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Abstract

We study theoretically the effects of ratndom nonmagnetic impurities on the superconducting
transition temperature T, in a two-band superconductor characterized by an equal-time s-wave
interband pairing order parameter. Because of the two-band degree of freedom, it is possible to define
aspin-triplet s-wave pairing order parameter as well as a spin-singlet s-wave order parameter. The
former belongs to odd-band-parity symmetry class, whereas the latter belongs to even-band-parity
symmetry class. In a spin-singlet superconductor, T, is insensitive to the impurity concentration when
we estimate the self-energy due to the random impurity potential within the Born approximation. On
the other hand in a spin-triplet superconductor, T, decreases with the increase of the impurity
concentration. We conclude that Cooper pairs belonging to odd-band-parity symmetry class are
fragile under the random impurity potential even though they have s-wave pairing symmetry.

1. Introduction

Conventional wisdom suggests that the dependence of superconducting transition temperature T on the
concentration of nonmagnetic impurities is closely related to the momentum-symmetry of the pair potential. It
is well known that T, of an s-wave superconductor is insensitive to the impurity concentration [1-3]. On the
other hand, unconventional superconductivity such as p- and d-wave symmetry is fragile in the presence of
impurities. The robustness of an s-wave Cooper pair under potential disorder, however, may be weakened in a
two-band superconductor as discussed in previous literature [4—10]. In these papers, the intraband pairing order
is assumed in each conduction band. Namely, two electrons at the first (second) band form the pair potential A
(A,). Such theoretical model would describe the superconducting states in MgB, [11, 12] and iron pnictides
[13, 14]. The suppression of T, by the interband impurity scatterings is a common conclusion of all the
theoretical studies.

In addition to the intraband pair potentials, the interband (or interorbital) Cooper pairing order has been
discussed in a topological superconductor Cu,Bi,Se; [15-17]. Various types of multiband superconductivity
would be expected in topological-material based superconductors because the band-crossing plays an essential
role in realizing the topologically nontrivial states. Moreover, a possibility of interband/interorbital Cooper
pairing is pointed out also in a heavy fermionic superconductor UPt; [18, 19] and an antiperovskite
superconductor Sr;_,SnO [20]. In addition to the spin-singlet order parameter, the spin—orbit coupling may
make the spin-triplet order parameter possible. Thus, a superconductor with the interband pairing order can be
asuperconductor of a novel class. So far, however, little attention has been paid to physical phenomena unique
to an interband superconductor.

In this paper, we theoretically study the effects of nonmagnetic random impurities on T, in a two-band
superconductor characterized by an equal-time s-wave interband pairing order. The pair potential is defined by
the product of two annihilation operators of an electron. Therefore, the pair potential must be antisymmetric
under the commutation of the two annihilation operators, which is the requirement from the Fermi—Dirac
statistics of electrons. Due to the two-band degree of freedom, a spin-triplet s-wave pair potential is allowed as
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well as a spin-singlet s-wave one. The latter is symmetric under the permutation of the two-band indices (even-
band-parity), whereas the former is antisymmetric (odd-band-parity). The effects of impurity potential are
considered through the self-energy estimated within the Born approximation. The transition temperature is
calculated from the linearized gap equation. We find that T is insensitive to the impurity concentrationin a
spin-singlet s-wave interband superconductor. However, T, in a spin-triplet s-wave case decreases with the
increase of the impurity concentration. We conclude that odd-band parity Cooper pairs are fragile under the
potential disorder even though they belong to s-wave symmetry class.

This paper is organized as follows. In section 2, we explain the normal state that makes possible spatially
uniform interband Cooper pairing orders. The gap equation in the clean limit is derived for both a spin-singlet
superconductor and a spin-triplet superconductor. The effects of random impurities on the superconducting
transition temperature are studied in section 3. The conclusion is given in section 4. Throughout this paper, we
use the units of ks = ¢ = h = 1, where kg is the Boltzmann constant and cis the speed of light.

2. Interband pairing order

The interband s-wave pair potential is defined by
AI,U;Z,U’(r) = g<1/}1,(7(r)7l)2,(7’(r)>> (1)

where w})g (r) (0 (1)) is the creation (annihilation) operator of an electron with spin o (=T or |) at the Ath
conduction band and g > 0 represents the interband attractive interaction. By applying the Fourier
transformation,

1

Uro(r) = = > Uno (ke ©))
v Yvol g
the pair potential becomes
At (1) = =5 57 (415 (K, 1 (K1) ik KT 3)
vvol kk'
= £ S (o R (). ()
\/VOI k

In the second line, we assume the spatially uniform order parameter which is realized at k + k’ = 0. To apply
the weak coupling mean-field theory, the state at k with spin o in the first band and the state at —k with spin o’ in
the second band must be degenerate at the Fermi level. Otherwise interband Cooper pairs have the center-of-
mass momenta and their order parameter oscillates in real space [21-23]. Thus, the interband pair potential
requires a characteristic band structure. In this paper, we consider a normal state described by the Hamiltonian,

77/11,1(")
i ARG
Fix = [[driu] 0, 6], (), 6,0, ¥, (1) w; ! )
o, (1)
. | & E velsy
Fin(r) = L 3 ¢ (rwJ’ ©)
2
(r = @)
2m

where m is the mass of an electron, p is the chemical potential, and v represents the hybridization between the
two conduction bands. Generally speaking, the hybridization potential is a complex number characterized by a
phase 0. We will show that observable values in a superconductor are independent of  although the expression
of the Green function depends on it. Throughout this paper, Pauli matrices in spin, two-band, particle-hole
spaces are denoted by b;, ﬁj, and 7; for j = 1-3, respectively. In addition, &y, py, and 7, are the unit matrices in
these spaces. Since the two bands are identical to each other, the Hamiltonian preserves the symmetry described
by

I Hx(r) T7' = Hy(r), ©)
Ir=7p, T=ixnk, ©

where 7 is the time-reversal operator, K means the complex conjugation. Thus, I represents the combined
operation of the time-reversal and the exchange between the two bands. The normal state Hamiltonian in
equation (6) is simplest model which satisfies equation (8). The conclusions of this paper are insensitive to the
normal state Hamiltonian. We will explain the reasons after reaching the main results. The electronic structure
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given in equation (6) may poses both the interband and the intraband s-wave order parameters in its
superconducting phase. The effects of potential disorder on T, for intraband superconductivity have been
already studied theoretically in previous papers [5-10]. In our model, the amplitudes of two intraband pair
potentials are expected be equal to each other because of the symmetry in the two conduction bands. It has been
well established that T, of intraband superconductivity in such symmetric case is insensitive to the impurity
scatterings [5, 7, 10]. Thus, we focus only on interband superconductivity in this paper.

According to equation (4), we define the spatially uniform superconducting order parameter explicitly as

A= Vg S (1 (K) s (—K)). (10)

vol [k

In the two-band model, it is possible to define two types of interband pairing order: spin-singlet and spin-triplet.
In spin-singlet symmetry, the pair potential in equation (10) is symmetric (antisymmetric) under the
permutation of band (spin) indices

A = =B ST 1) () = £ 5 (w1 (). (n

vol vol k

On the other hand in spin-triplet symmetry, the pair potential in equation (10) is antisymmetric (symmetric)
under the permutation of band (spin) indices

A=2 Zwl,uszﬂ—k»:—f S (0,1 (k) n, (—K)). (12)

vol k vol g

In what follows, we consider opposite-spin-triplet pairing order. The Bogoliubov—de Gennes (BdG)
Hamiltonian in momentum space is represented by

_ Hy(k) A
Hsry(k) =| . - , (13)
—Agr —Hy(—k)
As=Apid, Ar=Aip,d, (14)

where Ag and At represent the spin-singlet pair potential and the spin-triplet one, respectively. Hereafter we fix
the superconducting phase at zero for simplicity. The BAG Hamiltonian can be described in reduced 4 x 4
matrix form
k) vel 0 A
ve ¥ gk —sA 0
0 —sA —£k) —vel|
A 0 —vel? —£(k)

Ho(k) = 15)

by choosing spin of an electron as T and that of a hole as |, where s; = 1 for a spin-triplet superconductor and
s, = —1 for a spin-singlet superconductor. We note in the normal state that £*(—k) = £ (k) holds truein the
presence of time-reversal symmetry.

The Green function is obtained by solving the Gor’kov equation,

liw,1 — Ho(k)1Go(k, iw,) = 1, (16)
Go(k, iw,) Fok, iw,)

Go(k, iw,) = s . s b
=55 Fo(—k, iwn) —Go(—k, iwy)

17)

wherew, = (2n 4+ 1)7 T'is afermionic Matsubara frequency with T being a temperature. The solution of the
normal Green function within the first order of A is represented as

E(€ + 2iw,) — w? — v?

Golk, wy) = ~ — " [Giwn — &)y + v cos B, — vsinbp,], (18)
0
Zy= & 4284wy — vD) + (Wi + vD (19)

where we omit k from £ (k) for simplicity. The results are common in both spin-singlet and spin-triplet cases
because the normal Green function does not include the pair potential in the lowest order of A. The anomalous
Green functions for a spin-singlet superconductor within the first order of A is calculated as

Folk, wy) = ? [2vcosB & po — (wp + v2 + EDPy + 2ivsind € py. (20)
0
The p, component in equation (20) is linked to the pair potential through the gap equation
1 1 A .
A = —gTZ Z 3 Tr[Fo(k, wy) Py (21)
w, 'vol k
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=mgNo T A, (22)
where Ny is the density of states at the Fermi level per spin. We have used the relation

= , (23)
Vvol k ZO 2 |wn|(wﬁ + VZ)

1 5 a+b&  aNpla+ b(w; + vI)]

where a and b are constants. The last equation in equation (22) is identical to the gap equation in the BCS theory.
The hybridization generates the p;and p, components in equation (20) which belong to even-frequency spin-
singlet even-momentum-parity even-band-parity (ESEE) symmetry class.

In the case of a spin-triplet superconductor, the anomalous Green function becomes

A A . . .
Folk, w,) = A [2w, vsin® p, — (w,z1 — v 4 )ip, — 2iw, v cos Op,]. (24)
0
The p, component is linked to the pair potential. The gap equation is represented by equation (21) with
replacing p, by —ip,. The results of the gap equation in the linear regime,

A Jw,|

A:ﬂ'gN()TZ 2

(25)
Wy Wy + v?

deviate from equation (22). In equation (24), the hybridization generates the p, and p; components which
belong to odd-frequency spin-triplet even-momentum-parity even-band-parity (OTEE) symmetry class
[24-27]. We attribute this suppression of T, to the presence of odd-frequency pairs which typically have a
detrimental effect on thermodynamic stability [25, 28, 29]. Atv = 0, the gap equation in equation (25) is
identical to equation (22) because the odd-frequency pairing correlations are absent.

3. Effects of impurities

Let us consider the nonmagnetic random impurities described by
1 € o 0
—i0
. 1 0 0
Himp = Vimp(r)| © A
P o —1 —e
0 0 —e -1

(26)

= Vimp(r)%S ,b() + Vimp(r)A: (27)
A =% p,cosf — p,sinf. (28)

The first and the second terms in equation (27) cause the intraband and the interband scatterings, respectively.
We assume that the impurity potential satisfies the following properties,

‘/imp(r) =0, (29)
Vimp(r) \/imp(r/) = nimpvi%npé‘(r - 1’/), (30)

where ™ means the ensemble average, #1;,,,, is the impurity concentration, and v;,,, represents the strength of the
impurity potential. We also assume that the attractive electron—electron interactions are insensitive to the
impurity potentials [3]. To discuss the effects of impurities with equations (29) and (30), Hamiltonian in real
space is necessary. The impurity Hamiltonian in equation (27) is described in real space as well as the kinetic part
and the hybridization in equations (5) and (6). In the real space representation with the basis shown in

equation (5), the random potential Vi, () should be independent of band indices. The phase of random
potential generating the interband scattering must be equal to that of the hybridization. Otherwise, time-reversal
symmetry is broken. The effects of the impurity scatterings are taken into account through the self-energy
estimated within the Born approximation. The Green function in the presence of the impurity potential is
calculated within the second order perturbation expansion with respect to the impurity potential,

G(r—r', wy) ~ Go(r — 1, wy) + fdrléo(r — 11, wy) Himp(r) G(ry — 1/, wy)

+ f drl f er Go(f - T wn) Himp(rl) GO(rl — 1 wn) Himp(rZ)
X G(r, — 1, wy), (31)

where 0 in the subscript indicates unperturbed Green function. By considering equations (29) and (30), we
obtain
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G(r — 1, wy) = Go(r — 1/, wy)

i Vg [ ARGolr = 11y ) B Go(0, ) s Gl — 7', @)
+ Timp Vimp f dr\Go(r — 11, wa) A Go(0, wy) A G(ry — 1/, wy). (32)

The second and the third terms are derived from the intraband impurity scatterings and the interband impurity
scatterings, respectively. By applying the Fourier transformation, the Green function becomes
Gk, wy) = Go(k, wy) + Gok, wy) Simp(wn) Gk, wn), (33)
2imp = i:intra + zvjinter) (34)

where ;s and Sinee are the self-energy due to the intraband impurity scatterings and that of interband
impurity scatterings, respectively. The details of the derivation are given in appendix. In the Born
approximation, the self-energies are represented as

- R 1 - R
Eintra = nimpvi%nPTS Po—— Z GO(k; wn)TZv Po> (35)
Vvol k
. 1 . .
Dinter = nimpvi%np A Z GO(k> wn) A. (36)
vvol k

The total self-energy is calculated as

. b 5
z:imp = Cj* f* 4 (37)
—SXp —Xg
with
S = mepvifnp[(g()) Po + cos0 Sg py — sin0 Sg p,], (38)
S = —2MimpVimplcos O Sp py + (f) py + isind Sy py], (39)
Sg = (g) cosf — (g,) sin¥, (40)
Sr = (fy) cos@ — i(f;)sin6. (41)
Here the Green function after carrying out the summation of k is indicated by (- --) as,
R 1 N
(Go(wn) = — > Golk, wy) = > (g,) D, (42)
‘/vol k v=0
R 1 — 4 P
(Folwn)) = v 7 Folky wa) = > (F) b (43)
vol v=0

where p, with v = 0 — 3 are the Pauli matrices in band space. The Gor’kov equation in the presence of
impurities is expressed by

liw,1 — Ho(k) — Simpl G(k, iw,) = 1, (44)

Gk, iw,) Fk, iwy)

G(k) iwn) - A Ak )
_55]: (_k) iwn) _g (_k) iwn)

(45)
equation (37) with equations (38)—(43) give the general expression self-energy due to impurity scattering within
the Born approximation. The properties in the normal state and those in the superconducting state are mainly
embedded in the normal Green function in equation (42) and in the anomalous Green function in equation (43),
respectively. Therefore the results can be applied to various two-band superconductors. Here we briefly mention
a general feature of the self-energy. In equation (39), (f,) , is present but ( f,) p, is absent in S because of the
anticommutation relations among p,. This feature is independent of the normal state Hamiltonian. As shown in
the remaining part of this section, the effects of random nonmagnetic impurity scatterings on the transition
temperature T, depends on spin symmetry of the pair potential. The difference comes from such general
property of $r. We will explain details of the difference in the following subsections.

3.1. Spin-singlet
The normal part of the self-energy is calculated as
_ iwn N

S = (46)

Po>
27—imp|wn|
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1
—— =2 X 27Ny fimp Vimps (47)

Timp
where T, represents the life time due to impurity scatterings. The factor 2 in equation (47) stems from the two
contributions of different scattering processes: the intraband impurity scatterings and the interband impurity
scatterings. In a spin-singlet superconductor, the self-energy of the anomalous part results in
o A

Xp p (48)

=T P
27—implwn|

because equation (39) includes  f,) p,. As a consequence, the Gor’kov equation in the presence of impurities
becomes,

Wy — Opy— V —Ap . .
(0 = Py Gk i) =1, (49)
—Ap, i@y + py+ V
V =wvcosf p, — vsinf p,, (50)
1

Du=wan, A=An, n,=1+ (51)

27—implwn| .

The self-energy renormalizes the frequency and the pair potential exactly in the same manner as w,, — @, and
A — A. Asaconsequence, the anomalous Green function can be calculated as

F(k, wn) = Folk, @u)la-5, (52)
where F, on the right hand side is shown in equation (20). The gap equation in the presence of impurities is
given by equation (21) with Fy(k, w,) — F(k, w,). The resulting gap equation
SN TY S (53)
|&nl

e

A = ’ﬂ'gN()TZ

remains unchanged from that in the clean limit. Thus, the impurity scatterings do not change T in a spin-singlet
superconductor. The argument here is exactly the same as that in [ 1] for a single-band spin-singlet s-wave
superconductor and is consistent with the Anderson’s theorem [3].

3.2. Spin-triplet
In a spin-triplet superconductor, the Green function in equation (43) with equation (24) is calculated as
A . N, o7 A

(Fo) = m[u)n v sinf p, — iwf,ﬁz — iwy, v cos b P,]. (54)

By substituting the results into equation (39), we find

iF == 0, (55)
because equation (39) does not include ( f,) p,. The resulting Gor’kov equation becomes,
i@, — Oy — V —Aip . -
( 5_)’)0 . P2 o |Gk, iw,) = 1. (56)
Aip, (i@ + Py + V

The impurity self-energy renormalizes the frequency as w, — &, butleaves the pair potential as it is. Thus, the
anomalous Green function in the presence of impurities becomes

Fk, wy) = Fok, @), (57)

where £, on the right hand side is given in equation (24). The gap equation (21) with Folk, wy) — F(k, w,)
and p; — —ip, resultsin

A (|wy + 1/27m
A gy 15 A0+ 12)

) (58)
o (lwal + 1/27imp)* + v2

The results suggest that the impurity scatterings decrease T for a spin-triplet superconductor.

In figure 1, we show T, of a spin-triplet interband superconductor as a function of §, /¢, where Tj is the
transition temperature in the clean limit in the absence of the hybridization (i.e., v = 0), §, = vi/27 T is the
coherencelength, vy = kp/m is the Fermi velocity,and # = vg Ty is the mean free path due to the impurity
scatterings. We numerically solve equation (58) with w./27T, = 10°. The results show that T decreases with the
increase of §, /¢ In the clean limit, T, decreases with the increase of the hybridization vas indicated in
equation (25). The superconducting phase vanishes when the amplitude of hybridization goes over its critical
value of v, ~ 2nTy/C, where C = 4e”*and g = 0.577 is the Euler’s constant. In the presence of impurities, the
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Figure 1. The transition temperature T, versus &/¢. The impurity concentration is proportional to §,/Z, where & is the coherence
length and Z is the elastic mean free path. In a spin-singlet case, T, is independent of {,/# within the Born approximation as shown
with abroken line, which is consistent with the Anderson’s theorem. The results for a spin-triplet interband superconductor at

v = 0 areidentical to those for a single-band unconventional superconductor characterized such symmetry as spin-singlet d-wave or
spin-triplet p-wave.

interband spin-triplet superconductivity vanishes at §,/¢ ~ 2/C = 0.281atv = 0,&,/¢ ~ 0.244atv = 0.5v,,
and §,/¢ ~ 0.168atv = 0.8 v..

The suppression of T, by impurities in a spin-triplet case can be interpreted as follows. The interband
impurity scatterings hybridize the electronic states in the two bands and average the pair potential over the two-
band degree of freedom. As shown in equation (15), the sign of pair potential in one sector is opposite to that in
the other where we set s, = 1 for a triplet superconductor. Thus, the pair potentials in the two sectors cancel each
other when the interband impurity potential hybridizes the two sectors. As a result, the anomalous part of the
self-energy vanishes as shown in equation (55). Namely, the impurity self-energy does not renormalize the pair
potential, which leads to the suppression of T,. The absence of ( f,) p, in equation (39) can be understood by such
physical interpretation. It would be worth mentioning that the gap equation in equation (58) with v = 01is
identical to that for a single-band unconventional superconductor under the potential disorder. In a p-wave or
d-wave superconductor, the anomalous Green function (Fo(w,)) vanishes due to their unconventional pairing
symmetries, which leads to Xz = 0 and the suppression of T.. We conclude that the odd-band-parity pairing
correlation is fragile under impurity potential even though it belongs to s-wave momentum parity symmetry
class. Therefore, a clean enough sample is necessary to observe spin-triplet interband superconductivity in
experiments.

Mathematically, the robustness of a spin-singlet s-wave interband superconducting state is described by the
anomalous part of the self-energy S = A / 2Timp|w,| in equation (48). The suppression of T,.in a spin-triplet
superconductor is described by S = 0inequation (55). As we already explained below equation (44), these
features are derived from the general expression of the self-energy in equation (39) and are independent of the
normal state Hamiltonian. Therefore, our conclusions are valid for various interband superconductors.

4, Conclusion

We studied the effects of random nonmagnetic impurities on the superconducting transition temperature T,ina
two-band superconductor characterized by an equal-time s-wave interband pair potential. Due to the two-band
degree of freedom, both spin-singlet and spin-triplet pairing order parameters satisfy the requirement from the
Fermi-Dirac statistics of electrons. The effects of impurity potential is considered through the self-energy
obtained within the Born approximation. The transition temperature is calculated from the linearized gap
equation. In a spin-singlet superconductor, the random potential does not change T.. On the other handina
spin-triplet superconductor, T, decreases with the increase of the impurity concentration. We conclude that
Cooper pairs belonging to odd-band-parity symmetry class are fragile under the random impurity potential
even though they belong to s-wave momentum symmetry.
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Appendix

We show the details of the derivation of the impurity self-energy in equation (37). The Fourier representation of
the Green function is defined by

Gir—r,w,) = !

> Gk, wy)ekr=r), (A.1)
vol [k

The Green function G (0, w,) in equation (32) is obtained by putting r = ’. When we substitute equation (A.1)

into (32) and carrying out the integration over r, we find equation (33). Since Gy (k, w,) satisfies equation (16),

we obtain equation (44) with the self-energy in equation (34). To proceed the calculation, the Green function

integrated over the momenta is necessary. The general expression of them are defined by equations (42) and

(43). By substituting equations (42) and (43) into (35) and (36), we find

- 3 <gl/>ﬁlj _<fl/>ﬁl/

Yintra = Him Vifn N n > (A.2)
t po 2:‘6 sLf)pI —1g,) B
2‘ = n Vz i A* <g1/> ﬁl/ AA* _A* <f;/> ﬁu AA+ (A 3)
inter — "imp Yim ~ n ~ N . ~ > .
IS s ALL ) AL —ALL(g,) p 1AL
Ay = p,cos® £ p,siné. (A.4)

Here we focus on the anomalous part of the self-energy because its general expression is important to justify the
main conclusion. We find the relation,

AN )b, Ar= (£)py — (£ by + (cos20(fy) — isin20(£;))

— (cos20(f;) — isin26 (f,)) ps. (A.5)

The mostimportant feature is that ( f,) p, component changes its sign due to the anticomutation relations
among ;. Together with the intraband contribution °, ( f,) f,» we obtain the general expression of the
anomalous part in equation (39).
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