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Spontaneous edge current in a small chiral superconductor with a rough surface
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We study theoretically the spontaneous edge current in a small chiral superconductor with surface roughness.
We obtained self-consistent solutions of the pair potential and the vector potential by solving the quasiclassical
Eilenberger equation and the Maxwell equation simultaneously. We then employed them to calculate numerically
the spatial distribution of the chiral edge current in a small superconductor. The characteristic behavior of the
spontaneous edge current depends strongly on the symmetries of the order parameters such as chiral p-, chiral
d-, and chiral f -wave pairing. The edge current is robust under the surface roughness in the chiral p- and chiral
d-wave superconductors. In the chiral d-wave case, the surface roughness tends to flip the direction of the chiral
current. On the other hand, the edge current in a chiral f -wave superconductor is fragile when there is surface
roughness. We also discuss the temperature dependence of a spontaneous magnetization, which is a measurable
value in standard experiments.
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I. INTRODUCTION

The experimental detection of a spontaneous edge current
could be direct evidence of chiral superconductivity. A
number of Cooper pairs sharing a specific angular momentum
carry the spontaneous edge current in chiral superconductors
[1,2], which can be experimentally measured as spontaneous
magnetization. Strontium ruthenate Sr2RuO4 is a leading
candidate for a chiral p-wave superconductor [3–5] whose pair
potential is described by �(kx ± iky) = �eiχθ in momentum
space. Here kx = cos θ (ky = sin θ ) is the normalized wave
number in the x (y) direction, and � is the amplitude of the
pair potential. The topological Chern number χ = 1 or −1
corresponds to the angular momentum of a Cooper pair. In
addition to chiral p-wave superconductivity, the possibilities
of chiral d-wave (χ = ±2) and chiral f -wave (χ = ±3)
superconductivity have been discussed in recent experiments
[6–16]. Several theories have suggested that the amount of
edge current becomes smaller in a chiral superconductor with
a larger |χ | [17,18]. However, unfortunately, no spontaneous
chiral current has yet been experimentally observed [19,20].

The absence of spontaneous magnetization in experiments
has mainly been attributed to three effects: (i) the Meissner
screening of the edge current by the bulk superconducting
condensate, (ii) the reduction of the chiral current by the
potential disorder near the surface of a superconductor, and (iii)
the complicated electronic structures of superconductors. The
first effect was partially studied by Matsumoto and Sigrist [1].
They theoretically confirmed a reduction in the edge current
caused by the Meissner effect in a chiral p-wave superconduc-
tor. However, the resulting spontaneous magnetization is large
enough to be measured in experiments. The second effect is
linked to the issue of the intrinsic angular momentum in the
3He-A phase [21,22]. Experimentally it is difficult to make a
superconducting sample with a specular surface. For instance,
a small ruthenate superconductor cluster can be fabricated by
using the focused ion beam technique [23,24], which would
seriously damage the sample quality near the surface. Several
theoretical papers have already suggested the presence of edge
states in a chiral p-wave superconductor when there is surface

roughness [25,26]. On the other hand, when a chiral p-wave
superconductor is covered by a clean normal metal, the chiral
current is dramatically reduced [27]. The third effect has been
discussed specifically in Sr2RuO4. It has been known that
the gap anisotropy [28,29] and the multiband structures [30]
suppress the chiral edge current. Even today, we do not know
how the Meissner screening and the surface roughness reduce
the edge current in chiral d- and f -wave superconductors. In
previous papers [31,32], we studied the Andreev bound states
[33–38] (ABSs) in time-reversal nonchiral superconductors
characterized by dx2−y2 -wave or px-wave pair potentials. We
found that the ABSs in a px-wave superconductor are robust
even in the presence of surface roughness, whereas those in a
d-wave superconductor are fragile against surface roughness.
This conclusion is well explained by the symmetry of the
Cooper pairs induced near the surface. However, it is unclear
if it is possible to generalize our conclusions straightforwardly
to chiral superconductors. We will address these issues in the
present paper.

In this paper, we theoretically study the spontaneous edge
currents and the spontaneous magnetization in a small chiral
superconducting disk based on the quasiclassical Eilenberger
formalism. To discuss the relation between the pairing symme-
try and the sensitivity of the chiral edge current to the surface
roughness, we consider the simple chiral order parameters on
a circular shaped Fermi surface. By solving the Eilenberger
and Maxwell equations self-consistently and simultaneously,
we obtain the spatial profiles of the chiral edge currents and
the temperature dependence of a spontaneous magnetization.
The surface roughness is considered in terms of the impurity
self-energy of a quasiparticle. To define the magnetization of a
sample, we need to consider a finite-size superconductor such
as disks. Moreover, setting the radius of a disk to be comparable
to the coherence length allows us to justify the assumption that
there is no chiral-domain wall in a disk. We conclude that the
robustness of the spontaneous edge current depends strongly
on the paring symmetry. In a chiral p-wave superconductor, the
amplitude of the chiral current in a disk with a rough surface
is comparable to that in a disk with a specular surface. In a
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chiral d-wave superconductor, there are two edge channels in
a disk with a specular surface. They carry the chiral currents
in opposite directions. In the presence of surface roughness,
one channel near the surface disappears and the other channel
far from the surface carries the robust chiral current. We show
that the surface roughness changes the net-current direction
in a chiral d-wave disk. The edge current in a chiral f -wave
superconductor is fragile in the presence of surface roughness.
The effects of Meissner screening on the chiral edge current
depend on the spatial current distribution near the surface.
When the current decreases monotonically with increases in
the distance from the surface, the Meissner effect always
reduces the chiral current. On the other hand, when the chiral
current changes its direction as a function of distance from the
surface, the Meissner screening effect becomes weaker. Such
a complicated current distribution causes the self-screening
effect among edge currents flowing in opposite directions.

This paper is organized as follows. In Sec. II, we ex-
plain the quasiclassical Eilenberger formalism and define
the spontaneous magnetization of a small superconducting
disk. In Sec. III, we present results obtained using non-self-
consistent simulations (i.e., with a homogeneous pair potential
and without a vector potential). In Sec. IV, we discuss the
spontaneous edge current in a superconducting disk with a
specular surface. In Sec. V, we study the effects of surface
roughness on the spontaneous edge current. In Sec. VI, we
demonstrate the temperature dependence of a spontaneous
magnetization, which is a measurable value in experiments.
In Sec. VII, we summarize this paper.

II. QUASICLASSICAL EILENBERGER THEORY

Let us consider a small chiral superconducting disk as
shown in Fig. 1. We assume that there are no chiral domains
by choosing the radius of the disk R to be comparable
to the coherence length ξ0 = �vF /2πTc, where vF is the
Fermi velocity and Tc is the superconducting transition
temperature. We apply the quasiclassical Green’s function
theory of superconductivity [39] to calculate the edge current
of a chiral superconductor. In an equilibrium superconductor,
the Eilenberger equation takes the form

ivF k · ∇r ǧ + [Ȟ + �̌ ,ǧ ]− = 0, (1)

where vF is the Fermi velocity, k is the unit wave vector on
the Fermi surface, and [α,β]− = αβ − βα. We employ the
isotropic cylindrical Fermi surface (i.e., no kz dependence) as
studied in Ref. [1] because most chiral superconductors are
layered materials. Throughout this paper, we use the set of

FIG. 1. Schematics of superconducting disks. The disk with a
specular surface and that with a rough surface are shown in panels (a)
and (b), respectively. The radius and thickness of a disk are denoted by
R and D, respectively. The width of the disordered region is denoted
by W in panel (b). The radius is small enough to allow us to assume
that there is no chiral domain in the disk.

units � = kB = c = 1, where 2π� is the Planck constant, kB

is the Boltzmann constant, and c is the speed of light. The
matrices ǧ and Ȟ are defined as follows:

ǧ(r,k,iωn) =
[

ĝ(r,k,iωn) f̂ (r,k,iωn)

−f̂
˜

(r,k,iωn) −ĝ
˜
(r,k,iωn)

]
, (2)

Ȟ (r,k,iωn) =
[
ξ̂ (r,k,iωn) �̂(r,k)

�̂
˜

(r,k) ξ̂
˜
(r,k,iωn)

]
, (3)

with ξ̂ (r,k,iωn) = [iωn + evF k · A(r)]σ̂0, where ωn = (2n +
1)πT is the Matsubara frequencies with n being an integer,
T is the temperature, �̂ represents the pair potential, σ̂0 is
the 2 × 2 identity matrix in spin space, and A is the vector
potential induced by the chiral edge current. We introduce the
definition K

˜
(r,k,iωn) = K∗(r, − k,iωn). The symbol ·̌ rep-

resents a 4 × 4 matrix structure in particle-hole space and the
symbol ·̂ represents a 2 × 2 matrix structure in spin space.

We consider three chiral superconductors with different
pairing symmetries: spin-triplet chiral p-wave, spin-singlet
chiral d-wave, and spin-triplet chiral f -wave pairings. In
the spin-triplet superconductor, we assume that the pairing
interactions work between two electrons with opposite spins.
This assumption does not loose any generality of the argument
below. The pair potential are described by

�̂(r,θ ) =
{
�(r,θ )σ̂1 for a spin triplet,

�(r,θ )iσ̂2 for a spin singlet,
(4)

where σ̂j for j = 1–3 are the Pauli matrices in spin space. The
matrix’s Green functions in Eq. (2) can be represented by the
scaler Green’s functions as

ĝ(r,θ,iωn) = g(r,θ,iωn)σ̂0, (5)

f̂ (r,θ,iωn) =
{
f (r,θ,iωn)(−iσ̂1) for a triplet

f (r,θ,iωn)σ̂2 for a singlet.
(6)

The pair potential in a chiral superconductor is described by

�(r,θ ) = �1(r) cos(χθ ) + i�2(r) sin(χθ ), (7)

where θ is the azimuthal angle in the momentum space (i.e.,
kx = cos θ and ky = sin θ ), and �1 and �2 are the local
amplitudes of two independent components. The topological
numbers χ = ±1, ±2, and ±3 characterize the chiral p-, chiral
d-, and chiral f -wave superconductivities, respectively. The
doubly degenerate chiral superconducting states are indicated
by ±χ . In this study, we consider superconducting states with
a positive χ . Deep inside a superconductor (i.e., bulk region),
the relation �1 = �2 is satisfied. Therefore the pair potentials
in the bulk are represented as

�(θ ) = �̄(T )eiχθ , (8)

where �̄(T ) is the amplitude of the uniform pair potential at
a temperature T . The amplitude of the superconducting gap is
isotropic in momentum space. In the simulations, �1 and �2

are self-consistently determined by the gap equation,[
�1(r)

�2(r)

]
= N0g0πT

∑
ωn

∫
dθ ′

2π
f (r,θ ′,iωn)

[
V1(θ ′)
V2(θ ′)

]
, (9)
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where N0 is the density of states per spin at the Fermi level in
three dimensions. The coupling constant g0 is determined by

(N0g0)−1 = ln

(
T

Tc

)
+

nc∑
n=0

1

n + 1/2
, (10)

where nc = (ωc/2πT ) with ωc being the cutoff energy. The
functions V1 and V2 represent the attractive interactions as

V1(θ ) = 2 cos(χθ ), V2(θ ) = 2 sin(χθ ). (11)

In our model, the Andreev bound states never appear at the
surface in the z direction (i.e., the top and bottom surfaces in
Fig. 1) because the pair potential does not depend on kz [38].
As a result, the pair potential is less dependent on z. Thus, by
setting the disk thin enough, D � ξ0 < λL, we ignore the z

dependence of the quasiclassical Green’s functions. However,
the thickness of the disk needs to be larger than the Fermi
wavelength 1/kF , so that the quasiclassical theory can be
applied [40,41].

The effects of the rough surface are taken into account
through the impurity self-energy, which is defined by

�̌(r,iωn) =
{

i
2τ0

∫
dθ
2π

ǧ(r,θ,iωn) for r > R − W ,

0 for r < R − W ,
(12)

where r = (x2 + y2)1/2 and τ0 is the mean free time due to
the impurity scatterings. The self-energy has finite values only
near the surface, as shown in Fig. 1(b), where W is the width
of the disordered region.

The electric current j (r) is calculated from the Green’s
function

j (r) = πevF N0

2i
T

∑
ωn

∫
dθ

2π
Tr[Ť3 k ǧ(r,θ,iωn)], (13)

where Ť3 = diag[σ̂0, − σ̂0]. The vector potential is determined
by solving the Maxwell equation,

∇ × A(r) = H(r), (14)

∇ × H(r) = 4π j (r). (15)

In a finite-size superconductor, we define the amplitude of
a spontaneous magnetization M in terms of the spontaneous
magnetic field H(r) as

M = 1

ν

∫
d r H(r), (16)

where ν = πR2D is the volume of a small superconducting
disk. In this paper, we did not calculate the magnetic field
in three dimensions. We obtain H by solving the Maxwell
equation in the x-y plane with the boundary condition
H (x,y) = 0 outside of the disk, and assume that the magnetic
field is homogeneous in the z direction [i.e., H(r) = H (x,y) ẑ
with ẑ being the unit vector]. We iterate the Eilenberger
equation for the Green’s function and the Maxwell equation
for the vector potential to obtain the self-consistent solutions
of �1(r), �2(r), A(r), and �̌(r,iωn).

We start all of the simulations with the initial conditions
�1(r) = �2(r) = |�̄(T )| and A(r) = 0, where |�̄(T )| is the
amplitude of the pair potential in a homogeneous superconduc-
tor at a temperature T . Throughout this paper, we fix several

parameters: the radius of a disk R = 10ξ0 and the cutoff
energy ωc = 6πTc. The magnetic field and the spontaneous
magnetization are measured in units of the second critical mag-
netic field Hc2 = �c/|e|ξ 2

0 . The current density is normalized
to j0 = 2|e|vF N0Tc = �c2/4π2|e|λ2

Lξ0. In the quasiclassical
theory, the London length λL = (mc2/4πnee

2)1/2 with ne

being the electron density is a parameter characterizing the
spatial variation of magnetic fields and is fixed at λL = 5ξ0.
In this paragraph, we explicitly denoted � and c to avoid
misunderstandings.

To solve the Eilenberger equation in a disk geometry, we ap-
ply the Riccati parametrization to the Green’s function [42–44]
and the technique discussed in Ref. [45]. By using the Riccati
parametrization, we can separate the Eilenberger equation into
the two Riccati-type differential equations. Solving the Riccati
equations along a sufficiently long quasiclassical trajectory
(typically 30 times of the coherence length), we can obtain the
solutions of the Eilenberger equation.

As we will demonstrate in the following sections, the edge
currents show complicated spatial profiles depending on the
pairing symmetry. To analyze such behaviors, we decompose
the electric current into a series of current components in terms
of the symmetry of Cooper pairs. By using the normalization
relation g2 − sνf f

˜
= 1 under the assumption ff

˜
� 1, we

represent the normal Green’s function as g ≈ 1 + sνff
˜
/2,

where we have used the Eq. (6) and sν = 1 (sν = −1) for the
spin-triplet (spin-singlet) pair potential. By substituting the
expression into the current formula in Eq. (13), the electric
current can be expressed as [46]

j (r) =
∑
ωn>0

jωn
(r), (17)

jωn
= 4πevF N0T

∫
dθ

2π

1

2
sν k Im[ff

˜
], (18)

where we have used the relation g(r,θ,iωn) =
−g∗(r,θ,−iωn). Generally speaking, the pairing function
f (r,θ,iωn) can be decomposed into the Fourier series

f (r,θ,iωn) =
∑
a=0

f c
a (r,iωn) cos(aθ )

+
∑
b=1

if s
b (r,iωn) sin(bθ ). (19)

The surface breaks locally the inversion symmetry and
induces subdominant pairing components whose symmetries
are different from that of the pair potential. In the absence of
the vector potential, f c

a and f s
b are real functions. When we

consider the current profile at y = 0, the electric current in the
y direction becomes

jy(x) =
∑
ωn

∑
ab

jab(iωn), (20)

jab(iωn) = 4π |e|vF N0 T f c
a f s

b Iab, (21)

Iab = sν(−1)b(δb,1−a + δb,a+1 − δb,a−1)/4, (22)

where we use the relations f
˜

(r,θ,iωn) = f ∗(r,θ + π,iωn)
and

∫
dθ sin θ cos(aθ ) sin(bθ )= (δb,1−a+δb,a+1−δb,a−1)π/2

for a � 0 and b � 1. The Kronecker’s δ functions appearing
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FIG. 2. Chart of Iab in Eq. (22). The diagonal lines connecting cos(aθ ) and sin(bθ ) indicate possible combinations of f c
a and f s

b for the
chiral currents. The solid (broken) lines mean Iab is positive (negative). The sign of Iab in a spin-singlet superconductor is opposite to that in
a spin-triplet superconductor due to an extra sign factor sν . The double underlines indicate the principal pairing component linking to the pair
potential [i.e., cos(χθ ) and sin(χθ )]. At the first line, “1” represents the s-wave component.

in Eq. (22) suggest that only the limited combinations of
f c

a and f s
b contribute to the supercurrents, (e.g., a = b ± 1).

Moreover, the direction of the decomposed current jab in
Eq. (21) depends on the signs of f c

a f s
b and Iab. The signs

of Iab mainly determine the current directions because f c
a f s

b

appearing at a certain surface have the same signs in most
cases. We show a chart of sgn[Iab] in Fig. 2. The diagonal
lines connecting cos(aθ ) and sin(bθ ) mean the possible
combinations for carrying the currents. The solid (broken)
lines indicate that Iab is positive (negative). In a chiral p-wave
superconductor, for example, I01 and I21 have the opposite
signs of each other. As a result, the decomposed currents j01

and j21 flow in opposite directions.

III. NON-SELF-CONSISTENT SIMULATION

Before turning into the effects of surface roughness and
those of the Meissner screening, the chiral currents in the
uniform pair potential at A = 0 should be summarized. The
results presented in this section are qualitatively the same
as those obtained by the Bogoliubov–de Gennes (BdG)
formalism in Refs. [17] and [18].

FIG. 3. Current densities in a disk of a chiral superconductor
with a constant pair potential �1(2)(r) = |�̄(T )| at A(r) = 0, where
|�̄(T )| is the amplitude of the pair potential at a temperature T in a
homogeneous superconductor. Here, we show the current distribution
at y = 0. The radius of a superconducting disk, the temperature, and
the cutoff energy are set to R = 10ξ0, T = 0.2Tc, and ωc = 6πTc.

The spatial dependences of the edge current are shown in
Fig. 3, where we show the spatial distribution of the current
in the y direction jy(x) at y = 0, where the temperature
is set to T = 0.2Tc. The results are circular symmetric on
a superconducting disk. In a chiral p-wave superconductor
(χ = 1), the amplitude of the edge current takes its maximum
at r = R and monotonically decreases with increasing the
distance from the surface. When we observe the current
from the +z axis, the chiral current flows in the clockwise
direction. The current distributions in chiral d-wave (χ = 2)
and chiral f -wave (χ = 3) superconductors are rather more
complicated than that in a chiral p-wave case. The current
density is negative (clockwise) around x/ξ0 = 10 and is
positive (counterclockwise) for x/ξ0 < 9 in a chiral d-wave
superconductor. In a chiral f -wave case, the current density is
negative for 9.5 < x/ξ0 < 10, positive for 7.8 < x/ξ0 < 9.5,
and negative again for x/ξ0 < 7.8. The net current density J =∫ R

0 dx jy(x)|y=0 decreases with increasing the chiral index
χ because there are two (three) current channels in a chiral
d-wave (f -wave) superconductor and they carry the currents
in opposite directions.

IV. DISK WITH A SPECULAR SURFACE

In this section, we discuss the current distribution of a
chiral-superconducting disk with a specular surface under the
self-consistent pair potentials and the vector potential. The
results are obtained by solving the Eilenberger and Maxwell
equations simultaneously and self-consistently. In Sec. IV A,
we consider only the self-consistent pair potential at A = 0
in Eq. (3) to analyze the complicated spatial distribution
of the chiral current. The results tell us the symmetry of
Cooper pairs that carry the chiral current. The effects of
self-induced magnetic fields are briefly discussed in Sec. IV B.
The parameters are set to the same values used in Fig. 3.

A. Results under self-consistent pair potential at A = 0

In Fig. 4, we show the spatial dependence of the pair
potentials �1 and �2. In a chiral p-wave superconductor,
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FIG. 4. Pair potentials in a disk of a chiral superconductor. The
results are obtained by solving self-consistently the Eilenberger
equation under the condition A(r) = 0. The superconducting disk
is in the clean limit. The pair potentials are normalized to |�̄(T )|, the
amplitude of the pair potential in a homogeneous superconductor at
a temperature T . The parameters are set to the same values used in
Fig. 3.

the pair potential �1 is strongly suppressed, whereas �2 is
slightly enhanced near the surface as shown in Fig. 4(a).
The suppression and enhancement are closely related to the
formation of the surface ABSs. Namely, �1 changes its sign
while the quasiparticle is reflected by a specular surface.
These spatial variations of the pair potentials affect the edge
current. The current density jy(x) at y = 0 in Eq. (20) is
shown in Fig. 5(a). In a chiral p-wave disk, the edge current
monotonically decreases with increasing the distance from the
edge. The edge current under the self-consistent pair potential
in Fig. 5(a) flows in much wider area than that obtained by
the uniform pair potential in Fig. 3. The range of the edge
is determined by the spatial variation of the pair potential in
Fig. 4.

The surface breaks locally the inversion symmetry and the
spatial variation of the pair potential breaks the translational
symmetry. As a result, the subdominant pairing correlations
are induced near the surface [47]. In Fig. 2, we enumerate
the orbital symmetry of such subdominant components. The
double underlines indicate the principal pairing component
linked to the pair potential. At the first row, 1 represents
s-wave symmetry. In a chiral p-wave case, the spatial variation
of the principal component cos(θ ) induces the subdominant
component such as s-wave, d-wave cos(2θ ), f -wave cos(3θ ),
. . . . In the same way, the principal component sin(θ ) induces
the subdominant component of d-wave sin(2θ ), f -wave
sin(3θ ), . . . . The current is decomposed into the series of
jab in Eq. (21). The results for a chiral p-wave disk are shown
in Fig. 5(b), where j01, j21, j23, and j43 contribute mainly
to the current. Here jab shown in Fig. 5(b) are calculated
at the lowest Matsubara frequency ω0. We have confirmed
that

∑
ab jab(ω0) is almost identical to the current density

obtained from the normal Green’s function j (ω0) and that

FIG. 5. Results for a chiral p-wave disk with a specular surface
obtained by the self-consistent simulation under A(r) = 0. The chiral
current jy(x) in Eq. (20) at y = 0 is shown in panel (a). The
decomposed current jab at the lowest Matsubara frequency in Eq. (21)
is shown in panel (b). All of the currents in panels (a) and (b) are
normalized to j0 = 2|e|vF N0Tc. The parameters are set to the same
values used in Fig. 3.

the components at higher Matsubara frequencies have almost
the similar spatial distribution as jab at ω0. Reflecting the signs
of Iab in Fig. 2, j01 and j23 flow in the clockwise direction,
whereas j21 and j43 go in the counterclockwise direction. The
magnitudes of j01 and j23 are slightly larger than j21 and j43,
respectively. As a consequence, the net edge current flows in
the clockwise direction. We have confirmed that other possible
jab are negligible. The decomposed currents in Fig. 5(b) tell
us the symmetry of Cooper pairs that carry the edge current.
The partial current j01 represents the current carried by the
combination of s-wave and py-wave Cooper pairs. The current
j21 are also understood as the current carried by dx2−y2 -wave
× py-wave Cooper pairs.

All of the Cooper pairs in a chiral p-wave superconductor
belong to the spin-triplet symmetry class in the absence of spin-
dependent potentials. Therefore, even-parity pairs induced at
a surface have the odd-frequency symmetry because of the
antisymmetry relation derived from the Fermi-Dirac statistics
of electrons

f̂ (r,θ,iωn) = −f̂ T(r,θ + π, − iωn), (23)

where ·T represents the transposition of a matrix and means the
commutation of the two spins of a Cooper pair. The odd-parity
symmetry accounts for the negative sign on the right-hand
side of Eq. (23) in a spin-triplet superconductor. On the
other hand, the induced spin-triplet even-parity components
satisfy Eq. (23) by their frequency dependence. They are
so-called odd-frequency Cooper pairs [48,49]. As shown in
Fig. 5(b) and Eq. (21), the spontaneous edge current in a chiral
superconductor is carried by the combination of the even- and
odd-frequency Cooper pairs staying at a surface.

In a chiral d-wave superconductor, �2 is responsible for
the formation of the surface ABSs. Correspondingly, the pair
potential �1 is slightly enhanced near the surface as shown in
Fig. 4(b). The spatial profile of the current is shown in Fig. 6(a).
As is the case in the non-self-consistent simulation, there are
two edge channels in a chiral d-wave disk. The current in the
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FIG. 6. Results for a chiral d-wave disk with a specular surface
obtained by the self-consistent simulation under A(r) = 0: current
density jy (a) and dominant components jab (b). The results are
plotted in the same manner as in Fig. 5.

clockwise direction flows along the surface and the current in
the counterclockwise flows around x = ±7ξ0. In Fig. 6(b), we
decompose the current into the series of jab, where we show
only dominant components of j21, j23, and j01. We note that
j12 and j32 (not shown) have almost the same profile as j01 and
that other components are negligible. The principal pairing
components in a chiral d-wave superconductor are f c

2 cos(2θ )
and f s

2 sin(2θ ) as shown in Fig. 2. The spatial variation of
the pair potential generates the odd-frequency components
f s

1 sin(θ ) and f s
3 sin(3θ ). These induced components carry the

spontaneous current indicated by j21, j23, j12, and j32. As
shown in Fig. 6(b), j21 and j23 flow in opposite directions
because I21 and I23 have opposite signs. As a result, the net
edge current becomes smaller than that in a chiral p-wave disk.

In a chiral f -wave disk, �1 is suppressed and �2 is
slightly enhanced near the surface due to the emergence of
the surface ABSs as shown in Fig. 4(c). The current profile
and the decomposed currents jab are shown in Figs. 7(a) and
7(b), respectively. Although the spatial profile of the current is
greatly modified by the self-consistent pair potentials, Fig. 7(a)
suggests that there are three current channels. The current den-
sity is negative for 8 < x/ξ0, is positive for 6 < x/ξ0 < 8, and
is negative again for 0 < x/ξ0 < 6. Figure 7(b) shows that the
spatial dependence of the current components j23, j43, and j34

are responsible for such a complicated current profile. We note
that j21 and j32 (not shown) have almost the same profile as j34.

B. Results under self-consistent pair potential
and vector potential

We take into account the vector potential A induced by
the edge current to investigate the Meissner screening effect.
The pair potential and the vector potential are determined
in a self-consistent way by solving the Eilenberger and
Maxwell equations simultaneously. The spatial profiles of
the pair potentials are qualitatively the same as those in
Fig. 4. The spatial profiles of the chiral edge currents are
shown in Fig. 8(a). In Figs. 8(b)–8(d), we compare the local
magnetic fields obtained under the self-consistent field (SCF)
with that under the non-self-consistent field of the vector

FIG. 7. Results for a chiral f -wave disk with a specular surface
obtained by the self-consistent simulation under A(r) = 0: current
density jy (a) and dominant components jab (b). The results are
plotted in the same manner as Fig. 5.

potential (non-SCF). The latter is calculated from the current
distribution in Figs. 5(a), 6(a), and 7(a) by using the relation
in Eq. (15).

FIG. 8. (a) Current densities in a disk of a chiral superconductor
with a specular surface (a). The results are obtained by solving
the Eilenberger and Maxwell equations self-consistently and simul-
taneously. The penetration depth is fixed at λL = 5ξ0. The other
parameters are set to the same values used in Fig. 3. The current
densities are normalized to j0 = 2|e|vF N0Tc. In panels (b)–(d), we
compare the spatial distributions of the self-consistent fields (SCF)
with those of the non-self-consistent fields (non-SCF). The former is
obtained by the current densities in panel (a) by using the relation
in Eq. (15). The latter is calculated from the current distributions in
Figs. 5(a), 6(a), and 7(a). The magnetic fields are scaled in units of
Hc2 = �c/|e|ξ 2

0 .
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FIG. 9. Pair potentials in a disk of a chiral superconductor with
a rough surface as indicated by the shadowed area. The results are
obtained by solving the Eilenberger equation self-consistently at A =
0. The parameters are set to the same values used in Fig. 3. The
magnetic penetration depth is λL = 5ξ0.

In a chiral p-wave disk, the Meissner screening by
the superconducting condensate suppresses dramatically the
spontaneous magnetization as shown in Fig. 8(b). As a result,
the amplitude of the current at x = R is less than 0.13j0 under
the SCF in Fig. 8(a), whereas it is about 0.27j0 under the
non-SCF in Fig. 5(a). The magnetic field near the center of a
disk remains at a finite value in both the SCF and non-SCF
simulations. This magnetic-field penetration is a results of the
finite-size effects. At the surface of a semi-infinite sample, we
have confirmed the current inversion because of the Meissner
screening current as seen in Fig. 2 in Ref. [1]. Namely, the
bulk condensate generates the screening current, which flows
in the opposite direction to the chiral current at the surface.
As a result, the magnetic field in the bulk region vanishes in a
semi-infinite superconductor.

In a chiral d-wave superconductor, the magnetic field is
mainly localized around x = ±8ξ0 as shown in Fig. 8(c). The
results with the SCF are slightly smaller than those with the
non-SCF. Thus the Meissner effect in a chiral d-wave disk is
much weaker than that in a chiral p-wave one. The current
profile under the non-SCF in Fig. 6(a) shows that there are
two channels for the edge current. One is the outer channel
for the clockwise current and the other is the inner channel
for the counterclockwise current. The induced magnetic field
by the inner current well screens that by the outer current
intrinsically. Such a self-screening effect makes the Meissner
screening effect weak in a chiral d-wave disk. Actually such
characteristic current profiles with the non-SCF in Fig. 6(a)
are well preserved in the results with the SCF in Fig. 8(a). The
current amplitude at the surface x = R reaches about 0.18j0

in Fig. 8(a) and about 0.19j0 in Fig. 6(a). Thus, in a chiral
d-wave disk, the Meissner effect modifies the edge current
only slightly, as shown in Fig. 8(c).

The result of the edge current for a chiral f -wave super-
conductor in Fig. 8(d) can be explained in the same way.
There are three channels for the edge current in a chiral

FIG. 10. Results for a chiral p-wave disk with a rough surface
obtained by the self-consistent simulation at A(r) = 0. The current
density jy(x) at y = 0 in Eq. (20) is shown in panel (a). The dominant
components jab at the lowest Matsubara frequency are shown in
panel (b).

f -wave case as discussed in Fig. 7(a). The self-screening effect
works in this case as well. The characteristic behavior of the
edge current with the non-SCF in Fig. 7(a) remains almost
unchanged even with the SCF, as shown in Fig. 8(a). However,
because the self-screening effect does not sufficiently exclude
the local field, the magnetic field around the center of a disk is
suppressed by the Meissner effect, as shown in Fig. 8(d).

V. DISK WITH A ROUGH SURFACE

In this section, we discuss the effects of a rough surface on
the chiral edge currents. The width of the disordered region
[shadowed in Fig. 1(b)] is set to be W = 3ξ0 because the
chiral edge current in the clean limit mainly flows in such
area as shown in Fig. 8(a). The strength of roughness is set to
ξ0/� = 1.0, where � = vF τ0 is the elastic mean free path of a
quasiparticle. The other parameters are set to the same values
used in Fig. 5. The rough surface drastically changes the spatial
profile of the pair potential and that of induced subdominant
pairing components. Thus we first summarize symmetry of
Cooper pairs appearing near the rough surface in Sec. V A.
Then we discuss briefly the Meissner screening effect by the
bulk condensate in Sec. V B.

A. Results under self-consistent pair potential at A = 0

Here we discuss the results obtained by solving only the
Eilenberger equation under the condition A = 0 in Eq. (3).
We obtain the self-consistent solutions of �1(r), �2(r), and
�̂(r,iωn). The pair potentials are presented in Fig. 9. The
surface roughness strongly suppresses the pair potentials �1

and �2 in the disordered region of a chiral p-wave disk. At the
interface between the disordered and clean regions (we refer to
it as the d-c interface in what follows), �1 is suppressed more
significantly than �2, which suggests the formation of the
ABSs there [26]. We show the current density jy at y = 0 and
the dominant current components jab in Fig. 10. Comparing
Fig. 5(a) with 10(a), one can find that the peak of the edge
current moves from the surface to the d-c interface, and that its
maximum value 0.20j0 is comparable to the maximum value
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FIG. 11. Results for a chiral d-wave disk with a rough surface
obtained by the self-consistent simulation at A(r) = 0: current
density jy (a) and dominant components jab (b). The results are
plotted in the same manner as Fig. 10.

in the clean limit. As shown in Fig. 10(b), the edge current in a
chiral p-wave disk is mainly carried by three components; j01,
j21, and j12. Among them, the combination of s-wave × py-
wave pairs (j01) dominates obviously the chiral current in a
disk with a rough surface. The spatial variation in �1 generates
the s-wave and dx2−y2 -wave odd-frequency pairs [32]. The
induced s-wave pairs, in particular, are robust even under
the random potential. Such property supports the robustness
of the chiral edge current in a chiral p-wave superconductor.

The edge current in a chiral d-wave disk shows a qualita-
tively different behavior from that in a chiral p-wave case. As
shown in Fig. 11(a), the chiral current in a disk with surface
roughness flows only in the counterclockwise direction. This
behavior can be understood by comparing the current profile
in Fig. 6(a) with that in Fig. 11(a). In the clean disk, there
are two edge currents: the outer current running flowing in
the clockwise direction and the inner current running in the
counterclockwise direction as shown in Fig. 6(a). The surface
roughness eliminates the outer current channel. However,
the inner current channel remains even in the presence of the
surface roughness and is responsible for the chiral current in
the counterclockwise direction. We have confirmed that the
inner current can survive in the presence of much stronger
roughness such as ξ0/� ∼ 30. The decomposed components
of the current jab are shown in Fig. 11(b). The edge current
is mainly carried by five combinations: j01, j12, j21, j23, and
j32. The four components j12, j21, j23, and j32 almost cancel
one another. As shown in Fig. 9(b), the surface roughness
suppresses both �1 and �2 in the same manner near the
shadowed area, which results in

f c
2 (x) � f s

2 (x). (24)

The spatial variation of �1 generates mainly f c
1 cos(θ ) and

f c
3 cos(2θ ) with f c

1 (x) � f c
3 (x). In the same way, the spatial

variation of �2 induces f s
1 sin(θ ) and f s

3 sin(3θ ) with f s
1 (x) �

f s
3 (x). Therefore, the relation

f c
1 (x) � f c

3 (x) � f s
1 (x) � f s

3 (x) (25)

holds among the four coefficients. By applying the relation
in Eqs. (24) and (25) into Eq. (21) with the Iab in Fig. 2,

FIG. 12. Results for a chiral f -wave disk with a rough surface
obtained by the self-consistent simulation at A(r) = 0: current
density jy (a) and dominant components jab (b). The results are
plotted in the same manner as in Fig. 10.

we can conclude that j21 cancels j32 and j12 cancels j23. The
remaining component j01, the contribution from the s-wave
× py-wave pairs, dominates the edge current. Because s-wave
Cooper pairs are robust against surface roughness, j01 can exist
even under much stronger disordered potential.

As shown in Fig. 12(a), the edge current in a chiral f -wave
disk with a rough surface becomes almost zero in this scale of
the plot (i.e., |jy | � j0). Within the accuracy of our numerical
simulation, the maximum value of the current density is less
than 4 × 10−3j0. The dominant components j23, j32, j34, and
j43 are shown in Fig. 12(b). As shown in Fig. 9(c), the surface
roughness suppresses both �1 and �2 in the same manner near
the shadowed area. By applying the same logic used in a chiral
d-wave case, it is possible to show the relations

f c
3 (x) � f s

3 (x), (26)

f c
2 (x) � f c

4 (x) � f s
2 (x) � f s

4 (x). (27)

These relations and Iab in Fig. 2 explain the cancellation among
the current components such as j23 + j34 � 0 and j32 + j43 �
0. As a result, the net edge current totally disappears, as shown
in Fig. 12(a).

The symmetry of Cooper pairs is determined by the pair
potential and the random impurity potential at a surface. Thus,
even if a superconductor is semi-infinitely large and is realized
with a single chiral domain, we can find the similar behavior
of the edge currents against surface roughness as they show in
a small superconductor.

B. Results under self-consistent pair potential
and vector potential

We discuss the effects of the self-induced vector potential on
the chiral current in a disk with surface roughness. By solving
simultaneously the Eilenberger and Maxwell equations, we
obtain the self-consistent solutions of �1(r), �2(r), A(r), and
�̂(r,iωn). Here we do not show the pair potentials because they
remain unchanged from those in Fig. 9 even quantitatively. The
results of the edge currents are shown in Fig. 13(a). The spatial
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FIG. 13. (a) Current densities in a disk of a chiral superconductor
with a rough surface. The results are obtained by solving the Eilen-
berger and Maxwell equations self-consistently and simultaneously.
(b)–(d) Comparisons of the SCF with the non-SCF. The strength of
the disorder and the width of the disordered region are set to ξ0/� = 1
and W = 3ξ0, respectively. The other parameters are set to the same
values used in Fig. 8.

distributions of the magnetic field are presented in Figs. 13(b)–
13(d). For comparison, we show the non-SCF calculated from
the current profiles of Figs. 10(a), 11(a), and 12(a) by applying
the relation in Eq. (15).

As shown in Fig. 13(b), the Meissner effect suppresses
the magnetic field around the center of a chiral p-wave disk.
When we compare the results for a chiral p-wave disk with the
SCF in Fig. 13(a) and those with the non-SCF in Fig. 10(a),
the current profile in Fig. 13(a) is spatially compressed into a
narrower region by the Meissner effect.

Similar features are found also in the results of a chiral
d-wave disk, as shown in Fig. 13(c). In the presence of the
surface roughness, the current profile under the non-SCF has a
monotonic spatial dependence between the center of the disk
and the d-c interface as presented in Fig. 11(a). Therefore, the
self-screening effect observed in a clean disk does not work at
all. In a chiral d-wave disk with a rough surface, the Meissner
effect becomes stronger than that in a disk with a specular
surface. The Meissner effect suppress the magnetization near
the center of the disk, as shown in Fig. 13(c).

In a chiral f -wave disk, the surface roughness strongly
suppresses the chiral current. Thus the magnetic field is much
smaller than Hc2 everywhere in the disk, as shown in Fig. 13(d).
Within the numerical accuracy, the magnetic field is less than
7 × 10−5Hc2 in our simulation.

VI. TEMPERATURE DEPENDENCE OF SPONTANEOUS
MAGNETIZATIONS

Finally, we discuss the dependences of the spontaneous
magnetization on temperature, which are measurable values
in experiments. All of the simulations were started at T � Tc

with a homogeneous pair potential �1(r) = �2(r) = |�̄(T )|
and without an external magnetic field. The magnitude of
a spontaneous magnetization is defined in Eq. (16). In our
simulations, the pair potential, the impurity self-energy, and
the vector potential are calculated self-consistently. The results
in a disk with a specular surface are shown in Fig. 14. At a low
temperature T = 0.1Tc, the magnetization of a chiral p-wave
disk reaches to about 0.009Hc2 . In chiral d- and f -wave disks,
the magnetizations are about 0.002Hc2 . Although the magne-
tization decreases with increasing the radius of a disk by its
definition, Eq. (16), 0.002Hc2 at R = 10ξ0 would be detectable
value in experiments. The results in a disk with a rough surface
are shown in Fig. 15; we choose ξ0/� = 1.0 and W = 3ξ0. In
a chiral p-wave superconductor, the amplitude of the magneti-
zation is smaller than the results in the clean limit at every tem-
perature. As we discussed in Sec. V, however, the amplitude of
the current density in a disk with a rough surface is comparable
to that in a disk with a specular surface. In Eq. (16), the mag-
netization is normalized by the area of a whole disk. As shown
in Fig. 9, however, the effective radius of the superconducting
region shrinks down to Reff = R − W in the presence of the
surface roughness. When we renormalize the magnetization
by the effective superconducting area, the renormalized mag-
netization M̃ = MR2/(R − W )2 ≈ 2M is comparable to the
magnetization in the clean disk. This fact means the robustness
of the chiral current in the presence of the surface roughness.

In a chiral d-wave disk, the sign of the magnetization in
Fig. 15 changes from that in Fig. 14 because only the inner
chiral edge channel survives in a disk with a rough surface
and flows the current in the counterclockwise direction. We
have confirmed that the magnetization of a chiral d-wave disk
becomes small but remains finite even in the presence of the
much stronger disorder (e.g., ξ0/� = 30). As discussed in
Sec. V A, the combination of s-wave and py-wave Cooper
pairs carry the spontaneous current in both chiral p- and
chiral d-wave disks. Therefore, the robust spontaneous edge
current and the robust spontaneous magnetization are common
features in these two superconductors. In the case of a chiral
f -wave superconductor, the amplitude of the magnetization
is almost zero in the scale of Fig. 15. Within the numerical
accuracy, we estimate that the magnetization is smaller than
4 × 10−5Hc2 .

VII. CONCLUSION

We have studied the effects of surface roughness on the
spontaneous edge current in small chiral superconductors
characterized by chiral p-, chiral d-, and chiral f -wave pairing
symmetries. On the basis of the quasiclassical Eilenberger
formalism, we calculated the chiral current and the sponta-
neous magnetization of the small superconducting disk nu-
merically. By solving the Eilenberger and Maxwell equations
simultaneously, we obtained self-consistent solutions of the
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FIG. 14. Temperature dependences of the spontaneous magneti-
zation of a small chiral superconductor with a clean surface. The
magnetization is defined by Eq. (16) and is normalized to the second
critical magnetic field Hc2 .

pair potential, the impurity self-energy, and the vector poten-
tial. To understand the physics behind the complicated current
distribution in real space, we decomposed the current into a
series of components in terms of the symmetry of a Cooper
pair. The chiral edge current is carried by a combination
of two pairing components: the even-parity component and
the odd-parity component. In a spin-singlet (spin-triplet)
superconductor, the odd-parity (even-parity) Cooper pairs have
odd-frequency symmetry.

The effects of the surface roughness depend on the pairing
symmetry of the superconductor. The chiral current is robust
in the presence of surface roughness in a chiral p- and
chiral d-wave symmetries. With chiral p-wave symmetry, the
characteristic features of the chiral current are insensitive
to the surface roughness. With chiral d-wave symmetry,
the chiral current changes its direction as a result of the
surface roughness. In both the chiral p-wave and chiral
d-wave cases, the chiral current is carried by a combination
consisting of two pairing correlations. One is the correlation
with p-wave symmetry and the other is the correlation with

FIG. 15. Temperature dependences of the spontaneous magneti-
zation of a small chiral superconductor with a rough surface. The
parameters related to the surface roughness are set to ξ0/� = 1.0 and
W = 3ξ0.

s-wave symmetry. The Meissner screening effect by the bulk
condensate reduces a spontaneous magnetization. However,
the resulting amplitude of the magnetization is still large
enough to be detected in experiments. In a chiral f -wave
superconductor, the surface roughness significantly suppresses
the spontaneous edge current.
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