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Stability of flat zero-energy states at the dirty surface of a nodal superconductor
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We discuss the stability of highly degenerate zero-energy states that appear at the surface of a nodal
superconductor preserving time-reversal symmetry. The existence of such surface states is a direct consequence
of the nontrivial topological numbers defined in the restricted Brillouin zones in the clean limit. In experiments,
however, potential disorder is inevitable near the surface of a real superconductor, which may lift the high
degeneracy at zero energy. We show that an index defined in terms of the chiral eigenvalues of the zero-energy
states can be used to measure the degree of degeneracy at zero energy in the presence of potential disorder. We
also discuss the relationship between the index and the topological numbers.
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I. INTRODUCTION

The discovery of a topological insulator [1,2] had an impact
on researchers studying the physics of superconductivity.
The gapped band structures in a superconductor can also be
topologically nontrivial. The bulk-boundary correspondence,
which is the interrelationship between the nontrivial topolog-
ical invariant in superconducting states in the bulk and the
number of gapless states at its surface, immediately ensures the
existence of surface bound states. Recently, such topologically
nontrivial superconductors have attracted enormous attention
due to the existence of exotic surface bound states, some of
which are composed of Majorana particles [3]. Using the 10-
fold classification as a basis [4], the early studies in this context
were devoted to fully gapped topological superconductors.

The 10-fold topological classification, however, covers
only some real superconductors. A number of real unconven-
tional superconductors display nodes in the superconducting
gap. Nevertheless, such a nodal superconductor can often
host highly degenerate surface bound states at zero energy
(Fermi level). The sign change in the pair potential on the
Fermi surface, which is possible only in the presence of
nodes in the gap functions, is the source of a topologically
nontrivial superconducting phase preserving time-reversal
symmetry [5,6]. When a three- (two-) dimensional nodal
superconductor has the superconducting line (point) nodes,
the surface bound states have flat dispersion in terms of two-
(one-) dimensional wave number parallel to the surface [7,8].
A prescription called dimensional reduction enables us to
topologically characterize such flat zero-energy states of a
nodal superconductor. In a d-dimensional superconductor, it is
possible to choose a one-dimensional Brillouin zone by fixing
a (d − 1)-dimensional wave number at a certain point (say k).
When the energy spectra in the one-dimensional Brillouin
zone at k have gaps, we can define the winding number
W (k) [7,8]. According to the bulk-boundary correspondence
for each Brillouin zone, a nodal superconductor often hosts
degenerate zero-energy states (ZESs) at its clean surface.
Namely,

∑
k |W (k)|-fold degenerate ZESs are expected at a
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surface parallel to k. Actually, the existence of degenerate
surface ZESs has been suggested in time-reversal uncon-
ventional superconductors [5,6,9,10], noncentrosymmetric
superconductors [11–15], semiconductor/superconductor het-
erostructures [16–19], superconductor/topological insulator
heterostructures [20], and superconducting Weyl semimet-
als [21]. It is widely accepted that flat ZESs cause various
anomalies in low-energy transport such as the zero-bias
anomaly in the conductance of a normal-metal/superconductor
junction [5,6,19,22,23] and the fractional Josephson effect in
a superconductor/insulator/superconductor junction [24–28].
These phenomena are unique to topologically nontrivial
superconductors.

In experiments, however, nonmagnetic potential disorder is
inevitable in the vicinity of the surface or junction interface
of a superconductor. The one-dimensional Brillouin zone is ill
defined with the disordered potential breaking the translational
symmetry. Therefore, the winding number W (k) can no longer
use to predict the number of ZESs at a dirty surface [29–32]. In
other words, the potential disorder may lift the high degeneracy
in the surface ZESs and may wash out the characteristic
transport properties. Such a situation requires a theoretical tool
that measures the stability of degenerate ZESs in the presence
of potential disorder. This paper addresses this issue and will
provide experimentalists with helpful information.

By paying attention to the chiral symmetry of a
Bogoliubov–de Gennes (BdG) Hamiltonian [19,33–36], we
show that a mathematical index, NZES, well characterizes the
number of ZESs at a dirty surface. The index NZES is an
invariant defined in terms of the chirality of the surface ZESs
and is closely related to the one-dimensional winding number
W (k) [7]. We conclude that the index NZES calculated in a clean
superconductor exactly predicts the degree of degeneracy in
ZESs at the dirty surface of a nodal superconductor. Numerical
simulations for several nodal superconductors ensure the
validity of the conclusion.

The organization of this paper is as follows. In Sec. II,
we discuss the one-dimensional winding number for a nodal
superconductor preserving chiral symmetry. The index NZES

is defined in terms of the chiral eigenvalues of ZESs and is
connected to the one-dimensional winding number through
the index theorem in mathematics. In Sec. III, we confirm the
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validity of our conclusion for several superconductors such as
p-, d- and f -wave unconventional superconductors, and two
noncentrosymmetric superconductors. Section IV provides our
conclusion.

II. CHIRAL SYMMETRY AND INDEX THEOREM

A. Winding number in a clean superconductor

We begin our discussion with a brief summary of the topo-
logical property of a nodal superconductor in the clean limit.
The BdG Hamiltonian in momentum space is represented by

H0(k) =
[

ξ0(k) �(k)
−�∗(−k) −ξ ∗

0 (−k)

]
, (1)

where ξ0(k) denotes the M×M Hamiltonian for an electron,
�(k) is the M×M pair potential, and where M represents
the number of degrees of freedom for an electron such as
spin and band. The BdG Hamiltonian intrinsically preserves
particle-hole symmetry

� H0(k) �−1 = −H0(−k), (2)

� = CK, C =
[

0 I

I 0

]
, (3)

where I is the M×M unit matrix and K denotes the complex-
conjugation operator. We assume that the BdG Hamiltonian
preserves time-reversal or time-reversal-like symmetry as

T± H0(k) T −1
± = H0(−k), (4)

T± = U±K, U± =
[
u± 0
0 u∗

±

]
, (5)

where u± is an M×M unitary matrix satisfying u±u∗
± = ±I .

Time-reversal symmetry is denoted with u−u∗
− = −I , while

time-reversal-like symmetry is denoted with u+u∗
+ = I . By

combining the particle-hole symmetry operator � and the
time-reversal symmetry operator T−, we can define an operator

� = −iCU− =
[

0 −iu∗
−

−iu− 0

]
. (6)

The BdG Hamiltonian satisfies

� H0(k) �−1 = −H0(k), (7)

which represents chiral symmetry of the Hamiltonian. The
chiral symmetry for a case of time-reversal-like symmetry is
also defined in a similar way:

� H0(k) �−1 = −H0(k), (8)

� = −CU+ =
[

0 −u∗
+

−u+ 0

]
. (9)

The pair potential under consideration has nodes. Namely,
�(knode) = 0 is satisfied at nodal points knode on the Fermi
surface. Therefore, it is impossible to characterize such
superconducting states topologically in terms of the wave
function of the whole Brillouin zone. Alternatively, we define
a winding number in a one-dimensional Brillouin zone by
fixing k‖ at a certain point. The momentum k⊥ indicates a

superconducting state in a one-dimensional Brillouin zone.
The winding number is defined by [7]

W (k‖) = i

4π

∫
dk⊥Tr

[
�H−1

0 (k)∂k⊥H0(k)
]
. (10)

Since knode represents nodal points on the Fermi surface,
the relation ξ (knode) = 0 holds simultaneously. The winding
number W (k‖) is ill defined when the integration path along k⊥
in Eq. (10) intersects knode. Therefore, we have to choose k‖ so
that k⊥ can be kept away from the nodal points. When W (k‖)
is nonzero in a finite region of k‖, dispersionless ZESs with
respect to k‖ appear at a clean surface parallel to k‖ [5,6,9–21].
The number of ZESs at a clean surface is represented by

Nclean =
∑

k‖

′|W (k‖)|, (11)

where
∑

k‖
′ denotes a summation over k‖ excluding the nodal

points. In what follows, we describe the degree of degeneracy
in the ZESs at a dirty surface in the presence of potential
disorder. The random impurity potential in the bulk region
strongly suppresses the unconventional superconducting pair
potential. Thus, we consider the effects of the potential disorder
only near a surface.

B. Zero-energy states at a dirty surface

We consider a semi-infinite superconductor that occupies
x⊥ � 0 as shown in Fig. 1(a). We apply the periodic boundary
condition in a direction parallel to the surface x‖. The BdG
Hamiltonian in real space H0(r) is obtained by replacing the
momentum k by −i∇r . The nonmagnetic random impurity

E

0

x

x

(b) E

0

(c)

γ = +1}

γ = −1

(a)

FIG. 1. (a) Schematic image of a semi-infinite nodal supercon-
ductor. (b) Fourfold degenerate zero-energy states (ZESs) in the
absence of random potential. Three of them belong to the positive
chiral eigenvalue (i.e., N+ = 3). One remaining ZES belongs to the
negative chiral eigenvalue (i.e., N− = 1). The fourfold degeneracy is
protected by translational symmetry. (c) In the presence of random
potential, a positive and a negative chiral ZES form a pair and departs
from zero energy. However, two positive chiral ZESs remain at zero
energy. The index NZES = N+ − N− = 2 represents the number of
ZESs remaining at zero energy in the presence of random potential.
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potential in the vicinity of the surface is represented by

Vimp(r) =
[
v(r)I 0

0 −v(r)I

]
, (12)

where the random potential v(r) disappears rapidly with
increases in x⊥ from the surface. The total Hamiltonian is
given by

H (r) = H0(r) + Vimp(r). (13)

The momentum k‖ is no longer a good quantum number be-
cause the impurity potential breaks the translational symmetry.
As a result, it is impossible to define the one-dimensional
winding number W (k‖) in the presence of the potential
disorder. However, the Hamiltonian H (r) preserves the chiral
symmetry of the Hamiltonian in Eqs. (7) or (8), which is the
most important factor in the argument below.

The central ingredient of our theory consists of the
following two important properties of the eigenstates in the
presence of chiral symmetry [7] (i.e., {H,�} = 0).

(i) First, the zero-energy states of H are simultaneously
the eigenstates of the chiral operator �. Since �2 = 1, the
eigenvalue of � is either γ = +1 or −1. Namely, a ZES
satisfying H0(r)ϕγ (r) = 0 also satisfies �ϕγ (r) = γ ϕγ (r).
We refer to γ as the chirality in the following.

(ii) Second, the nonzero energy states of H are described
by the linear combination of the two states: one has γ =
+1 and the other has γ = −1. Namely, a nonzero energy
state is described as ϕE �=0(r) = c+χ+(r) + c−χ−(r), where
�χ±(r) = ±χ±(r). Moreover, the relation |c+| = |c−| always
holds [19].

Here, we define two integer numbers N+ and N− in the
clean limit. According to property (i), we can immediately
conclude that each ZES at a clean surface belongs to either
the positive or the negative chiral state. The integer N+ (N−)
is the number of ZESs that have the positive (negative) chiral
eigenvalue. [See also Fig. 1(b).] The total number of ZESs at
a clean surface is represented by N+ + N−, which must be
identical to Nclean in Eq. (11).

The stability of the flat ZESs in the presence of impurities
can be discussed by using property (ii). A ZES departs from
zero energy only when it can form a pair with its chiral partner.
When N+ > N−, for example, N− negative chiral ZESs can
couple to N− positive chiral ZESs under potential disorder.
As a result, they form nonzero energy states whose number is
2N−. However, N+ − N− positive chiral states remain at zero
energy even in the presence of impurities because their chiral
partner is absent. The integer number defined by

NZES = N+ − N− (14)

represents the number of ZESs that remain at a dirty surface.
When N+ < N−, the number of ZESs at a dirty surface is given
by N− − N+. Therefore, in general, |NZES| is the degree of
degeneracy at zero energy in the presence of potential disorder.
The essence of this argument is illustrated in Figs. 1(b) and 1(c)
with N+ = 3 and N− = 1. In Fig. 1(b), we consider four ZESs
at a clean surface. In Fig. 1(c), we introduce the impurity
potential at the surface. Although the index NZES is defined in
the presence of translational symmetry, it represents the degree
of the degeneracy at zero energy in the absence of translational
symmetry. This is the main conclusion of our paper.

C. Relation with topological number

At the end of this section, we discuss the topological aspect
of NZES. As examined in Ref. [7], the index theorem relates
to the winding number W (k‖) and the number of ZESs on a
clean surface as follows:

W (k‖) = ±[n+(k‖) − n−(k‖)], (15)

where n+(k‖) [n−(k‖)] denotes the number of positive (neg-
ative) chiral zero-energy states at k‖. There are two possible
choices for the sign on the right-hand side of Eq. (15). When
we consider the surface of a semi-infinite superconductor
occupying x⊥ � 0 as shown in Fig. 1(a), we should choose
the positive sign. On the other hand, we should choose the
negative sign at the surface of a semi-infinite superconductor
occupying x⊥ � 0 [7]. However, this sign has no physical
meaning because the number of ZESs is always given by
|n+(k‖) − n−(k‖)|. As discussed in the previous subsection,
the index NZES is represented by the difference between the
total numbers of positive and negative chiral ZESs. Therefore,
by taking Eq. (15) into account, we find an important relation

NZES =
∑

k‖

′
W (k‖) = ±(N+ − N−) (16)

as a result of the index theorem. More specifically, the index
NZES is a topological invariant defined in terms of the wave
function in the superconducting states. Simultaneously, it is
an invariant defined in terms of the zero-energy solutions
in a differential equation. The index theorem mathematically
bridges the two different invariants. In physics, the index NZES

is an invariant that measures the degree of degeneracy of the
ZESs staying at the dirty surface of a nodal superconductor.
In the next section, we check the validity of our conclusion by
performing numerical simulations on tight-binding model.

III. NUMERICAL RESULTS

A. Unconventional superconductors

We apply the general argument in Sec. II to the several
time-reversal superconductors in two dimensions. The first
example is the three types of unconventional superconductors
characterized by px-, dxy-, and f -wave pairing symmetry.
We describe the present superconductors by the 2×2 BdG
Hamiltonian

Ĥ0(k) =
[

ξ (k) �μ(k)
�μ(k) −ξ (k)

]
, (17)

ξ (k) = h̄2k2

2m
− μF, (18)

�px
(k) = �0

kF
kx, (19)

�dxy
(k) = �0

k2
F

kxky, (20)

�f (k) = �0

k3
F

kx

(
k2

F − 2k2
y

)
, (21)

where the subscript μ = px , dxy , f labels the pairing sym-
metry, m denotes the effective mass of an electron, μF is the
chemical potential, �0 is the amplitude of the pair potential
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at zero temperature, and kF = √
2mμF/h̄ represents the Fermi

wave number. The Hamiltonian satisfies

�̂ Ĥ0(k) �̂−1 = −Ĥ0(k), �̂ =
[

0 −i

i 0

]
, (22)

which represents chiral symmetry of the Hamiltonian.
The one-dimensional winding number in Eq. (10) can be

further simplified to [7,8]

Wμ(ky) = 1

2

∑
ξ (k)=0

sgn
[
∂kx

ξ (k)
]
sgn[�μ(k)], (23)

where the summation is carried out for kx satisfying ξ (k) = 0
with fixed ky . From Eq. (23), the winding number for each
pairing symmetry is calculated as

Wpx
(ky) =

{
1 for |ky | < kF,

0 for |ky | > kF,
(24)

Wdxy
(ky) =

⎧⎨
⎩

1 for 0 < ky < kF,

−1 for 0 > ky > −kF,

0 for |ky | > kF,

(25)

Wf (ky) =
⎧⎨
⎩

1 for |ky | < kf ,

−1 for kf < |ky | < kF,

0 for |ky | > kF,

(26)

where kf = kF/
√

2. The total number of topologically pro-
tected ZESs at the clean surface is calculated as

Nclean =
∑
ky

′|Wμ(ky)|, (27)

according to the bulk-boundary correspondence. The number
of ZESs at the dirty surface, on the other hand, is evaluated by
the index NZES. By substituting Eqs. (24)–(26) into Eq. (16),
we obtain the index NZES for each pairing symmetry as

|NZES| =
⎧⎨
⎩

∑
|ky |<kF

= Nclean for px wave,
0 for dxy wave,∑

|ky |<kf
−∑

kf <|ky |<kF
�= 0 for f wave.

(28)

To check the validity of Eq. (28), we numerically calculate
the eigenenergy of an isolating unconventional superconductor
on the two-dimensional tight-binding model as shown in Fig. 2.
A lattice site is indicated by a vector r = j a0x + m a0 y,
where a0 denotes the lattice constant and x ( y) is a unit vector

j=1 j=Lx/a0

m=1

m=Ly/a0

Ld Ld

x

y

FIG. 2. Schematic picture of a superconductor on the tight-
binding lattice.

in the x (y) direction. The number of the lattice site in the x

and y directions is denoted by Lx/a0 and Ly/a0, respectively.
In the y direction, the periodic boundary condition is applied.
In the x direction, we apply the hard-wall boundary condition.
The wave functions of zero-energy surface states decay
exponentially into the bulk. Therefore, when the system length
Lx is much longer than the decay length of the zero-energy
states ξS, we can ignore the couplings between the zero-energy
states at the left surface (i.e., j = 1) and the right surface (i.e.,
j = Lx). As a consequence, when Lx � ξS is satisfied for
all the zero-energy states, we can expect 2×Nclean (2×NZES)
zero-energy states in the finite-size system with the clean
(dirty) surfaces, where the factor 2 is derived from the
contribution from two different surfaces in the x direction.
In the following numerical simulations, we only consider the
enough long system which enables us to ignore the couplings
between the zero-energy states at the different surfaces. We
introduce the nonmagnetic impurity potential by adding the
random onsite potentials v(r) in the outermost Ld/a0 layers
in the x direction as shown in Fig. 2. The amplitude of
v(r) is given randomly in the range of −VI/2 � v(r) � VI/2.
We numerically diagonalize the BdG Hamiltonian on the
tight-binding model which is shown in Appendix A 1. We
fix several parameters as μF = 1.5t , �0 = 1.0t , Lx = 60a0,
and Ly = 18a0 where t denotes the nearest-neighbor hopping
integral. The number of the zero-energy states at a clean surface
is evaluated from Nclean in Eq. (27). This parameter choice
leads to Nclean = 7 for a px- and a f -wave superconductor, and
Nclean = 6 for a dxy-wave superconductor. The number of the
zero-energy states at a dirty surface is evaluated from the index
NZES in Eq. (28). In the present parameters choice, we obtain
NZES = 7, 0, and 3 for px-, dxy-, and f -wave pairing symmetry,
respectively. In Figs. 3(a)–3(c), we show the numerical results
of energy eigenvalues, where the eigenenergy is labeled by an
integer n. The open symbols and the filled symbols respectively
denote the energy eigenvalues in a superconductor with clean
surfaces and those with dirty surfaces. We chose VI = 3.0t

and Ld = 5a0 to realize the dirty surfaces. As shown in
the open symbols of Figs. 3(a)–3(c), we find 2×Nclean = 14
zero-energy states at the clean surfaces of px-wave and f -wave
superconductor and 2×Nclean = 12 zero-energy states at the
clean surfaces of dxy-wave superconductor. Therefore, our
parameter choice satisfies the condition Lx � ξS for all the
zero-energy states. As shown in filled symbols of Fig. 3(c), for
instance, eight ZESs of the f -wave superconductor move away
from the zero energy by introducing the impurity potentials,
even though we find that six ZESs still keep staying at
zero energy. Since 2×|NZES| = 6 under the present parameter
choice, the argument in Sec. II predicts the number of ZESs
at a dirty surface exactly. Figures 3(a) and 3(b) show the
perfect agreement between our theory and numerical results.
For a px-wave superconductor, 2×|NZES| = 14 states remain
at zero energy. In a dxy-wave case, ZESs are absent at the dirty
surfaces.

B. Noncentrosymmetric superconductor I

Second, we apply the argument in Sec. II to the noncen-
trosymmetric superconductors (NCSs) in two dimensions. The

214503-4



STABILITY OF FLAT ZERO-ENERGY STATES AT THE . . . PHYSICAL REVIEW B 95, 214503 (2017)
E

n 
/ �

0

n

N N

E
n 
/ �

0

n

N

E
n 
/ �

0

n

FIG. 3. Energy eigenvalues of (a) px-, (b) dxy-, and (c) f -wave superconductor are plotted. In numerical simulation, eigenvalues are
calculated in decreasing order labeled by n in the horizontal axis. In the clean limit, as shown with the open symbols, we find 2×Nclean = 14
zero-energy states (ZESs) for px- and f -wave cases. For a dxy symmetry, the two states at a gap nodal point ky = 0 move from zero energy
due to the finite-size effect. Thus, the number of ZESs becomes 2×Nclean = 12. In the presence of potential disorder at two surfaces, as shown
with the filled symbols, the number of the ZESs is identical to 2×|NZES| which is 14 in (a), 0 in (b), and 6 in (c).

BdG Hamiltonian for a NCS is given by

Ȟ (k) =
[

ĥ(k) �̂(k)
−�̂∗(−k) −ĥ∗(−k)

]
, (29)

ĥ(k) = ξ (k)σ̂0 + g(k) · σ̂ , (30)

�̂(k) = i[ψ(k) + d(k) · σ̂ ]σ̂y, (31)

where σ̂ = (σ̂x,σ̂y,σ̂z) and σ̂0 denote Pauli matrices in spin
space and the 2×2 unit matrix, respectively. The absence
of inversion symmetry leads the spin-orbit coupling (SOC)
potential denoted by g(k) = −g(−k). Furthermore, the pair
potential becomes the admixture of the even-parity spin-singlet
component ψ(k) = ψ(−k) and the odd-parity spin-triplet pair
component d(k) = −d(−k) because parity is no longer a good
quantum index [37,38]. The spin-triplet pairing vector d(k) is
set to be parallel to the polarization vector of the SOC [37]
[i.e., d(k) ‖ g(k)]. The BdG Hamiltonian satisfies

�̌ Ȟ0(k) �̌−1 = −Ȟ0(k), �̌ =
[

0 σ̂y

σ̂y 0

]
, (32)

which represents the chiral symmetry of the Hamiltonian.
A superconductor with (dxy + p)-wave pairing symmetry

is an example of NCS which host the flat ZES at its clean
surface [11,12,29]. Under the Rashba-type SOC gr(k) =
α(ky x − kx y) with α being the coupling amplitude, the
normal-state Fermi surface splits into the two circles as
illustrated in Fig. 4, where the two wave numbers

k± = ∓mα

h̄2 +
√

k2
F +

(
mα

h̄2

)2

(33)

characterize the two Fermi surfaces. The pair potential of the
(dxy + p)-wave superconductor is given as [11,12,39]

ψ(k) = �sf (k), d(k) = �tf (k)
gr(k)

αk
, (34)

with f (k) = (kxky/k2) and k =
√

k2
x + k2

y . In this pair poten-

tial, there are eight nodal points which are located at (±k±,0)
and (0, ±k±) as illustrated in Fig. 4.

By applying a unitary transformation shown in Appendix B,
it is possible to deform the BdG Hamiltonian of the (dxy + p)-
wave superconductor as

Ȟ ′
0(k) =

[
Ĥ+(k) 0

0 Ĥ−(k)

]
, (35)

Ĥ±(k) =
[

ξ±(k) −�±(k)
−�±(k) −ξ±(k)

]
, (36)

ξ±(k) = ξ (k) ± |gr(k)|, (37)

�±(k) = f (k)[�t ± �s]. (38)

The chiral symmetry in this new basis is represented as

�̂± Ĥ±(k) �̂−1
± = −Ĥ±(k), �̂± = ∓σ̂y . (39)

k+

−k

kx

ky

FIG. 4. Two Fermi surfaces under the Rashba SOC are illustrated.
The eight nodal points are indicated by the black dots.
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E
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FIG. 5. Energy eigenvalues of a (dxy + p)-wave superconductor
are plotted in the same manner as in Fig. 3. An energy is normalized
by �T = �s + �t . In the clean limit, there are 16 zero-energy states
as shown with the open symbols. In the presence of random potential
at the two surfaces, on the other hand, the ZESs are absent as shown
with the filled symbols in agreement with NZES = 0.

By using Eqs. (36) and (39), the relevant winding number can
be calculated as [7,8]

W (ky) = W+(ky) − W−(ky), (40)

W±(ky) = 1

2

∑
ξ±(k)=0

sgn[∂kx
ξ±(k)]sgn[�±(k)], (41)

where the summation is carried out for kx that satisfies ξ±(k) =
0 with fixed ky . From Eq. (40), we obtain

W (ky) =
⎧⎨
⎩

2 sgn(ky) for |ky | < k+,

sgn(ky) for k+ < |ky | < k−,

0 for |ky | > k−
(42)

for �s > �t , and

W (ky) =
⎧⎨
⎩

0 for |ky | < k+,

−sgn(ky) for k+ < |ky | < k−,

0 for |ky | > k−
(43)

for �t > �s . The index NZES is calculated from Eq. (16).
Since the winding number satisfies W (ky) = −W (−ky), we
immediately find NZES = 0 for both �s > �t and �t > �s .

Figure 5 shows the eigenvalues of the BdG Hamiltonian
for a (dxy + p)-wave superconductor. The expression of
the Hamiltonian on the tight-binding model is given in
Appendix A 2. We chose parameters as μF = 2.0t , α = 0.1t ,
�s = 0.8t , �t = 0.2t , Lx = 50a0, Ly = 10a0, and Ld = 5a0.
The open and the filled symbols denote the energy eigenvalues
of a superconductor with the clean surface (VI = 0) and the
dirty surfaces (VI = 3.0t), respectively. The present parameter
choice leads Nclean = ∑

ky

′|Wμ(ky)| = 8. As shown with the
open symbol, we indeed find the 2×Nclean = 16 zero-energy
states at the clean surface. The random potential at the surfaces
completely lifts the degeneracy at zero energy as shown

with the filled symbols. The numerical results agree with
the argument in Sec. II. Since NZES = 0, the flat ZES in a
(dxy + p)-wave superconductor is fragile under the potential
disorder. At finite energies, the eigenvalues for dirty surfaces
are always doubly degenerate, which corresponds to the
Kramers doublets protected by time-reversal symmetry.

C. Noncentrosymmetric superconductor II

In a zinc-blende semiconductor quantum well confined in
the [110] crystal direction, the Dresselhaus [110] type spin-
orbit coupling described by gd(k) = βkx z becomes dominant.
The Hamiltonian for the normal states is given by

ĥP(k) = ξ (k)σ̂0 + βkxσ̂z. (44)

The electronic states described by Eq. (44) have been well
studied in spintronics because they show an unusual spin
property called persistent spin helix [40–43]. As shown in
Appendix C, the persistent spin-helix states can be also
obtained in the thin film growing along the [001] crystal
direction [40,41]. In what follows, we discuss the flat ZESs
appearing at a surface of a proximity-induced superconducting
Dresselhaus[110] thin film described by

Ȟ0(k) =
[

ĥP(k) �̂P(k)
−�̂∗

P(−k) −ĥ∗
P(−k)

]
, (45)

�̂P = i

[
�s + �t

kx

kF
σ̂z

]
σ̂y, (46)

where we assume the s-wave pairing symmetry for the spin-
singlet component. The Dresselhaus [110] SOC potential shifts
the Fermi surfaces in the kx direction as illustrated in Fig. 6.
The center of the Fermi surfaces is located at (±Q,0) with
Q = mβ/h̄2. The superconducting gap has four nodes on the
Fermi surface when the condition

βkF

μF
>

�2
s − �2

t

�s�t

(47)

kx

ky

QQ−

FIG. 6. Fermi surfaces under the Dresselhaus [110] SOC are
illustrated. The eight nodal points are indicated by the black dots.
Strictly speaking, the positions of the nodal points depend on the
parameters as shown in Eq. (48).
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is satisfied. The four nodal points are located at

(±rst kF, ± kQ), (48)

kQ = kF

√
1 − r2

st + rst (βkF/μF), (49)

as indicated by filled circle in Fig. 6, where rst = (�s/�t ).
The BdG Hamiltonian preserves both time-reversal and

time-reversal-like symmetry as

Ť± Ȟ0(k) Ť −1
± = Ȟ0(−k), (50)

Ť+ =
[
iσ̂x 0
0 −iσ̂x

]
K, Ť− =

[
iσ̂y 0
0 iσ̂y

]
K, (51)

where Ť 2
± = ±1. Therefore, we obtain two different chiral

symmetry operators as

�̌± Ȟ0(k) �̌−1
± = −Ȟ0(k), (52)

�̌+ =
[

0 −iσ̂x

iσ̂x 0

]
, �̌− =

[
0 σ̂y

σ̂y 0

]
. (53)

By applying the unitary transformation as

Ȟ ′(k) = Ǔ
†
0H0(k)Ǔ0, Ǔ0 =

⎡
⎢⎣

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎤
⎥⎦, (54)

the BdG Hamiltonian is block diagonalized into the two 2×2
sectors as Ȟ ′ = diag(Ĥ1,Ĥ2),

Ĥj (k) =
[

ξj (k) −�j (k)
−�j (k) −ξj (k)

]
(55)

for j = 1 − 2 with

ξ1(2)(k) = ξ (k) + (−)βkx, (56)

�1(2)(k) =
[
�t

kx

kF
+ (−)�s

]
. (57)

The chiral symmetry of each block component is represented
as

�̂±,j Ĥj (k) �̂−1
±,j = −Ĥj (k) (58)

for j = 1 − 2, where

�̂+,1 = σ̂y, �̂+,2 = σ̂y (59)

is originated from time-reversal-like symmetry, and

�̂−,1 = σ̂y, �̂−,2 = −σ̂y (60)

is originated from time-reversal symmetry. The definition of
the winding number depends on the form of the chiral symme-
try operator. From the chiral symmetry operator originated
from the time-reversal symmetry in Eq. (60), the winding
number is given by

W (ky) = W1(ky) − W2(ky), (61)

with

Wj (ky) = 1

2

∑
ξj (k)=0

sgn[∂kx
ξj (k)]sgn[�j (k)] (62)

E
n 
/ Δ

n

N

FIG. 7. Energy eigenvalues of a NCS with Dresselhaus [110]
SOC are plotted in the same manner as Fig. 3. The results are
normalized by �T = �s + �t . The number of ZESs is 12 in the
clean case as shown with the open symbols. All of the ZESs keep
staying at zero energy even in the presence of random potential at the
two surfaces as predicted by the index 2×|NZES| = 12.

for j = 1–2, where the summation is carried out for kx

satisfying ξj (k) = 0 at a fixed ky . The winding number in
each sector is calculated to be

W1(ky) = W2(ky) =
{

1 for |ky | < kQ,

0 for |ky | > kQ.
(63)

Although the winding number in each sector W1(2)(ky) is
nontrivial, the relation W (ky) = 0 always holds. As a conse-
quence, we find NZES = 0. The results suggest the degeneracy
at zero energy would be fragile under the potential disorder.
However, the winding number originated from time-reversal-
like symmetry can be nontrivial because the winding number
defined with Eq. (59) is given as

W (ky) = W1(ky) + W2(ky). (64)

As a consequence, we find

W (ky) =
{

2 for |ky | < kQ,

0 for |ky | > kQ,
(65)

Nclean = NZES = 2
∑

|ky |<kQ

. (66)

In Fig. 7, we show the energy eigenvalues of the NCS
with the Dresselhaus [110] SOC on the tight-binding model.
The BdG Hamiltonian used in the numerical simulation is
show in Appendix A 3. We chose parameters as μF = 1.0t ,
β = 0.1t , �s = 0.1t , �t = 0.9t , Lx = 50a0, and Ly = 10a0.
This parameter choice leads |NZES| = Nclean = 6. The results
for a superconductor with clean surface show 2×Nclean = 12
ZES as shown with the open symbols. Although we introduce
random impurity potential at its surfaces, the flat ZESs remain
unchanged as shown with the filled symbols in agreement
with the relation |NZES| = Nclean. This suggests the validity
of our conclusion in Sec. II. The degeneracy at zero energy
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is protected by chiral symmetry originated from the time-
reversal-like symmetry.

IV. CONCLUSION

We have discussed the effects of the random impurity
potential on the degenerate zero-energy states appearing
at the surface of a nodal superconductor preserving chiral
symmetry. A method called dimensional reduction enables
us to topologically characterize nodal superconductors in the
presence of translational symmetry. The number of zero-
energy bound states at a clean surface, Nclean, is calculated by
using a winding number defined in a one-dimensional Brillouin
zone and is usually much larger than unity proportional to
the surface width. By focusing on the chiral symmetry of
the Bogoliubov–de Gennes Hamiltonian, we show that an
index NZES characterizes the number of zero-energy states at a
dirty surface. We confirmed our conclusion with numerical
simulations on the tight-binding model. The index NZES

is defined by the chiral eigenvalues of zero-energy states.
Simultaneously, NZES is calculated from the winding number
in a one-dimensional Brillouin zone. The index theorem

explains the coincidence of two NZES calculated in the two
different ways. We conclude that NZES measures degree of
the degeneracy of zero-energy states at a dirty superconductor
surface. In experiments, potential disorder is inevitable in the
vicinity of the surface. Therefore, our conclusion sends a useful
message to experimentalists in this field as regards choosing a
target material.
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APPENDIX A: BOGOLIUBOV–DE GENNES HAMILTONIAN ON THE TIGHT-BINDING MODEL

We present the BdG Hamiltonian on a two-dimensional tight-binding lattice. The eigenvalues in Sec. III are by diagonalizing
the tight-binding Hamiltonian. The kinetic energy part and the impurity potential are common for all the superconductors and
are given by

Hkin =
ly∑

m=1

∑
α=↑,↓

⎡
⎣−t

lx−1∑
j=1

(ψ†
r+x̂,αψr,α + ψ†

r,αψr+x̂,α) − t

lx∑
j=1

(ψ†
r+ ŷ,αψr,α + ψ†

r,αψr+ ŷ,α) +
lx∑

j=1

(4t − μ)ψ†
r,αψr,α

⎤
⎦, (A1)

Himp =
⎛
⎝ ld∑

j=1

+
lx∑

j=lx−ld+1

⎞
⎠ ly∑

m=1

∑
α=↑,↓

v(r)ψ†
r,αψr,α, (A2)

where ψr,α (ψ†
r,α) is the annihilation (creation) operator of a electron at r = ja0x + ma0 y with spin α, t is the hopping integral,

and μ is the chemical potential. The unit lattice vectors in the x and y directions are defined by x̂ and ŷ, respectively. The number
of the lattice sites in the x (y) direction is represented by lx = Lx/a0 (ly = Ly/a0). We introduce the impurity potential v(r)
in the outermost ld = Ld/a0 layers in the x direction. The nonmagnetic impurity potential is described by v(r) which is given
randomly in the range of −VI/2 � v(r) � VI/2.

1. Unconventional superconductors

The total Hamiltonian of the unconventional superconductors is represented as H = Hkin + Hμ + Himp, where Hμ for μ = p,
d, and f depends on the pairing symmetry as

Hp =
lx−1∑
j=1

ly∑
m=1

∑
α

i�0

2
(ψ†

r+x̂,αψ
†
r,ᾱ − ψ†

r,αψ
†
r+x̂,ᾱ) + H.c., (A3)

Hd =
lx−1∑
j=1

ly∑
m=1

∑
α

sα�0

4
(ψ†

r+x̂+ ŷ,αψ
†
r,ᾱ + ψ†

r,αψ
†
r+x̂+ ŷ,ᾱ − ψ

†
r+x̂− ŷ,αψ

†
r,ᾱ − ψ†

r,αψ
†
r+x̂− ŷ,ᾱ) + H.c., (A4)

Hf =
lx−1∑
j=1

ly∑
m=1

∑
α

i�0

4
(ψ†

r+x̂+2 ŷ,αψ
†
r,ᾱ + ψ

†
r+x̂−2 ŷ,αψ

†
r,ᾱ − ψ†

r,αψ
†
r+x̂+2 ŷ,ᾱ − ψ†

r,αψ
†
r+x̂−2 ŷ,ᾱ) + H.c., (A5)

where ᾱ is the opposite spin of α and �0 is the pair potential at zero temperature. The factor sα is +1 for α =↑ and is −1 for
α =↓. For spin-triplet case, we assume a Cooper pair consists of two electrons with the opposite spin directions. In Sec. III, we
diagonalize the reduced BdG Hamiltonian into 2×2 Nambu space.
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2. (dx y + p)-wave superconductor

The Hamiltonian of the (dxy + p)-wave superconductor discussed in Sec. III B is described by adding the Rashba spin-orbit
interaction HR and the pair potential Hdxy+p to Hkin + Himp. The spin-orbit coupling term is represented by

HR = −i
λR

2

∑
α,β

ly∑
m=1

⎡
⎣lx−1∑

j=1

(σy)α,β(ψ†
r+x̂,αψr,β − ψ†

r,αψr+x̂,β) −
lx∑

j=1

(σx)α,β (ψ†
r+ ŷ,αψr,β − ψ†

r,αψr+ ŷ,β)

⎤
⎦. (A6)

The pair potential consists of five parts: Hdxy+p = H�1 + H�1 + H�2 + H�4 + H�5. Each part is represented by

H�1 = i
�s

4

∑
α,β

lx−1∑
j=1

ly∑
m=1

(σy)α,β[ψ†
r+x̂+ ŷ,αψ

†
r,β + ψ†

r,αψ
†
r+x̂+ ŷ,β − ψ

†
r+x̂− ŷ,αψ

†
r,β − ψ†

r,αψ
†
r+x̂− ŷ,β] + H.c., (A7)

H�2 =−i
�t

4

∑
α,β

lx−1∑
j=1

ly∑
m=1

(σz)α,β[ψ†
r+x̂,αψ

†
r,β − ψ†

r,αψ
†
r+x̂,β] + H.c., (A8)

H�3 = �t

4

∑
α

lx∑
j=1

ly∑
m=1

[ψ†
r+ ŷ,αψ†

r,α − ψ†
r,αψ

†
r+ ŷ,α] + H.c., (A9)

H�4 = i
�t

8

∑
α,β

lx−1∑
j=1

ly∑
m=1

(σz)α,β[ψ†
r+x̂+2 ŷ,αψ

†
r,β + ψ

†
r+x̂−2 ŷ,αψ

†
r,β − ψ†

r,αψ
†
r+x̂+2 ŷ,β − ψ†

r,αψ
†
r+x̂−2 ŷ,β] + H.c., (A10)

H�5 =−�t

8

∑
α

lx−2∑
j=1

ly∑
m=1

[ψ†
r+2x̂+ ŷ,αψ†

r,α + ψ
†
r−2x̂+ ŷ,αψ†

r,α − ψ†
r,αψ

†
r+2x̂+ ŷ,α − ψ†

r,αψ
†
r−2x̂+ ŷ,α] + H.c. (A11)

The amplitude of the pair potential for the spin-singlet (-triplet) component is represented by �s (�t ). The Pauli matrices in spin
space are represented by σν (ν = x,y,z).

3. Noncentrosymmetric superconductor with the persistent helix states

The BdG Hamiltonian for a NCS with the persistent spin-helix states discussed in Sec. III C is described by H = Hkin +
H 110

D + H�p
+ Himp. The spin-orbit coupling and the pair potential are given by

H 110
D = i

λD

2

∑
α,β

lx−1∑
j=1

ly∑
m=1

(σz)α,β(ψ†
r+x̂,αψr,β − ψ†

r,αψr+x̂,β), (A12)

H�p
=

∑
α,β

ly∑
m=1

⎡
⎣i�s

lx∑
j=1

(σy)α,βψ†
r,αψ

†
r,β + i

�t

2

lx−1∑
j=1

(σx)α,β(ψ†
r+x̂,αψ

†
r,β − ψ†

r,αψ
†
r+x̂,β)

⎤
⎦ + H.c. (A13)

APPENDIX B: UNITARY TRANSFORMATION FOR
THE (dx y + p)-WAVE SUPERCONDUCTOR

The BdG Hamiltonian of a (dxy + p) superconductor in
Sec. III B is represented by

Hk =
[

ĥk �̂k

−�̂∗
−k −ĥ∗

−k

]
, (B1)

ĥk = ξ (k)σ̂0 + gr(k) · σ̂ , (B2)

�̂k = if (k)

[
�s + �t

�t

αk
gr(k) · σ̂

]
σ̂2, (B3)

where gr(k) = α(ky x − kx y), f (k) = (kxky/k2), and k =√
k2
x + k2

y . We first apply a unitary transformation to

U
†
kHkUk = H ′

k with

Uk =
[
ûk 0
0 û∗

−k

]
, (B4)

ûk = 1√
2

[
1 ie−iθk

−ieiθk −1

]
, θk = arctan

[
ky

kx

]
. (B5)

The second unitary transformation

Hγ (k) = U
†
0H ′

kU0, U0 =

⎡
⎢⎣

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎤
⎥⎦ (B6)
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results in

Hγ (k) =
[
Ĥ+(k) 0

0 Ĥ−(k)

]
, (B7)

Ĥ±(k) =
[

E±(k) −�±(k)
−�±(k) −E±(k)

]
, (B8)

E±(k) = ξ (k)± | gR(k) | , (B9)

�±(k) = f (k)[�t ± �s]. (B10)

APPENDIX C: PERSISTENT SPIN-HELIX STATES WITH
COEXISTENCE OF RASHBA AND DRESSELHAUS [100]

SPIN-ORBIT COUPLING

We shown an alternative way to realize the persistent spin-
helix states [40,41]. Let us consider the thin film growing along
the [001] crystal direction. In such two-dimensional electron
system, the Rashba type SOC gr(k) = α(ky x − kx y) and the
Dresselhaus [001] type SOC g′

d(k) = β ′(kx x − ky y) coexist.
The Hamiltonian is described as

ĥRD(k) = ξ (k)σ̂0 + ĥR(k) + ĥ100
D (k), (C1)

ĥR = α(kyσ̂x − kxσ̂y), (C2)

ĥ100
D = β ′(kxσ̂x − kyσ̂y). (C3)

When we define

k± = 1√
2

(kx ± ky), (C4)

the Hamiltonian is rewritten as

ĥRD(k) = ξ ′(k)σ̂0 + ĥ+ + ĥ−, (C5)

where

ξ ′(k) = h̄2

2m
(k2

+ + k2
−) − μF, (C6)

ĥ± = λ±k±σ̂±, (C7)

λ± = 1

h̄
(β ± α), σ̂± = 1√

2
(σ̂x ∓ σ̂y). (C8)

The strength of the Rashba SOC is tunable by an externally
applied electric field. When we consider a special case of
α = β ′, which can be experimentally accessible [42,43], the
Hamiltonian is deformed as

ĥ(k) =
[

h̄2

2m
(k2

+ + k2
−) − μF

]
σ̂0 + β ′p+σ̂+. (C9)

The Hamiltonian in Eq. (C9) is unitary equivalent to that in
Eq. (44) [40]. Therefore, the persistent spin-helix states can be
also obtained in the thin film growing along the [001] crystal
direction. Moreover, as discussed in Sec. III C, we can expect
the flat ZESs at a dirty surface of a superconducting thin film
with coexistence of Rashba and Dresselhaus [001] spin-orbit
coupling.
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