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Tunable-ϕ Josephson junction with a quantum anomalous Hall insulator
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We theoretically study the Josephson current in a superconductor/quantum anomalous Hall insula-
tor/superconductor junction by using the lattice Green function technique. When an in-plane external Zeeman
field is applied to the quantum anomalous Hall insulator, the Josephson current J flows without a phase
difference across the junction θ . The phase shift ϕ appearing in the current-phase relationship J ∝ sin(θ − ϕ) is
proportional to the amplitude of Zeeman fields and depends on the direction of Zeeman fields. A phenomenological
analysis of the Andreev reflection processes explains the physical origin of ϕ. In a quantum anomalous Hall
insulator, time-reversal symmetry and mirror-reflection symmetry are broken simultaneously. However, magnetic
mirror-reflection symmetry is preserved. Such characteristic symmetry properties enable us to have a tunable ϕ

junction with a quantum Hall insulator.
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I. INTRODUCTION

The Josephson effect is a macroscopic quantum phe-
nomenon caused by the spatial fluctuations of a supercon-
ducting phase [1]. When two superconductors (S) sandwich
a material X, the Josephson current J flows as a function
of the phase difference across the junction θ . The current-
phase (J − θ ) relationship (CPR) reflects well the electronic
properties of X [2,3]. When X is an insulator, the CPR is
sinusoidal J = J0 sin θ with J0 > 0 being the critical current
[4]. Such a junction is called 0 junction because the junction
energy is minimum at the zero phase difference. A π junction
in which the energy is minimum at θ = ±π can be realized
when we choose a ferromagnet as X [5,6]. The spin-singlet
pairing correlation spatially oscillates and changes its sign
under the exchange potential. Therefore, such a Josephson
junction undergoes the transition between the 0 state and the
π state alternatively as the variation of the thickness in the
ferromagnet [7,8]. In the view of the device application, a
π junction plays a crucial role in constructing a flux qubit.
Choosing an insulating ferromagnet as X makes a device with
a long coherence time possible [9].

The energy of a Josephson junction some of the time takes
its minimum at a phase difference ϕ, which is neither 0 nor π .
The CPR in such ϕ junction J = J0 sin(θ − ϕ) suggests that
the current flows even at the zero phase difference [10–12].
Breaking time-reversal symmetry in X is a necessary condition
to realize the ϕ junction. The value of ϕ is determined by
characteristic electronic structures in X. So far, the possibility
of ϕ junction has been discussed theoretically in various
Josephson junctions with X being multilayered ferromag-
nets [13,14], quantum point contacts [15], quantum dots
[16–18], nanowires [11,19], topological materials [20,21],
and a ferromagnet without inversion symmetry [22]. In
experiments, on the other hand, the realization of a ϕ junction
has been reported only in a Josephson junction with a nanowire
quantum dot [23]. At present, it is not easy to control the phase
shift ϕ after fabricating Josephson junctions.

In this paper, we study the Josephson effect in super-
conductor/quantum anomalous Hall insulator/superconductor

(S/QAHI/S) junctions theoretically. A QAHI is a topologically
nontrivial material in two dimensions and breaks time-reversal
symmetry by its spontaneous magnetization. In experiments,
doping of magnetic elements such as Cr [24–27] and V [28]
onto a thin film of a topological insulator (Bi,Sb)2Te3 enables
QAHIs. According to the bulk-boundary correspondence,
nonzero Chern number implies the presence of chiral edge
states. We will discuss characteristic features in the Josephson
current flowing through such a chiral edge channel. The
Josephson current is calculated numerically by using the
lattice Green function method. When we apply an in-plane
external Zeeman field to QAHI, the junction becomes a ϕ

junction. Moreover, the value of ϕ is proportional to a Zeeman
field, which suggests a possibility of a tunable ϕ junction. A
phenomenological argument explains well the physical origin
of the ϕ junction. The breaking magnetic mirror reflection
symmetry (MMRS) of the Hamiltonian is a key property to
understand the physics behind the phase shift ϕ. We also
demonstrate that random impurities and the asymmetry of
junction geometry in real space break MMRS and make
S/QAHI/S be a ϕ junction.

This paper is organized as follows. In Sec. II, we show the
Hamiltonian of a QAHI on a tight-binding model and discuss
the numerical results of the Josephson current. In Sec. III,
the mechanism of the ϕ phase shift in the CPR is explained
by a phenomenological analysis of the Andreev reflection
processes. The numerical results in the presence of random
impurities and junction asymmetry are presented in Sec. IV.
The conclusion is given in Sec. V.

II. NUMERICAL RESULTS ON A TIGHT-BINDING MODEL

Let us consider a S/QAHI/S junction on a two-dimensional
tight-binding model as shown in Fig. 1. Throughout this paper,
we measure the length in unit of the lattice constant. A vector
r = j x + m y points on a lattice site, where x and y are the
unit vectors in the x and y directions, respectively. The junction
consists of three regions: a quantum anomalous hall insulator
(i.e., 1 � j � L) and two superconductors (i.e., −∞ � j � 0
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FIG. 1. Schematic figure of a Josephson junction with a QAHI.
The magnetic moment mz points in the z direction. An external
Zeeman field V is applied within the two-dimensional plane.

and L + 1 � j � ∞). An external Zeeman field V is applied
in the QAHI segment. The width of the junction is W . We
apply the hard wall boundary condition in the y direction. The
Hamiltonian of the junction is given by

H = HL + HQAHI + HR. (1)

The first and the third term in Eq. (1) are the Hamiltonians
of an s-wave superconductor on the left and that on the right,
respectively. They are given by

HL(R) =
∑
r,r ′

�†
r

[
ĥr,r ′ �̂r,r ′ eiθL(R)

−�̂r,r ′ e−iθL(R) −ĥ∗
r,r ′

]
�r ′ , (2)

ĥr,r ′ = [−tδ|r−r ′|,1 + (4t − μs)δr,r ′ ]σ̂0, (3)

�̂r,r ′ = i � σ̂2 δr,r ′ , (4)

�r = (cr,↑, cr,↓, c
†
r,↑, c

†
r,↓)T, (5)

where c
†
r,σ (cr,σ ) is the creation (annihilation) operator of an

electron at r with spin σ (=↑ or ↓), σ̂j with j = 1–3 are
the Pauli matrices in spin space, σ̂0 is the unit matrix, μs

is the chemical potential in the superconductors, T means
the transpose of a matrix, and � is the amplitude of the
pair potential. We consider the hopping integral t between
the nearest-neighbor sites. The phase of the left (right)
superconductor is θL (θR). The physical values depend only
on the phase difference across the junction θ = θL − θR .

The second term in Eq. (1) indicates the Hamiltonian of a
QAHI [29]:

HQAHI =
∑
r,r ′

�†
r

[
Q̂r,r ′ 0

0 −Q̂∗
r,r ′

]
�r ′ , (6)

Q̂r,r ′ = [−tδ|r−r ′|,1 + (4t − mz)δr,r ′ ]σ̂3

− iλ

2
[δj,j ′+1 − δj+1,J ′ ]δm,m′ σ̂2

+ iλ

2
[δm,m′+1 − δm+1,m′ ]δj,j ′ σ̂1

−Vxδr,r ′ σ̂1 − Vyδr,r ′ σ̂2, (7)

where λ is the amplitude of the spin-orbit interaction and mz is a
Zeeman potential induced by the spontaneous magnetization.
For mz > 0, a QAHI has a chiral edge state characterized
by a Chern number of Z = −1 [30]. The insulating gap can
be described by these parameters as Eg ∼ 2λ

√
mz/t . (see

also Appendix A for details.) In addition to the spontaneous
magnetic moment in the z direction, we consider Zeeman

potentials Vx in the x direction and Vy in the y direction
by applying an external magnetic field. In what follows, we
assume weak Zeeman field so that |Vx | 
 mz and |Vy | 
 mz

are satisfied.
We calculate the Josephson current based on the current

formula [31–33]

J = ie

2h̄
T

∑
ωn

Tr[τ̌3Ť+Ǧ(r,r + x; ωn)−τ̌3Ť−Ǧ(r + x,r; ωn)],

(8)

Ť± =
[
t̂± 0

0 −t̂∗±

]
, t̂± =

[−t 1̄ ∓ λ
2 1̄

± λ
2 1̄ t 1̄

]
, (9)

where Ǧ(r,r ′; ωn) is the Matsubara Green function and ωn =
(2n + 1)πkBT is the Matsubara frequency with n, T and
kB being an integer number, a temperature and the Boltz-
mann constant, respectively. The Green function is calculated
numerically by using the lattice Green function technique
[34]. In the above equations, ˆ· · ·( ˇ· · ·) indicates 2W × 2W

(4W × 4W ) matrices, and the W × W unit matrix is denoted
by 1̄. In Eq. (8), τ̌3 is the third Pauli matrix in particle-hole
space, and Tr means the trace over spin space, particle-hole
space, and the summation over the lattice sites in the y

direction.
Throughout this paper, we fix basic parameters as mz =

1.5t and λ = 1.0t . The chiral edge states spatially localize
within two lattice constants from the surface under these
parameter choices. The size of a QAHI should be much larger
than the localization length. Therefore, we choose L = 80 and
W = 20. The chemical potential in two superconductors is
chosen as μs = 2.7t . We find that μs > mz is necessary so that
the normal conductance through the chiral edge is quantized
at e2/h. Otherwise, the normal conductance becomes smaller
than e2/h. The amplitude of the pair potential at the zero
temperature �0 = 0.001t is much smaller than μs . We mainly
calculate the Josephson current at T = 0.1Tc, where Tc is the
transition temperature. We assume that the superconducting
gap is smaller than the insulating gap in a QAHI (i.e.,
�0 
 Eg). As a result, the Josephson current flows only
through the chiral edge states in a QAHI.

In Fig. 2(a), we first discuss the CPR in the absence
of an external Zeeman field as shown with a solid line.
The Josephson currents are normalized to J0 × 10−3 with
J0 = e�0/h̄. The CPR at Vy = 0 in Fig. 2(a) is sinusoidal,
which is a robust feature independent of parameters such as
T ,μs , and mz. In Appendix B, we demonstrate the CPR for
several choices of μs to check the robustness of 0 junction
in the absence of the Zeeman field. Although the dependence
of the Josephson critical current on temperatures indicates
unusual behavior as shown in Appendix B, we confirmed that
the CPR is always sinusoidal in the absence of Zeeman fields.

When we apply a Zeeman field in the y direction, the results
for Vy/mz = 0.004 and −0.002 in Fig. 2(a) deviate from the
sinusoidal relation. A ϕ junction is realized by applying a
Zeeman field in the y direction. We also find that the amplitude
of the critical current is insensitive to Vy . The phase shift ϕ

in the CPR J = Jc sin(θ − ϕ) is plotted as a function of Vy in
Fig. 2(b) with symbols. The results suggest a linear relationship
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FIG. 2. (a) Josephson current as a function of θ at Vx = 0. (b) The relation between the phase shift ϕ and Vy . The results obtained in
numerical simulation are shown with symbols. A solid line indicates the analytical results in Eq. (39), where we use λ = t and L = 80
consistently with the numerical simulation. (c) Josephson current as a function of θ at Vy = 0.

between ϕ and Vy . Namely, the phase shift ϕ is tunable in a
S/QAHI/S junction.

Figure 2(c) shows the numerical results of the Josephson
current under Zeeman fields in the x direction. For both
Vx/mz = 0.04 and −0.02, the CPR is sinusoidal. Thus the
phase shift depends on the direction of a Zeeman field. These
findings are the central results of this paper. In the next section,
we will explain the mechanism for the phase shift and its
anisotropic response to the Zeeman field by considering the
Andreev reflection processes through the chiral edge states in
a QAHI.

III. ORIGIN OF PHASE SHIFT

A. Symmetry analysis

To discuss the mechanism for the phase shift ϕ in the
CPR, we first analyze the symmetry of Hamiltonian. For this
purpose, we describe the Hamiltonian in continuous space as

H0(θ ) = HL + HQAHI + HR, (10)

HL(R)(r) =
[

ĥ(r) �0iσ̂2eiθL(R)

−�0iσ̂2e−iθL(R) −ĥ∗(r)

]
, (11)

HQAHI(r) =
[
Q̂(r) 0

0 −Q̂∗(r)

]
, (12)

with

ĥ(r) = (εr − μs)σ̂0, εr = − h̄2

2m
∇2, (13)

Q̂(r) = (εr − mz)σ̂3 + iλ∂xσ̂2 − iλ∂yσ̂1. (14)

The Hamiltonian for a Zeeman field is given by

HZeeman = HVx
+ HVy

, (15)

HVx
=

[−Vxσ̂1 0
0 Vxσ̂1

]
, (16)

HVy
=

[−Vyσ̂2 0
0 −Vyσ̂2

]
. (17)

In the Hamiltonian of a QAHI in Eq. (14), both mirror-
reflection symmetry with respect to the xz-plane and time-
reversal symmetry are broken simultaneously. These facts are
represented by the relations

MxzHQAHI(r)M−1
xz 
= HQAHI(r), (18)

T HQAHI(r)T −1 
= HQAHI(r), (19)

Mxz =
[
iσ̂2Ry 0

0 iσ̂2Ry

]
, T =

[−iσ̂2K 0
0 −iσ̂2K

]
,

(20)

where Ry is the reflection operator about the xz plane, (i.e.,
y → −y) and K donates the complex conjugation. However,
the Hamiltonian preserves MMRS with respect to the xz plane,
which is defined by combination of Mxz and T as

TxzHQAHI(r)T −1
xz = HQAHI(r), (21)

Txz =
[
σ̂0RyK 0

0 σ̂0RyK

]
, (22)

where Txz is the MMRS operator. By applying Txz to Eq. (11),
we find

TxzHL(r)T −1
xz = HL(r)|θL→−θL

, (23)

TxzHR(r)T −1
xz = HR(r)|θR→−θR

. (24)

As a consequence, we conclude that

TxzH0(θ,r)T −1
xz = H0(−θ,r). (25)

The Bogoliubov-de Gennes equation can be described as

H0(θ ) ψn = En(θ ) ψn, (26)

where ψn and En are an eigenstate and an eigenvalue labeled by
an index n, respectively. By using Eq. (25), the BdG equation
can be transformed into

H0(−θ ) Txz ψn = En(θ ) Txz ψn. (27)
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From Eqs. (26) and (27), we conclude that H0(θ ) and H0(−θ )
have exactly the the same eigenvalues. Namely the relation

En(θ ) = En(−θ ). (28)

hold true in a S/QAHI/S junction. Generally speaking, the
energy of the Josephson junction F (θ ) and the Josephson
current are related to each other as

F (θ ) =
∑

n

EnfF (En), (29)

J (θ ) =2e

h̄

∂F (θ )

∂θ
, (30)

where fF (En) is the Fermi distribution function. Due to
Eq. (28), the energy of the junction is an even function of
the phase difference θ and the Josephson current is an odd
function of θ . Therefore, the CPR satisfies

J (θ ) = −J (−θ ), (31)

which indicates J (θ = 0) = 0. Thus, MMRS prohibits the
appearance of the phase shift ϕ in CPR in the absence of
an external Zeeman field.

The effects of the Zeeman field depends on its direction. It
is easy to confirm the following relations:

TxzHVx
T −1

xz = HVx
, (32)

TxzHVy
T −1

xz 
= HVy
. (33)

We find that the Zeeman potential Vy breaks MMRS for the
xz plane, whereas Vx preserves it. As shown in Fig. 2(c),
the phase shift is zero even in the presence of Vx . On the
other hand, the phase shift is proportional to Vy as shown in
Fig. 2(b). The symmetry analysis of the Hamiltonian explains
well the anisotropic response of the phase shift to the direction
of a Zeeman field. We conclude that breaking MMRS is a
necessary condition for realizing a ϕ junction.

The important point of the symmetry analysis can be
understood in a more phenomenological way. The relation
between the two free energies F (θ ) and F (−θ ) determines
the junction property. When F (θ ) = F (−θ ) is satisfied, one
can immediately conclude that the junction is either 0 or π

junction. In the two superconductors, the transformation of
θ to −θ is realized by applying the complex conjugation
to Eq. (11). Therefore, we find F (θ ) = F (−θ ) if Q̂ = Q̂∗
holds in Eq. (14). The Hamiltonian in Eq. (14) satisfies
Q̂∗(x,y) = Q̂(x, − y) as discussed in Eq. (21). Therefore,
the junction may become a ϕ junction in the presence of the
potential depending on the y direction. We revisit this issue in
Sec. IV.

B. Andreev reflection

To explain the linear relation between ϕ and Vy , we analyze
the Andreev reflection processes that carry the Josephson
current in a S/QAHI/S junction. The chiral edge current
flows along two surfaces and two interfaces to the s-wave
superconductors as illustrated in Fig. 3(a). An electron (a
hole) moves in the counterclockwise (clockwise) direction.
The direction of spin is locked to the direction of a quasiparticle
motion and always points outwardly. The spin-orbit interaction

FIG. 3. (a) The chiral edge states in an electron branch and a hole
branch. The spin of a quasiparticle always points outside a QAHI.
(b) The two Andreev reflection processes contribute to the lowest
order Josephson coupling.

changes the spin direction of a quasiparticle at four corners of
a QAHI.

When we focus on the edge states at the bottom surface
around y = 0, the pair potential in the superconductors
hybridizes an electron and a hole near the junction interfaces
at x = 0 and L, which causes the Andreev reflection as shown
in Fig. 3(b). The amplitude of the Andreev reflection, however,
is expected to be very small due to the spin mismatch in the
reflection processes. Usually, a spin-singlet superconductor
causes the Andreev reflection, which converts a spin ↑ (↓)
electron into a spin ↓ (↑) hole. However, at the bottom
edge, spin ↑ channels are absent in both electron and hole
branches. In the edge states at the top surface around y = W ,
the spin ↓ channels are absent. The spin mismatch drastically
suppresses the Josephson current. Actually, the amplitude of
the Josephson current in Fig. 2 is much smaller than J0 even in
the absence of potential barrier at the interface. Although we
have tried to analyze the spin-flip Andreev reflection process in
the presence of spin-orbit coupling, we cannot derive a simple
analytic expression of the Andreev reflection coefficients. The
numerical results, however, suggest the presence of spin-flip
Andreev reflection at the interfaces. Therefore, we assume the
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FIG. 4. The dispersion relation of the edge state at the bottom (a)
and at the top (b). Solid and broken lines are the dispersion in an
electron branch and a hole branch, respectively.

spin-flip Andreev reflection at the two interfaces and describe
the phase shift of a quasiparticle in the reflection processes.

Figure 3(b) shows two Andreev reflection processes, which
contribute to the lowest order Josephson coupling. In the
bottom edge, an electron moves to the right and a hole moves
to the left, carrying a Cooper pair from the left superconductor
to the right superconductor. At the top edge, a hole moves to
the right and an electron moves to the left. Such processes
carry a Cooper pair from the right superconductor to the left.
The Josephson current is described by the subtraction of the
two reflection processes. A current formula [33] may describe
the Josephson current in such a situation phenomenologically,

J = ie

h̄
T

∑
ωn

[
reh
L · thB · rhe

R · t eB − r̂he
L · t eT · reh

R · thT
]
,

(34)

where rhe
L(R) (reh

L(R)) is the spin-flip Andreev reflection coefficient
at the left (right) interface from the electron branch to the
hole branch (from the hole branch to the electron branch)
and t eB(T) (thB(T)) is the transmission coefficient of an electron
(a hole) along the bottom (top) edge. The first (second)
term corresponds to the Andreev reflection process at the
bottom (top) edge. The Andreev reflection coefficients are
phenomenologically described by

rhe
L(R) = − i

�

�

√
tI e

−iθL(R) , (35)

reh
L(R) = − i

�

�

√
tI e

iθL(R) , (36)

where tI is the effective transmission probability with spin
flipping at the interface, and � = √

ω2
n + �2.

The dispersion relation of the edge state at the bottom and
at the top are shown in Figs. 4(a) and 4(b), respectively.
The results are analytically obtained by solving the BdG
Hamiltonian near the edges. See also Appendix A for details.

In the absence of Vy , the dispersion in the electron branch and
in the hole branch are identical to each other. The wave
number in the x direction at the Fermi level is zero. Thus
the transmission coefficients would be described by t eB =
thB = t eT = thT = t0 with t0 being a real number. The resulting
Josephson current in Eq. (34) at T = 0 becomes

J = e�

h̄
t2
0 tI sin θ. (37)

When we introduce the Zeeman potential in the y direction,
the electron dispersion becomes E = λ(kx + k1), whereas
the hole dispersion becomes E = λ(kx − k1) at the bottom
edge as shown in Fig. 4(a). As shown in Fig. 4(b), the
electron and hole dispersions at the top edge are deformed
as E = −λ(kx + k1) and E = −λ(kx − k1), respectively. As a
consequence, the transmission coefficients through the edge
state should be modified as t eB = t0e

−ik1L, thB = t0e
−ik1L, teT =

t0e
ik1L, thT = t0e

ik1L. The Josephson current in Eq. (34) in such
a situation becomes

J = e�

h̄
t2
0 tI sin(θ − ϕ), (38)

ϕ = 2k1L = 2VyL

λ
. (39)

The phenomenological argument explains the linear relation
between the phase shift ϕ on the Zeeman potential Vy . In
Fig. 2(b), we plot ϕ in Eq. (39) with a solid line. The
phenomenological results in Eq. (39) explain the numerical
results even quantitatively. A Zeeman field in the y direction
affects mainly the wave numbers at the edge states. As a
result, the amplitude of the Josephson current is independent
of Vy as shown in Eq. (39) and in numerical simulation in
Fig. 2(a). The perfect agreement between Eq. (39) and the nu-
merical results suggests the validity of the phenomenological
argument.

IV. ANOTHER ϕ JUNCTION

The symmetry analysis in Sec. III suggests that the
breakdown of MMRS is a trigger of a ϕ junction. To check
the validity of the conclusion, we study the effects of breaking
MMRS by other physical sources such as (i) random impurity
potential in a QAHI and (ii) asymmetric junction geometry
with respect to the xz plane. In this section, we set the Zeeman
potentials to be zero as Vx = Vy = 0.

A. Impurity potential

The impurity potentials in a QAHI (1 � j � L) are
considered through the random on-site potential Vimp(r) δr,r ′ ,
where Vimp(r) is given randomly in the range of −VD/2 �
Vimp(r) � VD/2. Equation (7) is transformed as Q̂(r) →
Q̂(r) + Vimp(r)σ̂0. The impurity potential breaks MMRS
because

RyVimp(x,y)R−1
y = Vimp(x, − y) 
= Vimp(x,y), (40)

due to its random character. In Fig. 5, we show the CPR of the
Josephson current in the presence of impurity potential with
VD = 0.25t . The four CPRs with broken lines correspond to
the results for four samples with different random impurity
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FIG. 5. The Josephson currents for four samples with different
impurity configurations are plotted as a function of θ with broken
lines. The ensemble average of the Josephson current over 1500
samples is shown with a solid line.

configurations. The Josephson current flows at θ = 0 in all the
samples. Although the amplitude of the current is insensitive to
the impurity configuration, the phase shift ϕi for the ith sample
depends seriously on the random potential configuration. We
also plot the ensemble average of the Josephson current over
1500 samples with a solid line. The results show that the
Josephson current, after averaging, recovers the sinusoidal
CPR. In experiments, however, the phase shift ϕ is expected
in a measurement of the Josephson current in a single sample
because the Josephson effect is a phase-coherent phenomenon.
Thus the ensemble averaged Josephson current cannot predict
a result of one-shot measurement in a single sample [32].

B. Asymmetric junction geometry

A junction shown in Fig. 6(a) is asymmetric with regard
to the xz plane at y = 0, where we choose the width of two
superconductors as WS and that of a QAHI as WQ. In such
a situation, the junction geometry breaks MMRS because the
total Hamiltonian is no longer symmetric under y ↔ −y. In
Fig. 6(b), the CPR of the Josephson effect for various WS is
represented at WQ = 20. The results for WS = 14 and WS = 12
show the phase shift in the CPR by the breakdown of MMRS
due to the two superconducting lead wires. At WS = WQ, the
phase shift becomes zero as shown with a solid line. Within our
numerical simulation, however, we cannot find any systematic
relation between WS/WQ and the phase shift ϕ.

In experiments, it is almost impossible to control both the
junction geometry and the impurity configuration. Therefore,
the phase shift in the CPR always can be expected in every
sample. This feature is peculiar to the Josephson junction
consisting of a QAHI.

V. CONCLUSION

We have studied the direct-current Josephson effect through
a quantum anomalous Hall insulator (QAHI) by using the

FIG. 6. (a) A Josephson junction asymmetric with respect to the
xz plane. The width of the two superconductors WS is different from
that of the QAHI WQ. (b) The Josephson current is plotted as a
function of θ for various WS.

recursive Green function method. A QAHI breaks both
time-reversal symmetry and mirror-reflection symmetry si-
multaneously. However, their combined symmetry, called
MMRS, is preserved. The current-phase (J − θ ) relationship
(CPR) in the Josephson effect shows very unusual features
by reflecting such symmetry property of a QAHI. In the
presence of MMRS, the CPR is always sinusoidal as usual,
(i.e., J ∝ sin θ ). In-plane Zeeman fields, random impurities in
the QAHI, and asymmetric junction geometries break MMRS.
As a consequence, the CPR deviated from the sinusoidal
relation to J ∝ (θ − ϕ). The phase shift ϕ by impurities and
that by the asymmetric junction geometry would be out of
control in experiments. On the other hand, the phase shift is
proportional to an in-plane Zeeman field. By considering the
Andreev reflection processes phenomenologically, we explain
the linear relationship between the phase shift and a Zeeman
field. We conclude that ϕ is tunable in a Josephson junction
consisting of a QAHI.
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APPENDIX A: CHIRAL EDGE STATES

We represent the analytic expression of wave function and
energy dispersion of chiral edge states at a surface of a QAHI
in the presence of a Zeeman field. Equation (12) in momentum
space is given by

HQAHI =
[
Q̂(k) 0

0 −Q̂∗(−k)

]
, (A1)

Q̂(k) = εkσ̂3 − λkxσ̂2 + λkyσ̂1 − Vyσ̂2, (A2)

εk = h̄2

2m

(
k2 − k2

0

)
, (A3)

where k0 =
√

2mmz/h̄
2 is derived from the spontaneous

magnetization in the z direction. Since the pair potential is
absent, the BdG equation is decoupled into two equations,

Q̂(k)ψe = Eψe, (A4)

−Q̂∗(−k)ψh = Eψh. (A5)

In the electron branch, the energy dispersion and the wave
functions are obtained as(

Ee
k + εk

λ(ky − ik̃x)

)
,

(
λ(ky + ik̃x)
Ee

k − εk

)
, (A6)

for Ee
k and −Ee

k, respectively. Here we define the following
quantities:

Ee
k =

√
ε2

k + λ2
(
k̃2
x + k2

y

)
, (A7)

k̃x = kx + k1, k1 = Vy/λ. (A8)

At Vy = 0, the spin-orbit interaction and the magnetic moment
induce an energy gap Eg = 2λk0. In a weak external Zeeman
field Vy 
 mz, the energy gap remains finite and chiral edge
states appear.

To obtain the wave function and the dispersion of the chiral
edge state, we consider a semi-infinite system that has a surface
perpendicular to the y axis at y = 0. At an energy E > 0, the
wave function of the edge states ψe

Q(y)eikxx is calculated to be

ψe
Q(y) =

(
f+

γk+,−

)
eik+yA+ +

(
γ−k−,+

f−

)
e−ik−yA−, (A9)

f± =E +
√

De ∓ λk0λ̃/2, γk,± = λ(k ± ik̃x), (A10)

k± =
√

A0 ± (2m/h̄2)
√

De, (A11)

De = E2 − λ2{(k2
0 − k2

x + k̃2
x

} + (λ̃k0)2λ2/4, (A12)

λ̃ = λk0/ε0, ε0 = h̄2k2
0/2m, (A13)

A0 = k2
0 − k2

x − (λ̃k0)2/2, (A14)

where A± are the amplitudes of the wave function. The
condition De < 0 results in the complex wave number in the
y direction. By imposing the boundary condition ψe

Q(0) = 0,
we obtain the dispersion of chiral edge state as

Ee
BS = λ(kx + k1), (A15)

for k2
x < k2

0(1 − λ̃2/4) and the wave function as

ψe
ES(y) = C0e−y/ξ sin y

√
k2

0 − k2
x

(
δ0

δ∗
0

)
, (A16)

ξ = h̄2

mλ
, (A17)

where δ0 = eiπ/4 and ξ is a localization length of the edge
states. We have used a relation λ̃ 
 1. The dispersion and the
wave function in the hole branch can be obtained in a similar
way as

Eh
BS = λ(kx − k1), (A18)

ψh
ES(y) = C0e−y/ξ sin y

√
k2

0 − k2
x

(
δ∗

0
δ0

)
, (A19)

for k2
x < k0(1 − λ̃2/4).

FIG. 7. The Josephson current versus θ for several choices of μs

at T = 0.1Tc.
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FIG. 8. The critical current Jc versus temperature T for various
chemical potentials.

The currents of the probability density in the x direction
are represented by

J e
x = λ

h̄
C2

0 sin2 y

√
k2

0 − k2
x exp−2y/ξ , (A20)

J h
x = −λ

h̄
C2

0 sin2 y

√
k2

0 − k2
x exp−2y/ξ , (A21)

for an electron and a hole, respectively. Thus, an electron (a
hole) moves to the right (left) direction at the bottom edge of
a QAHI as shown in Fig. 3.

APPENDIX B: JOSEPHSON CURRENT IN THE ABSENCE
OF ZEEMAN FIELD

We display numerical results of a Josephson current in
the absence of Zeeman field (Vx = Vy = 0.0) to discuss an
unusual Josephson effect in a S/QAHI/S junction. As we
explained in the text, several parameters are also fixed in

FIG. 9. The critical current versus μs for T = 0.1Tc and T =
0.5Tc.

this Appendix as W = 20, L = 80, mz = 1.5t, λ = 1.0t , and
�0 = 0.001t .

In Fig. 7, we plot the Josephson current as a function of θ

for several choices of μs . In all cases, the CPR at T = 0.1Tc

is sinusoidal in the absence of the Zeeman field.
Unusual features can be seen in the dependence of the

Josephson critical current on temperatures as shown in Fig. 8.
In all cases, the CPR is sinusoidal as discussed in Fig. 7.
The critical current shows the nonmonotonic dependence on
temperatures and takes its maximum around T ≈ 0.08Tc = ε0.
The results suggest the existence of a resonantlike state at ε0.
Unfortunately, however, we cannot figure out physical reasons
of such subgap states at the edges of a QAHI. The results
for μs/mz = 1.4 and those for 1.8 have a minimum around
T = 0.2Tc. At present, the reasons for such unusual behavior
are an open question.

Figure 9 shows the critical current versus μs . The results
for T = 0.1Tc correspond to the resonantlike peak in Fig. 8.
At a low temperature T = 0.1Tc, the results show an aperiodic
oscillating behavior as a function of μs and become almost zero
around μs/mz = 1.1, 1.6, and 1.9. The results also suggest
existence of a resonantlike subgap states at the edge of a QAHI.
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