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Abstract
We study theoretically the effects of randomnonmagnetic impurities on the superconducting
transition temperatureTc in a two-band superconductor characterized by an equal-time s-wave
interband pairing order parameter. Because of the two-band degree of freedom, it is possible to define
a spin-triplet s-wave pairing order parameter as well as a spin-singlet s-wave order parameter. The
former belongs to odd-band-parity symmetry class, whereas the latter belongs to even-band-parity
symmetry class. In a spin-singlet superconductor,Tc is insensitive to the impurity concentrationwhen
we estimate the self-energy due to the random impurity potential within the Born approximation. On
the other hand in a spin-triplet superconductor,Tc decreases with the increase of the impurity
concentration.We conclude that Cooper pairs belonging to odd-band-parity symmetry class are
fragile under the random impurity potential even though they have s-wave pairing symmetry.

1. Introduction

Conventional wisdom suggests that the dependence of superconducting transition temperatureTc on the
concentration of nonmagnetic impurities is closely related to themomentum-symmetry of the pair potential. It
is well known thatTc of an s-wave superconductor is insensitive to the impurity concentration [1–3]. On the
other hand, unconventional superconductivity such as p- and d-wave symmetry is fragile in the presence of
impurities. The robustness of an s-waveCooper pair under potential disorder, however,may beweakened in a
two-band superconductor as discussed in previous literature [4–10]. In these papers, the intraband pairing order
is assumed in each conduction band.Namely, two electrons at the first (second) band form the pair potentialΔ1

(Δ2). Such theoreticalmodel would describe the superconducting states inMgB2 [11, 12] and iron pnictides
[13, 14]. The suppression ofTc by the interband impurity scatterings is a common conclusion of all the
theoretical studies.

In addition to the intraband pair potentials, the interband (or interorbital)Cooper pairing order has been
discussed in a topological superconductor CuxBi2Se3 [15–17]. Various types ofmultiband superconductivity
would be expected in topological-material based superconductors because the band-crossing plays an essential
role in realizing the topologically nontrivial states.Moreover, a possibility of interband/interorbital Cooper
pairing is pointed out also in a heavy fermionic superconductorUPt3 [18, 19] and an antiperovskite
superconductor Sr3−xSnO [20]. In addition to the spin-singlet order parameter, the spin–orbit couplingmay
make the spin-triplet order parameter possible. Thus, a superconductor with the interband pairing order can be
a superconductor of a novel class. So far, however, little attention has been paid to physical phenomena unique
to an interband superconductor.

In this paper, we theoretically study the effects of nonmagnetic random impurities onTc in a two-band
superconductor characterized by an equal-time s-wave interband pairing order. The pair potential is defined by
the product of two annihilation operators of an electron. Therefore, the pair potentialmust be antisymmetric
under the commutation of the two annihilation operators, which is the requirement from the Fermi–Dirac
statistics of electrons. Due to the two-band degree of freedom, a spin-triplet s-wave pair potential is allowed as
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well as a spin-singlet s-wave one. The latter is symmetric under the permutation of the two-band indices (even-
band-parity), whereas the former is antisymmetric (odd-band-parity). The effects of impurity potential are
considered through the self-energy estimatedwithin the Born approximation. The transition temperature is
calculated from the linearized gap equation.Wefind thatTc is insensitive to the impurity concentration in a
spin-singlet s-wave interband superconductor. However,Tc in a spin-triplet s-wave case decreases with the
increase of the impurity concentration.We conclude that odd-band parity Cooper pairs are fragile under the
potential disorder even though they belong to s-wave symmetry class.

This paper is organized as follows. In section 2, we explain the normal state thatmakes possible spatially
uniform interbandCooper pairing orders. The gap equation in the clean limit is derived for both a spin-singlet
superconductor and a spin-triplet superconductor. The effects of random impurities on the superconducting
transition temperature are studied in section 3. The conclusion is given in section 4. Throughout this paper, we
use the units of k c 1B = = = , where kB is the Boltzmann constant and c is the speed of light.

2. Interband pairing order

The interband s-wave pair potential is defined by

r r rg , 11, ;2, 1, 2,y yD = á ñs s s s¢ ¢( ) ( ) ( ) ( )

where r,yl s ( )† ( r,yl s ( )) is the creation (annihilation) operator of an electronwith spinσ (=or ) at theλth
conduction band and g>0 represents the interband attractive interaction. By applying the Fourier
transformation,
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In the second line, we assume the spatially uniformorder parameter which is realized at k k 0+ ¢ = . To apply
theweak couplingmean-field theory, the state at k with spinσ in thefirst band and the state at k- with spinσ′ in
the second bandmust be degenerate at the Fermi level. Otherwise interbandCooper pairs have the center-of-
massmomenta and their order parameter oscillates in real space [21–23]. Thus, the interband pair potential
requires a characteristic band structure. In this paper, we consider a normal state described by theHamiltonian,
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wherem is themass of an electron,μ is the chemical potential, and v represents the hybridization between the
two conduction bands. Generally speaking, the hybridization potential is a complex number characterized by a
phase θ.Wewill show that observable values in a superconductor are independent of θ although the expression
of theGreen function depends on it. Throughout this paper, Paulimatrices in spin, two-band, particle-hole
spaces are denoted by jŝ , jr̂ , and jt̂ for j=1–3, respectively. In addition, 0ŝ , 0r̂ , and 0t̂ are the unitmatrices in
these spaces. Since the two bands are identical to each other, theHamiltonian preserves the symmetry described
by

r rH H , 8N
1

NG G =-   ( ) ( ) ( )

, i , 91 2  r sG = = ˆ ˆ ( )

where  is the time-reversal operator, means the complex conjugation. Thus,Γ represents the combined
operation of the time-reversal and the exchange between the two bands. The normal stateHamiltonian in
equation (6) is simplestmodel which satisfies equation (8). The conclusions of this paper are insensitive to the
normal stateHamiltonian.Wewill explain the reasons after reaching themain results. The electronic structure
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given in equation (6)may poses both the interband and the intraband s-wave order parameters in its
superconducting phase. The effects of potential disorder onTc for intraband superconductivity have been
already studied theoretically in previous papers [5–10]. In ourmodel, the amplitudes of two intraband pair
potentials are expected be equal to each other because of the symmetry in the two conduction bands. It has been
well established thatTc of intraband superconductivity in such symmetric case is insensitive to the impurity
scatterings [5, 7, 10]. Thus, we focus only on interband superconductivity in this paper.

According to equation (4), we define the spatially uniform superconducting order parameter explicitly as

k k
g

V
. 10

kvol
1, 2,å y yD º á - ñ ( ) ( ) ( )

In the two-bandmodel, it is possible to define two types of interband pairing order: spin-singlet and spin-triplet.
In spin-singlet symmetry, the pair potential in equation (10) is symmetric (antisymmetric) under the
permutation of band (spin) indices
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On the other hand in spin-triplet symmetry, the pair potential in equation (10) is antisymmetric (symmetric)
under the permutation of band (spin) indices
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Inwhat follows, we consider opposite-spin-triplet pairing order. The Bogoliubov–deGennes (BdG)
Hamiltonian inmomentum space is represented by
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where SD and TD represent the spin-singlet pair potential and the spin-triplet one, respectively. Hereafter wefix
the superconducting phase at zero for simplicity. The BdGHamiltonian can be described in reduced 4×4
matrix form
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by choosing spin of an electron as  and that of a hole as , where ss=1 for a spin-triplet superconductor and
ss=−1 for a spin-singlet superconductor.We note in the normal state that k k*x x- =( ) ( ) holds true in the
presence of time-reversal symmetry.

TheGreen function is obtained by solving theGor’kov equation,
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whereωn=(2n+1)πT is a fermionicMatsubara frequencywithT being a temperature. The solution of the
normalGreen functionwithin thefirst order ofΔ is represented as

k
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wherewe omit k from kx ( ) for simplicity. The results are common in both spin-singlet and spin-triplet cases
because the normalGreen function does not include the pair potential in the lowest order ofΔ. The anomalous
Green functions for a spin-singlet superconductor within the first order ofΔ is calculated as
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The 1r̂ component in equation (20) is linked to the pair potential through the gap equation
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whereN0 is the density of states at the Fermi level per spin.We have used the relation
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where a and b are constants. The last equation in equation (22) is identical to the gap equation in the BCS theory.
The hybridization generates the 0r̂ and 3r̂ components in equation (20)which belong to even-frequency spin-
singlet even-momentum-parity even-band-parity (ESEE) symmetry class.

In the case of a spin-triplet superconductor, the anomalousGreen function becomes
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The 2r̂ component is linked to the pair potential. The gap equation is represented by equation (21)with
replacing 1r̂ by i 2r- ˆ . The results of the gap equation in the linear regime,
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deviate from equation (22). In equation (24), the hybridization generates the 0r̂ and 3r̂ components which
belong to odd-frequency spin-triplet even-momentum-parity even-band-parity (OTEE) symmetry class
[24–27].We attribute this suppression ofTc to the presence of odd-frequency pairs which typically have a
detrimental effect on thermodynamic stability [25, 28, 29]. At v=0, the gap equation in equation (25) is
identical to equation (22) because the odd-frequency pairing correlations are absent.

3. Effects of impurities

Let us consider the nonmagnetic random impurities described by
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Thefirst and the second terms in equation (27) cause the intraband and the interband scatterings, respectively.
We assume that the impurity potential satisfies the following properties,

rV 0, 29imp =( ) ( )
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wheremeans the ensemble average, nimp is the impurity concentration, and vimp represents the strength of the
impurity potential.We also assume that the attractive electron–electron interactions are insensitive to the
impurity potentials [3]. To discuss the effects of impurities with equations (29) and (30), Hamiltonian in real
space is necessary. The impurityHamiltonian in equation (27) is described in real space aswell as the kinetic part
and the hybridization in equations (5) and (6). In the real space representationwith the basis shown in
equation (5), the randompotential rVimp( ) should be independent of band indices. The phase of random
potential generating the interband scatteringmust be equal to that of the hybridization. Otherwise, time-reversal
symmetry is broken. The effects of the impurity scatterings are taken into account through the self-energy
estimatedwithin the Born approximation. TheGreen function in the presence of the impurity potential is
calculatedwithin the second order perturbation expansionwith respect to the impurity potential,
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where 0 in the subscript indicates unperturbedGreen function. By considering equations (29) and (30), we
obtain
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The second and the third terms are derived from the intraband impurity scatterings and the interband impurity
scatterings, respectively. By applying the Fourier transformation, theGreen function becomes
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where intraS and interS are the self-energy due to the intraband impurity scatterings and that of interband
impurity scatterings, respectively. The details of the derivation are given in appendix. In the Born
approximation, the self-energies are represented as
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The total self-energy is calculated as
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where rnˆ with 0 3n = - are the Paulimatrices in band space. TheGor’kov equation in the presence of
impurities is expressed by
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equation (37)with equations (38)–(43) give the general expression self-energy due to impurity scatteringwithin
the Born approximation. The properties in the normal state and those in the superconducting state aremainly
embedded in the normal Green function in equation (42) and in the anomalousGreen function in equation (43),
respectively. Therefore the results can be applied to various two-band superconductors. Herewe brieflymention
a general feature of the self-energy. In equation (39), f1 1rá ñ ˆ is present but f2 2rá ñ ˆ is absent in FŜ because of the
anticommutation relations among rnˆ . This feature is independent of the normal stateHamiltonian. As shown in
the remaining part of this section, the effects of randomnonmagnetic impurity scatterings on the transition
temperatureTcdepends on spin symmetry of the pair potential. The difference comes from such general
property of FŜ .Wewill explain details of the difference in the following subsections.

3.1. Spin-singlet
The normal part of the self-energy is calculated as
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where τimp represents the life time due to impurity scatterings. The factor 2 in equation (47) stems from the two
contributions of different scattering processes: the intraband impurity scatterings and the interband impurity
scatterings. In a spin-singlet superconductor, the self-energy of the anomalous part results in
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The self-energy renormalizes the frequency and the pair potential exactly in the samemanner as n nw w ˜ and
D  D̃. As a consequence, the anomalousGreen function can be calculated as
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where 0̂ on the right hand side is shown in equation (20). The gap equation in the presence of impurities is
given by equation (21)with k k, ,n n0 w wˆ ( ) ˆ ( ). The resulting gap equation
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remains unchanged from that in the clean limit. Thus, the impurity scatterings do not changeTc in a spin-singlet
superconductor. The argument here is exactly the same as that in [1] for a single-band spin-singlet s-wave
superconductor and is consistent with theAndersonʼs theorem [3].

3.2. Spin-triplet
In a spin-triplet superconductor, theGreen function in equation (43)with equation (24) is calculated as
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2 3

p
w w

w q r w r w q rá ñ =
D
+

- -ˆ
∣ ∣( )

[ ˆ ˆ ˆ ] ( )

By substituting the results into equation (39), wefind

0, 55FS =ˆ ( )

because equation (39) does not include f2 2rá ñ ˆ . The resultingGor’kov equation becomes,

k
V

V
G

i i

i i
, i 1. 56

n

n
n

0 2

2 0











*

w x r r

r w x r
w

- - -D

D + +
= ( ˜ ) ˆ ˆ ˆ

ˆ ( ˜ ) ˆ ˆ
( ) ( )

The impurity self-energy renormalizes the frequency as n nw w ˜ but leaves the pair potential as it is. Thus, the
anomalousGreen function in the presence of impurities becomes

k k, , , 57n n0 w w=ˆ ( ) ˆ ( ˜ ) ( )
where 0̂ on the right hand side is given in equation (24). The gap equation (21)with k k, ,n n0 w wˆ ( ) ˆ ( )
and i1 2r r -ˆ ˆ results in

gN T
v

1 2

1 2
. 58

n

n
0

imp

imp
2 2

n

åp
w t

w t
D =

D +

+ +w

(∣ ∣ )
(∣ ∣ )

( )

The results suggest that the impurity scatterings decreaseTc for a spin-triplet superconductor.
Infigure 1, we showTc of a spin-triplet interband superconductor as a function of 0x ℓ, whereT0 is the

transition temperature in the clean limit in the absence of the hybridization (i.e., v=0), ξ0=vF/2πT0 is the
coherence length, vF=kF/m is the Fermi velocity, and vF impt=ℓ is themean free path due to the impurity
scatterings.We numerically solve equation (58)withωc/2πT0=103. The results show thatTc decreases with the
increase of 0x ℓ. In the clean limit,Tcdecreases with the increase of the hybridization v as indicated in
equation (25). The superconducting phase vanishes when the amplitude of hybridization goes over its critical
value of vc≈2πT0/C, whereC=4eγE and γE=0.577 is the Eulerʼs constant. In the presence of impurities, the
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interband spin-triplet superconductivity vanishes at ξ0/ℓ≈2/C=0.281 at v=0, ξ0/ℓ≈0.244 at v=0.5 vc,
and ξ0/ℓ≈0.168 at v=0.8 vc.

The suppression ofTc by impurities in a spin-triplet case can be interpreted as follows. The interband
impurity scatterings hybridize the electronic states in the two bands and average the pair potential over the two-
band degree of freedom. As shown in equation (15), the sign of pair potential in one sector is opposite to that in
the otherwherewe set ss=1 for a triplet superconductor. Thus, the pair potentials in the two sectors cancel each
otherwhen the interband impurity potential hybridizes the two sectors. As a result, the anomalous part of the
self-energy vanishes as shown in equation (55). Namely, the impurity self-energy does not renormalize the pair
potential, which leads to the suppression ofTc. The absence of f2 2rá ñ ˆ in equation (39) can be understood by such
physical interpretation. It would beworthmentioning that the gap equation in equation (58)with v=0 is
identical to that for a single-band unconventional superconductor under the potential disorder. In a p-wave or
d-wave superconductor, the anomalousGreen function n0 wá ñ( ) vanishes due to their unconventional pairing
symmetries, which leads toΣF=0 and the suppression ofTc.We conclude that the odd-band-parity pairing
correlation is fragile under impurity potential even though it belongs to s-wavemomentumparity symmetry
class. Therefore, a clean enough sample is necessary to observe spin-triplet interband superconductivity in
experiments.

Mathematically, the robustness of a spin-singlet s-wave interband superconducting state is described by the

anomalous part of the self-energy 2F nimpt wS = Dˆ ˆ ∣ ∣ in equation (48). The suppression ofTc in a spin-triplet

superconductor is described by 0FS =ˆ in equation (55). Aswe already explained below equation (44), these
features are derived from the general expression of the self-energy in equation (39) and are independent of the
normal stateHamiltonian. Therefore, our conclusions are valid for various interband superconductors.

4. Conclusion

We studied the effects of randomnonmagnetic impurities on the superconducting transition temperatureTc in a
two-band superconductor characterized by an equal-time s-wave interband pair potential. Due to the two-band
degree of freedom, both spin-singlet and spin-triplet pairing order parameters satisfy the requirement from the
Fermi–Dirac statistics of electrons. The effects of impurity potential is considered through the self-energy
obtainedwithin the Born approximation. The transition temperature is calculated from the linearized gap
equation. In a spin-singlet superconductor, the randompotential does not changeTc. On the other hand in a
spin-triplet superconductor,Tc decreases with the increase of the impurity concentration.We conclude that
Cooper pairs belonging to odd-band-parity symmetry class are fragile under the random impurity potential
even though they belong to s-wavemomentum symmetry.

Figure 1.The transition temperatureTc versus ξ0/ℓ. The impurity concentration is proportional to ξ0/ℓ, where ξ0 is the coherence
length andℓ is the elasticmean free path. In a spin-singlet case,Tc is independent of ξ0/ℓwithin the Born approximation as shown
with a broken line, which is consistent with the Andersonʼs theorem. The results for a spin-triplet interband superconductor at
v=0 are identical to those for a single-band unconventional superconductor characterized such symmetry as spin-singlet d-wave or
spin-triplet p-wave.
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Appendix

We show the details of the derivation of the impurity self-energy in equation (37). The Fourier representation of
theGreen function is defined by

r r kG
V

G,
1

, e . A.1
k

k r r
n n

vol

iåw w- ¢ = - ¢ ( ) ( ) ( )·( )

TheGreen function G 0, n0 w ( ) in equation (32) is obtained by putting r r= ¢.Whenwe substitute equation (A.1)
into (32) and carrying out the integration over r1, wefind equation (33). Since kG , n0 w ( ) satisfies equation (16),
we obtain equation (44)with the self-energy in equation (34). To proceed the calculation, theGreen function
integrated over themomenta is necessary. The general expression of them are defined by equations (42) and
(43). By substituting equations (42) and (43) into (35) and (36), we find
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A cos sin . A.41 2r q r q= ˆ ˆ ˆ ( )

Herewe focus on the anomalous part of the self-energy because its general expression is important to justify the
main conclusion.Wefind the relation,

A f A f f f f

f f

cos2 isin2

cos2 isin2 . A.5

1 1 2 2 0 3 0

3 0 3

å r r r q q r

q q r

á ñ = á ñ - á ñ + á ñ - á ñ
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n
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Themost important feature is that f2 2rá ñ ˆ component changes its sign due to the anticomutation relations
among jr̂ . Togetherwith the intraband contribution f rå á ñn n nˆ , we obtain the general expression of the
anomalous part in equation (39).
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