2 = ±1, (2)

C H(k) C−1 = −H(−k), C = UCK, C2 = ±1, (3)

where UT and UC are 2N × 2N unitary operators and K is
the complex-conjugation operator. In terms of the signs of T 2

and C2, we can classify the present BdG Hamiltonian into four
symmetry classes: BDI, CII, DIII, and CI [4]. The values of
(T 2,C2) in these classes are summarized in Table I.

When a BdG Hamiltonian belongs to one of these symmetry
classes, it is possible to define chiral symmetry (CS) of the
Hamiltonian by

S H(k) S−1 = −H(k), S = eiαT C, (4)

where S is a unitary operator and α is an arbitrary real
number. The commutation relation [S2,H(k)] = 0 holds for
any Hamiltonians preserving chiral symmetry. As a result, S2

is proportional to the identity operator as S2 = eiβ . Phase β

can be removed by choosing α in an appropriate way. Thus, in
the following, we assume S2 = +1 without loss of generality.

In the superconductor under consideration, the pair potential
has nodes on the Fermi surface. Therefore, it is impossible to
define a topological invariant by using the wave functions of
the entire Brillouin zone. In a three- (two-) dimensional case,
we assume that the pair potential has line (point) nodes on the
Fermi surface. The nodal point k0 satisfies det[H(k0)] = 0.
Even in the presence of the nodes, it is still possible to define a
one-dimensional partial Brillouin zone by fixing the (d − 1)-
dimensional momentum k‖ at a certain point. When the pair
potential in such a partial Brillouin zone is fully gapped, we
can define the one-dimensional winding number as

w(k‖) = i

4π

∫
dk⊥Tr[SH−1(k)∂k⊥H(k)], (5)

where k⊥ is the momentum in a one-dimensional Brillouin
zone. The winding number w(k‖) cannot be defined when the
integral path along k⊥ in Eq. (5) intersects the gap nodes k0.

When w(k‖) is nonzero at k‖, according to the bulk-
boundary correspondence, |w(k‖)|-fold-degenerate ZESs are
expected at a clean surface parallel to k‖. Thus, the total number
of ZESs at a clean surface is given by

Nclean =
∑

k‖

′|w(k‖)|, (6)
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where
∑

k‖
′ denotes a summation over k‖ excluding the nodal

points. Such highly degenerate surface bound states are called
flat-band ZESs because the energy dispersion is independent
of k‖.

Next, we focus on flat-band ZESs at the dirty surface of
a nodal superconductor. The surface is located at x⊥ = 0,
and the nodal superconductor occupies x⊥ � 0. The potential
disorder in the bulk region strongly suppresses unconventional
superconductivity. Thus, we assume that the potential disorders
exist only near the surface x⊥ � ξS, where ξS represents the
superconducting coherence length. The nonmagnetic random
potential V (r) preserves TRS and PHS as

T V (r) T −1 = V (r), (7)

C V (r) C−1 = −V (r), (8)

where V (r) is finite only for x⊥ � ξS. In the presence of
potential disorders, the winding number w(k‖) is not well
defined because the momentum k‖ is no longer a good quantum
number in the absence of translational symmetry. This implies
that w(k‖) cannot straightforwardly predict the number of
the ZESs at a dirty surface. Nevertheless, it is possible to
characterize the flat-band ZESs at a dirty surface by using an
alternative index [45],

NZES =
∑

k‖

′
w(k‖). (9)

The absolute value of the index NZES coincides with the
number of ZESs at the dirty surface of a nodal superconductor.

When we introduce the potential disorders in the bulk region,
the potential disorders must be sufficiently weak to keep
unconventional superconductivity. On the other hand, in the
case of the surface disorder, the index NZES describes the
number of ZESs irrespective of its strength (see also Sec. II in
Ref. [45]). In what follows, we study the relationship between
the symmetry class of the Hamiltonian and the realization of
the nonzero index NZES.

B. Realization of nonzero topological index

As shown in Appendix A, the commutation relations for
the symmetry operators depend on the symmetry class of the
Hamiltonian as follows:

[S,T ] = [S,C] = 0 (10)

for BDI and CII and

{S,T } = {S,T } = 0 (11)

for DIII and CI. From these commutation relations, we obtain

T −1 S T = UT S∗ U†
T = η S, (12)

C−1 S C = UC S∗ U†
C = η S, (13)

η =
{+1 for BDI and CII
−1 for DIII and CI. (14)

By taking into account Eqs. (12) and (13), the complex conju-
gation of the winding number [46] is calculated as follows:

{w(k‖)}∗ = − i

4π

∫
dk⊥Tr[S∗{H−1(k)}∗∂k⊥H∗(k)]

= − i

4π

∫
dk⊥Tr[S∗{U†

	 H−1(−k) U	} ∂k⊥{U†
	 H(−k) U	}]

= − i

4π

∫
dk⊥Tr[{U	 S∗ U†

	}H−1(−k) ∂k⊥H(−k)]

= i

4π

∫
dk⊥Tr[(ηS)H−1(k⊥, − k‖) ∂k⊥H(k⊥, − k‖)]

= η w(−k‖), (15)

where 	 = T or C. In the second line of Eq. (15), we use the
relations

H∗(k) = U†
T H(−k) UT , (16)

H∗(k) = −U†
C H(−k) UC, (17)

which are equivalent to TRS in Eq. (2) and PHS in Eq. (3),
respectively. Since w(k‖) is a real integer number, we finally
obtain the important relation

w(k‖) = η w(−k‖). (18)

From Eq. (18), we find that the winding number for classes
DIII and CI (i.e., η = −1) is an odd function of k‖. Therefore,
the index NZES in Eq. (9) becomes identically zero. This
implies the absence of zero-energy states at the dirty surfaces

of DIII and CI nodal superconductors. On the other hand, the
winding number for classes BDI and CII (i.e., η = +1) is an
even function of k‖. Therefore, NZES �= 0 is possible in these
symmetry classes, which means that degenerate zero-energy
states exist at the dirty surface. We summarize the results
in Table I. At a clean surface, flat-band ZESs are expected
irrespective of the symmetry classes of a nodal superconductor
(see the fifth column of Table I). However, at a realistic
dirty surface, the presence or absence of the flat-band ZESs
depends on the symmetry class of the superconductor (see the
sixth column of Table I). Namely, only the BDI or CII nodal
superconductor has the potential to host degenerate ZESs at its
dirty surface. This is the main conclusion of this paper.

The BdG Hamiltonian in class CI describes a spin-singlet
superconductor [4]. Therefore, the flat-band ZESs of a spin-
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singlet dxy-wave superconductor are fragile against poten-
tial disorder [42,43]. Although several noncentrosymmetric
superconductors have flat-band ZESs at their clean surface
[12–16], the potential disorder completely lifts the degeneracy
at zero energy [44,45] because the noncentrosymmetric su-
perconductors belong to class DIII. The BdG Hamiltonian of a
spin-triplet superconductor preserving spin-rotation symmetry
belongs to class BDI [45]. Actually, the flat-band ZESs of
the spin-triplet px-wave superconductor can retain their high
degree of degeneracy even in the presence of the potential
disorder [27,33,45]. In the following section, we investigate
other examples of nodal superconductors that host robust
flat-band ZESs under potential disorder. Unfortunately, we
cannot find a specific model of a nodal superconductor in
class CII. Even so, we demonstrate two practical models of
topologically nontrivial nodal superconductors belonging to
class BDI.

III. NODAL SUPERCONDUCTORS WITH THE NONZERO
TOPOLOGICAL INDEX

A. BdG Hamiltonian in the single-band model

In this paper, we restrict our discussion to single-band su-
perconductors belonging to class BDI. The BdG Hamiltonian
in the single-band model is generally given by

Ȟ (k) =
[

ĥ(k) �̂(k)

−�̂∗(−k) −ĥ∗(−k)

]
, (19)

ĥ(k) = ε(k)σ0 + g(k) · σ + V · σ , (20)

�̂(k) = [ψ(k) + d(k) · σ ](iσ2), (21)

ε(k) = h̄2k2

2m
− μF, (22)

where σ0 is the 2 × 2 unit matrix, m denotes the effective mass
of an electron, and μF is the chemical potential. The spin-orbit-
coupling potential is given by g(k) = −g(−k). The Zeeman
potential induced by an external magnetic field is denoted by V .
The pair potential of a spin-singlet even-parity pairing order
and that of a spin-triplet odd-parity pairing order are repre-
sented by ψ(k) = ψ(−k) and d(k) = −d(−k), respectively.
In what follows, we assume the time-reversal invariant pairing
orders which satisfy ψ∗(k) = ψ(k) and d∗(k) = d(k). The
BdG Hamiltonian preserves PHS intrinsically as

Č+ Ȟ (k) Č−1
+ = −Ȟ (−k), Č+ =

[
0 σ0

σ0 0

]
K, (23)

where Č2
+ = +1. For spinful fermionic systems, the TRS

operator is generally defined by

Ť− =
[
iσ2 0
0 iσ2

]
K, (24)

obeying Ť 2
− = −1. In the absence of the Zeeman potential (i.e.,

V = 0), the BdG Hamiltonian Ȟ (k) satisfies Ť− Ȟ (k) Ť −1
− =

Ȟ (−k), which represents TRS of the BdG Hamiltonian. On
the basis of the results in Sec. II, however, the index NZES

defined by using the chiral symmetry operator Š ′ = −iŤ−Č+
becomes identically zero. Alternatively, we assume that the

BdG Hamiltonian Ȟ (k) satisfies

Ť+ Ȟ (k) Ť −1
+ = Ȟ (−k), (25)

where Ť+ is a 4 × 4 antiunitary operator satisfying Ť 2
+ = +1. In

the single-band model, the antiunitary operator Ť+ is defined by
combining the original TRS operator Ť− and a unitary operator
Ř as

Ť+ = Ř Ť− =
[
r̂(iσ2) 0

0 r̂∗(iσ2)

]
K, (26)

Ť− =
[
iσ2 0
0 iσ2

]
K, Ř =

[
r̂ 0
0 r̂∗

]
, (27)

where r̂ is a 2 × 2 unitary operator. To satisfy the condition
Ť 2

+ = +1, the form of the unitary operator r̂ is restricted as

r̂ = −ieiγ /2n · σ , (28)

where γ is an arbitrary real number and n is a unit vector
in an arbitrary direction in spin space (see also Appendix B).
As shown in Appendix C, it is possible to choose n in the
specific direction because all the BdG Hamiltonians satisfying
Eq. (26) are always unitarily equivalent to one another. In this
paper, therefore, we choose n to be in the third spin direction
and consider

Ťz Ȟ (k) Ť −1
z = Ȟ (−k), (29)

Ťz = Řz Ť− =
[−ieiγ /2σ1 0

0 ie−iγ /2σ1

]
K, (30)

Řz =
[
r̂z 0
0 r̂∗

z

]
, r̂z = −ieiγ /2σ3 (31)

in what follows.
In Eq. (29), the normal-state Hamiltonian ĥ(k) and the pair

potential �̂(k) respectively obey the relations

T̂z ĥ(k) T̂ †
z = ĥ(−k), (32)

T̂z �̂(k) T̂ T
z = �̂(−k), (33)

where T̂z = −ieiγ /2σ1K and T means a transpose of a matrix.
The normal-state Hamiltonian in Eq. (20) is transformed into

T̂z ĥ(k) T̂ †
z = ε(k)σ0 − g3(k)σ3 +

∑
j=1,2

Vjσj

+
∑
j=1,2

gj (k)σj − V3σ3. (34)

To satisfy Eq. (32), the normal Hamiltonian should have the
form

ĥBDI(k) = ε(k)σ0 + g3(k)σ3 +
∑
j=1,2

Vjσj . (35)

The pair potential in Eq. (21) is transformed into

T̂z �̂(k) T̂ T
z = eiγ [ψ(k) − d3(k)σ3](iσ2)

+ eiγ
∑
j=1,2

dj (k)σj (iσ2). (36)
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There are two possible choices of �̂(k) and γ to satisfy
Eq. (33). The first choice is

�̂1(k) = [ψ(k) + d3(k)σ3](iσ2), (37)

setting eiγ = +1. The second one is

�̂2(k) =
∑
j=1,2

dj (k)σj (iσ2), (38)

setting eiγ = −1. As a consequence, the BdG Hamiltonian
belonging to class BDI can be represented as

ȞBDI(k) =
[

ĥBDI(k) �̂λ(k)
−�̂∗

λ(−k) −ĥ∗
BDI(−k)

]
, (39)

ĥBDI(k) = ε(k)σ0 + g3(k)σ3 +
∑
j=1,2

Vjσj , (40)

�̂1(k) = [ψ(k) + d3(k)σ3]iσ2, (41)

�̂2(k) =
∑
j=1,2

dj (k)σj iσ2. (42)

When we choose the pair potential �̂1(k), the corresponding
TRS operator is given by

Ť+,1 = θ̌z Ť− =
[−iσ1 0

0 iσ1

]
K, (43)

θ̌z =
[−iσ3 0

0 iσ3

]
, (44)

where the unitary operator θ̌z physically means the spin rotation
around the z axis. When we choose the pair potential �̂2(k),
on the other hand, the corresponding TRS operator becomes

Ť+,2 = χ̌ (π ) θ̌z Ť− =
[
σ1 0
0 σ1

]
K, (45)

χ̌(π ) =
[
eiπ/2σ0 0

0 e−iπ/2σ0

]
, (46)

where χ̌ (π ) represents the gauge transformation by π . In the
following sections, we discuss two realistic examples of nodal
superconductors whose BdG Hamiltonians satisfy Eq. (39).

B. Dresselhaus [110] superconductor

The first example may be an artificial superconducting
hybrid, where a semiconductor thin film with the strong Dres-
selhaus [110] spin-orbit coupling is fabricated on a metallic
superconductor [19,20] as shown in Fig. 1. The semiconductor
thin film is superconductive due to the proximity-effect-
induced s-wave pair potential. We also apply an in-plane
magnetic field which induces the Zeeman potential on the thin

Metallic superconductor

Semiconductor thin film

Mag
ne

tic
 fie

ld

x

y

FIG. 1. Schematic image of a Dresselhaus [110] superconductor.

FIG. 2. Phase diagram of a Dresselhaus [110] superconductor.
The solid line represents V 2 = μ2

F. The dashed line represents V 2 =
�2

s .

film. Such a superconducting film is described by the BdG
Hamiltonian

ȞD(k) =
[

ĥD(k) �̂D(k)
−�̂∗

D(−k) −ĥ∗
D(−k)

]
, (47)

ĥD(k) = ε(k)σ0 + βkxσ3 +
∑
j=1,2

Vjσj , (48)

�̂D(k) = i�sσ2, (49)

where β is the strength of the Dresselhaus [110] spin-orbit cou-
pling and�s represents the amplitude of the proximity-induced
s-wave pair potential. The BdG Hamiltonian in Eq. (47)
satisfies

Ť+,1 ȞD(k) Ť −1
+,1 = ȞD(−k), (50)

Č+ ȞD(k) Č−1
+ = −ȞD(−k), (51)

with Č+ = τ1K. The chiral symmetry operator of Ȟ (k) is then
given by

Š = Ť+,1Č+ =
[

0 −iσ1

iσ1 0

]
. (52)

The energy spectra of ȞD(k) are calculated to be

E(k) = ±
√

ε2(k) + β2k2
x + V 2 + �2

s ± 2η(k), (53)

η(k) =
√

ε2(k)β2k2
x + V 2

(
ε2(k) + �2

s

)
, (54)

whereV =
√

V 2
1 + V 2

2 represents the amplitude of the Zeeman
field. A Dresselhaus [110] superconductor has two supercon-
ducting phases in terms of the number of point nodes on the
Fermi surface: four point nodes in phase I and two point nodes
in phase II. The phase diagram is shown in Fig. 2. Phase I is
characterized by the relation �2

s < V 2 < μ2
F + �2

s . The nodal
points are given by (kx,ky) = (0,±k+) and (0,±k−), with

k± =
√

2m
(
μF ± √

V 2 − �2
s

)
h̄

. (55)

On the other hand, phase II is characterized by V 2 > μ2
F + �2

s .
The resulting nodal points are located at (kx,ky) = (0,±k+).
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Now we focus on the flat-band ZESs appearing at the surface
parallel to the y direction. The winding number in Eq. (5) can
be further simplified to [8]

w(ky) = −1

2

∑
kx at m1(k)=0

sgn[∂kx
m1(k)]sgn[m2(k)], (56)

m1(k) = ε2(k) − β2k2
x − V 2 + �2

s , (57)

m2(k) = 2βkx. (58)

The summation is carried out for wave numbers in the x

direction kx that satisfy m1(k) = 0 at a fixed ky . The results
for phase I are given by

w(ky) =
{−1 for k− < |ky | < k+,

0 otherwise, (59)

and those for phase II are given by

w(ky) =
{−1 for 0 � |ky | < k+,

0 otherwise. (60)

The number of the zero-energy states at a dirty surface is
evaluated by the index NZES. By substituting Eqs. (59) and
(60) into Eq. (9), we obtain

NZES =
{

−∑
k−<|ky |<k+ for phase I,

−∑
0�|ky |<k+ for phase II.

(61)

When we treat the momentum ky as a continuous variable, the
discrete sum of ky can be replaced with∑

ky

→ W

2π

∫
dky, (62)

where W represents the length along the surface of the
superconductor. By using Eq. (62), the index NZES in Eq. (61)
is calculated to be

NZES =
{−[(W/π )(k+ − k−)]G for phase I,

−[(W/π )k+]G for phase II,
(63)

where [· · · ]G is the Gauss symbol giving the integer part of the
argument. The indexNZES is nonzero in both phase I and phase
II. Therefore, |NZES|-fold-degenerate ZESs are expected at a
dirty surface of the Dresselhaus [110] superconductor.

C. Helical p-wave superconductor
with the in-plane magnetic field

The second example requires two-dimensional helical p-
wave superconductivity. It is well known that a helical p-wave
superconductor is fully gapped and hosts helical edge states
at its surface reflecting a nonzero Z2 invariant. Here we apply
an in-plane magnetic field [21,22]. The BdG Hamiltonian is
described by

ȞP(k) =
[

ĥP(k) �̂P(k)

−�̂∗
P(−k) −ĥ∗

P(−k)

]
, (64)

ĥP(k) = ε(k)σ0 +
∑
j=1,2

Vjσj , (65)

�̂P(k) = i
�p

kF
[kxσ̂1 + kyσ̂2]σ̂2, (66)

FIG. 3. Phase diagram of a helical p-wave superconductor under
an in-plane Zeeman potential. The solid line represents V 2 = μ2

F. The
dashed line represents V 2 = −(�4

p/4μ2
F) + �2

p .

where �p is the amplitude of the helical p-wave pair potential
and kF = √

2mμF/h̄ is the Fermi wave number. The Zeeman
potential breaks TRS and spin-rotation symmetry simultane-
ously. Nevertheless, the BdG Hamiltonian is classified into
class BDI [47,48], where

Ť+,2 ȞP(k) Ť −1
+,2 = ȞP(−k), (67)

Č+ ȞP(k) Č−1
+ = ȞP(−k) (68)

are satisfied. The chiral symmetry operator is then
given by

Š = Ť+,2Č+ =
[

0 σ1

σ1 0

]
. (69)

The energy eigenvalues of ȞP(k) are calculated to be

E(k) = ±
√

ε2(k) + V 2 + �2
pk2 ± 2ζ (k), (70)

ζ (k) =
√

ε2(k)V 2 + �2
p(V1kx + V2ky)2. (71)

A helical p-wave superconductor under an in-plane mag-
netic field has three superconducting phases. Phase I appears
when the parameters satisfy −(�4

p/4μ2
F) + �2

p < V 2 < μ2
F

and μ2
F > �2

p/2. The four nodal points on the Fermi surface
are given by (k+

x ,k+
y ), (−k+

x ,−k+
y ),(k−

x ,k−
y ), and (−k−

x ,−k−
y ),

with

k±
x = k±

0 cos(θV ), k±
y = k±

0 sin(θV ), (72)

k±
0 =

√
k2

F − 2κ2 ±
√

k4
V − 4κ2

(
k2

F − κ2
)
, (73)

kV =
√

2mV

h̄
, κ = m�p

h̄2kF
, θV = arctan

(
V2

V1

)
. (74)

In phase II, appearing at V 2 > μ2
F, there are two nodal points at

(k+
x ,k+

y ) and (−k+
x ,−k+

y ). Finally, the superconducting states
are topologically trivial in the rest of the parameter region. The
phase diagram is shown in Fig. 3.
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The winding number is calculated as

w(ky) = −1

2

∑
kx at m′

1(k)=0

sgn[∂kx
m′

1(k)]sgn[m′
2(k)], (75)

m′
1(k) = ε2(k) − V 2 + �2

pk2, (76)

m′
2(k) = �p(V1ky − V2kx), (77)

where the summation is carried out for kx satisfying m1(k) = 0
at a fixed ky . The results are given by

w(ky) =
{
sV for |k−

y | < |ky | < |k+
y |,

0 otherwise
(78)

for phase I and

w(ky) =
{
sV for |ky | < |k+

y |,
0 otherwise

(79)

for phase II, with sV = sgn[sin (θV )]. At θV = 0 or π , the
winding number becomes zero for all ky because of k±

y = 0.
When θV is neither zero nor π , the winding number w(ky) can
be either +1 or −1 depending on sV . By substituting Eqs. (78)
and (79) into Eq. (9), we obtain

NZES =
{

sV

∑
|k−

y |<|ky |<|k+
y | for phase I,

sV

∑
0�|ky |<|k+

y | for phase II.
(80)

When we consider ky as a continuous variable, the index NZES

is calculated to be

NZES =
{

sV [(W/π )(|k+
y | − |k−

y |)]G for phase I,

sV [(W/π )|k+
y |]G for phase II.

(81)

The nonzero index NZES in Eqs. (80) and (81) suggests the
existence of the stable |NZES|-fold-degenerate ZESs at a dirty
surface of a helical p-wave superconductor under an in-plane
magnetic field.

IV. CONCLUSION

We studied the symmetry property of a nodal supercon-
ductor that hosts robust flat-band ZESs at its dirty surface.
A nodal superconductor is topologically characterized by the
winding number defined in a one-dimensional partial Brillouin
zone. On the basis of the bulk boundary correspondence, we
show the existence of flat-band ZESs at the clean surface of
a nodal superconductor belonging to any of the symmetry
classes BDI, CII, DIII, and CI. In the presence of potential
disorder, we find that surface flat-band ZESs are robust only
when the nodal superconductor belongs to either class BDI or
class CII. In addition, we investigated two realistic examples
of single-band nodal superconductors that belong to class
BDI: a Dresselhaus [110] superconductor and a helical p-wave
superconductor under a magnetic field. We found that flat-band
ZESs are stable at a dirty surface in both cases. Therefore, such
superconductors are promising candidates for observing the
anomalous proximity effect, which is a drastic phenomenon
caused by flat-band ZESs.
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APPENDIX A: COMMUTATION RELATIONS
OF SYMMETRY OPERATORS

We summarize the commutation relation among the symme-
try operators. The Hamiltonian under consideration preserves
time-reversal symmetry (TRS) and particle-hole symmetry
(PHS) as

T H(k) T −1 = H(−k), T 2 = ηT , ηT = ±1, (A1)

C H(k) C−1 = −H(−k), C2 = ηC, ηC = ±1, (A2)

where T and C are antiunitary operators. By combining TRS
and PHS, the Hamiltonian also preserves chiral symmetry
(CS) as

S H(k)S−1 = −H(k), S = eiα0 T C, S2 = +1, (A3)

where α0 is determined so that S2 = +1 is satisfied. Since
T C C T = ηT ηC , we immediately find T C = ηT ηC T −1C−1.
This leads to the relation

(T C)2 = ηT ηC T C T −1C−1. (A4)

From Eq. (A3), we also obtain

S2 = e2iα0 (T C)2 = +1. (A5)

From Eqs. (A4) and (A5), we find the relation
ηT ηC T CT −1C−1 = e−2iα0 , which can be deformed as

CT = e2iα0 ηT ηC T C. (A6)

By using Eq. (A6), we obtain

ST = eiα0T CT = T e−iα0 (e2iα0 ηT ηC T C)

= ηT ηC T S, (A7)

SC = eiα0T CC = eiα0 (e−2iα0 ηT ηC C T )C
= ηT ηC C S. (A8)

As a consequence, we find the commutation relation

[S,T ] = [S,C] = 0 (A9)

for ηT ηC = +1 and

{S,T } = {S,T } = 0 (A10)

for ηT ηC = −1.

APPENDIX B: ANTIUNITARY OPERATOR Ť+

We explain the expression of the antiunitary operator Ť+
which satisfies Ť 2

+ = +1. By combining Ť− and an unitary
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operator Ř, it is possible to define Ť+ as

Ť+ = Ř Ť− =
[
r̂ T̂− 0

0 r̂∗T̂−

]
, (B1)

Ř =
[
r̂ 0
0 r̂∗

]
, Ť− =

[
T̂− 0
0 T̂−

]
, T̂− = iσ2K, (B2)

where r̂ is a 2 × 2 unitary operator and Ť 2
− = −1. The unitary

operator r̂ must satisfy

(r̂ T̂−)2 = +1, (B3)

so that the relation Ť 2
+ = +1 holds.

A general expression of a 2 × 2 unitary operator is given by

r̂ = eiγ /2r̂0, (B4)

r̂0 = exp

[
−i

φ

2
n · σ

]
=

[
cos

(
φ

2

)
σ0 − i sin

(
φ

2

)
n · σ

]
,

(B5)

where γ and φ are arbitrary real numbers and n is a unit vector
in an arbitrary direction. By substituting Eq. (B4) into Eq. (B3),
we obtain

(r̂ T̂−)2 = r̂ (iσ2) r̂∗ (iσ2)

= −r̂0 σ2 r̂∗
0 σ2

= −r̂2
0

= −
[

cos2

(
φ

2

)
− i sin(φ)n · σ − sin2

(
φ

2

)]

= +1. (B6)

Equation (B6) is satisfied only when φ = ±π . Therefore, the
unitary operator r̂ is restricted to

r̂ = −i eiγ /2n · σ (B7)

to satisfy Ť 2
+ = +1.

APPENDIX C: UNITARY TRANSFORMATION

We consider the BdG Hamiltonian preserving time-reversal
symmetry (TRS) as

Ť+ Ȟ (k) Ť −1
+ = Ȟ (−k), (C1)

Ť+ =
[
r̂(iσ2) 0

0 r̂∗(iσ2)

]
K, (C2)

where the 2 × 2 unitary operator r̂ is given by

r̂ = −ieiγ /2n · σ , (C3)

n = (cos ϕ sin θ, sin ϕ sin θ, cos θ ). (C4)

When we apply a unitary transformation as

Ȟz(k) = Ǔ Ȟ (k) Ǔ †, Ťz(k) = Ǔ Ť+ Ǔ †, (C5)

with

Ǔ =
[
û 0
0 û∗

]
, (C6)

û =
[

eiϕ/2 cos
(

θ
2

)
e−iϕ/2 sin

(
θ
2

)
−eiϕ/2 sin

(
θ
2

)
e−iϕ/2 cos

(
θ
2

)
]
, (C7)

TRS of Ȟz(k) is represented by

Ťz Ȟz(k) Ť −1
z = Ȟz(−k), (C8)

Ťz = Řz Ť− =
[−ieiγ /2σ1 0

0 ie−iγ /2σ1

]
K, (C9)

Řz =
[
r̂z 0

0 r̂∗
z

]
, r̂z = −ieiγ /2σ3. (C10)

The results suggest that a BdG Hamiltonian preserving TRS
in Eq. (C1) is always unitarily equivalent to another BdG
Hamiltonian preserving TRS in Eq. (C8).
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