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1. Introduction

The exotic properties of Majorana fermions (MFs) [1] have 
been a hot issue in condensed matter physics. MFs emerge as 
the surface bound states of topologically nontrivial supercon-
ductors such as a p-wave superconductor [2–4], a topological 
insulator/superconductor heterostructure [5], a spin–orbit 
coupled semiconductor/superconductor heterostructure [6–11] 
and a Shiba chain [12, 13]. As such the Majorana fermion 
bound states (MBSs) have attracted much attention from the 
view of the fault-tolerant topological quantum computation 
[14, 15]. Thus, the realization of MBSs is a recent desired 
subject in experimental fields [16–18].

When two one-dimensional semi-infinite p-wave super-
conductors are joined in a superconductor/insulator/supercon-
ductor (SIS) junction, a pair of MFs staying at the two junction 
interfaces form the Andreev bound states. As a consequence, 
the Josephson current exhibits the fractional current-phase 
(J-ϕ) relationship of J sin 2( ) ( / )ϕ ϕ∝  at the zero temperature 

[3, 19]. The fractional Josephson effect is especially impor-
tant because the effect provides a read-out process in the fault-
tolerant topological computation [15]. Here we note that J is 
always 2π periodic in the direct-current Josephson effect. Thus 
the fractional current-phase relationship (CPR) means that the 
current jumps at ϕ π=± . It has been well known that a bal-
listic superconductor/normal metal/superconductor junction 
with the spin-singlet s-wave pairing symmetry [20–24] and a 
SIS junction with the spin-singlet dxy-wave pairing symmetry 
[25–29] also indicate the fractional CPR. The unique feature 
to p-wave junctions is the persistence of the fractional CPR 
even in the presence of random impurity potential [30]. In fact, 
a theoretical study [31, 32] reported the fractional Josephson 
effect in a two-dimensional px-wave superconductor/dirty 
normal metal/px-wave superconductor (SNS) junction. In the 
two-dimensional junction, more than one MF degenerates at 
the zero-energy in the dirty normal metal and assist the reso-
nant transmission of the Cooper pair at 0ϕ π= − +. Generally 
speaking, the large degree of degeneracy in quantum states is 
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a result of the high symmetry of the Hamiltonian. However it 
has been unclear what symmetry protects the degeneracy of 
the MBSs in a dirty normal metal. We address this issue in the 
present paper.

Several previous studies have suggested that chiral sym-
metry of Hamiltonian is a key feature to explain the stability 
of more than one MF at a surface of topologically non-
trivial superconductors [33–37]. On the basis of these novel 
insights, we will prove the robustness of the degenerate 
MBSs in diffusive SNS junctions. In addition, we reconsider 
the meaning of a phenomenological theory of the fractional 
Josephson effect, where the tunneling Hamiltonian between 
the two edges at either sides of the insulator is described by 
H ti cos 2T L Rϕ γ γ=− ( / )  [3, 19]. Here t is the tunneling ampl-
itude and γL (γR) is the operator of a MF at the edge of the 
superconductor on the left (right)-hand side of the insulator. 
The Josephson current calculated from ∝∂ϕJ HT  exhibits 
the fractional CPR. However, this argument may be self- 
contradicted. The Josephson current flows at 0ϕ π= − + 
while the tunneling Hamiltonian vanishes. We also try to solve 
this puzzle in the present paper.

2. Chiral symmetry

Let us consider a two-dimensional SNS junction where two 
superconductors are characterized by an equal-spin-triplet 
px-wave symmetry as shown figure 1. The junction consists the 
three segments: a dirty normal metal ( L x Lx x⩽ ⩽− ), and two 
superconductors (L jx ⩽ ⩽∞ and j Lx⩽ ⩽−∞ − ). The junc-
tion is described by the Bogoliubov-de Gennes Hamiltonian

H H H H ,L N Rϕ ϕ= + +( ) ( ) (1)
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where m denotes the effective mass of an electron, μ is the 
chemical potential, and ∆ denotes the amplitude of the pair 
potential. In what follows, we consider 2 2×  BdG Hamiltonian 
for one spin sector. The phase difference between the two 
superconductors is denoted by ϕ. The random impurity poten-
tial in the normal segment is represented by rVimp( ).

It is easy to confirm the following relations,

H H ,L
1

LΓ Γ =−− (6)
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Equation (6) represents chiral symmetry of HL with respect to 
Γ. In the same way, equation (7) represents chiral symmetry of 
HR with respect to e Ti 3Γϕ . The Hamiltonian in the normal part 
HN preserves chiral symmetry for both Γ and e Ti 3Γϕ . When a 
Hamiltonian preserves chiral symmetry, the eigenstates of the 
Hamiltonian have two important features [38]. In the case of 
equation (6), for instance, one can prove following properties 
of eigen states of HL.

 (i) The eigenstates of the HL at the zero energy are simulta-
neously the eigenstates of Γ with its eigenvalue (chirality) 
either 1γ = +  or  −1.

 (ii) On the other hand, the nonzero-energy states of HL are 
described by the linear combination of two different 
eigenstates of Γ: one has 1γ = +  and the other has 

1γ = − .

Below we prove the stability of the highly degenerate zero 
energy states appearing in the SNS junction by taking these 
features into account. We note that the total Hamiltonian H 
preserves H H1Γ Γ = −−  for ϕ being either 0 or π± .

We first analyze the chiral property of the zero-energy 
states appealing at the surface of the two semi-infinite super-
conductors (x Lx⩽−  and x Lx⩾ ). To do this, we remove 
the normal segment ( L x Lx x⩽ ⩽− ) and apply the hard-wall 
boundary condition at x  =  −Lx and x  =  Lx. In the y direc-
tion, the width of the superconductors is W and the hard-wall 
boundary condition is applied. By solving the Bogoliubov-de 
Gennes equation, we obtain the wave function for the the 
zero-energy states as

r
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Figure 1. Schematic image of the px-wave superconductor/dirty 
normal metal/the px-wave superconductor junction.
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X x q x Lsin e ,n n x
x

, ( ) [ ( )] /= ± ξ
±

± (13)

Y y
W

n

W
y

2
sin ,n( ) ⎜ ⎟

⎛
⎝

⎞
⎠

π
= (14)

q k k m, ,n n
2 2 2

F 0/ξ ξ= − = ∆− � (15)

k
m

m

n

W

2
,

2
,n

n
n

2 2
⎜ ⎟
⎛
⎝

⎞
⎠

µ
µ µ

π
= = −

�

�
 (16)

where n indicates the propagating channels. The wave func-
tion L n,ψ  ( R n,ψ ) represents the nth zero-energy state localized 
at the surface of the left (right) superconductor. The normal-
ization coefficient is denoted by Nn. The degree of degeneracy 
at the zero energy is equal to the number of the propagating 
channels Nc because a zero-energy state can be defined for 
each propagating channel. The derivations of the wave func-
tions are shown in appendix. As indicated by the property (i), 
the zero-energy states in equations (11) and (13) are the eigen-
states of Γ and e Ti 3Γϕ , respectively.

The particle-hole symmetry of the total Hamiltonian is rep-
resented by

H H,1Ξ Ξ = −− (17)

,Ξ = Γ K (18)

where K denotes the complex conjugation. Since

,L n L n, ,ψ ψΞ = (19)

,R n R n, ,ψ ψΞ = − (20)

all the zero-energy states are the Majorana bound states. Thus, 
at a surface of a px-wave superconductor, the degree of the 
degeneracy in MBSs is Nc.

3. Zero-energy states in SNS junctions

To analyze the MBSs in a SNS junction, we insert a normal 
segment described by HN into the two superconductors. At 

0ϕ = , the wave function L n,ψ  and R n,ψ  satisfies

L n L n, ,ψ ψΓ = (21)

,R n R n, ,ψ ψΓ = − (22)

for all n. Namely, all the MBSs in the left superconductor 
belong to 1γ = +  while those in the right superconductor 
belong to 1γ = −  as shown in figure 2(a). The MBSs at the 
surface of the two different superconductors have the oppo-
site chirality to each other. In a SNS junction, a normal metal 
connects the two superconductor. MBSs with 1γ = +  (MBSs 
with 1γ = − ) penetrate into the normal metal from the left 
(right) superconductor. As a result, they form nonzero-energy 
states there. In this way, the penetration of MBSs into the 
normal metal lifts the high degeneracy at the zero-energy. In 
other words, pairs of MFs couple-back to conventional quasi-
particles and the number of such pairs is Nc.

On the other hand at ϕ π= , one can find

L n L n, ,ψ ψΓ = (23)

.R n R n, ,ψ ψΓ = (24)

Both L n,ψ  and R n,ψ  belong to the same chirality 1γ = +  as 
shown in figure 2(b). The MBSs retain their high degree of 
degeneracy even in a SNS junction because the zero-energy 
states with 1γ = −  are absent in the normal metal. According 
to the property (ii), the zero-energy states belonging the same 
chirality cannot form any nonzero-energy states.

To confirm the argument above, we calculate the wave 
function in a SNS junction. We first set the impurity potential 

rV 0imp( ) =  and solve the Bogoliubov-de Gennes equation at 
the zero energy for ϕ π= ,

H 0.0( )π ψ = (25)

A solution of equation (25) is given by (see also appendix)
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where L n,ψ′ , N n,ψ , and R n,ψ′  are the wave function at the n-th 
propagating channel in the left superconductor, the normal 
metal, and the right superconductor, respectively. By reflecting 

Figure 2. Schematic image for the chirality of the Majorana bound 
states. (a) At ϕ = 0, the left-side MBSs and the right-side MBSs 
have the opposite chirality to each other. (b) On the other hand, 
at ϕ π= , both left-side and right-side MBSs have the chirality 
γ = +1.
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the chiral property of the MBSs in two superconductors, the 
vector structure of the wave functions in the superconducting 
segments takes the particular form of 1, 1L R n,

T[ ]( )ψ ∝′ . By 
applying the boundary condition at the two interfaces, we 
obtain the two orthogonal zero-energy states for each propa-
gating channel as

N
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1 1
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where N± is a normalization coefficient. Since we obtain the 
two zero-energy states for each propagating channel, the 
degeneracy of the zero-energy bound states becomes twice 
the number of the propagating channel Nc. More importantly, 
equation (29) suggests that all the zero-energy states in SNS 
junction are the eigenstates of Γ belonging to 1γ = + .

Next we introduce the impurity potential Vimp into the 
normal segment. The random potential modifies the wave 
function in equation  (29). Actually we cannot analytically 
describe how the wave function depends on r anymore. But 
the vector part of the wave function 1, 1 T[ ]  remains unchanged 
even in the presence of impurity potentials because Vimp pre-
serves the chiral symmetry. Therefore all the zero-energy 
states keep their chirality at 1γ = +  even in the presence of 
Vimp. According to the property (ii), such chirality aligned 
zero-energy states keep their high degeneracy because they 
cannot construct nonzero-energy states in the absence of their 
chiral partner belonging to 1γ = − . As a result, the degenerate 
MBSs form the resonant transmission channels in the normal 
metal. The Josephson current at 0ϕ π= − + flows through 
such highly degenerate resonant states. Our analysis provides 
a mathematical background for understanding the fractional 
Josephson effect in a dirty SNS junction which was numer-
ically shown in the previous papers [31, 32].

4. Phenomenological theory

The fractional Josephson effect in one-dimensional SIS can be 
phenomenologically explained in terms of the effective hop-
ping Hamiltonian between the two Majorana bound states. At 
the edge of isolated semi-infinite p-wave superconductor, the 
electron operators at the edges are described by

,L LγΨ = (37)

γΨ = ϕ/ie ,R
i 2

R (38)

where Lγ  (γR) is the operator of a Majorana fermion at the 
edge of left (right) superconductor. The tunneling Hamiltonian 
between the two edges becomes

H t L R R LT = − Ψ Ψ + Ψ Ψ[ ]† † (39)

t2i cos 2 .L Rϕ γ γ= − ( / ) (40)

The expectation value of the tunneling Hamiltonian could be

ϕ=− ( / )H tC2 cos 2 ,T 0 (41)

where we assume that γ γ =〈 〉 Ci L R 0 is a constant. The 
Josephson current calculated as

J
e

H
e tC2

sin 2 ,T
0 ϕ= ∂ =ϕ

� �
( / ) (42)

describes the fractional current-phase relationship. At 
0ϕ π= − +, we obtain

=− +H tC 0 ,T 0 (43)

J
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1
0

8
.0

2( )⎛
⎝
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⎞
⎠
⎟= −

+

�
 (44)

The Josephson current takes its maximum, whereas the ampl-
itude of the tunneling Hamiltonian is proportional to 0+ . The 
Josephson current at 0ϕ π= − + flows as a result of the reso-
nant transmission through the junction. Therefore the ampl-
itude of the current is not proportional to the amplitude of 
the tunneling Hamiltonian. This argument is valid as far as 

0ϕ π= − +. At ϕ π= , the tunneling Hamiltonian vanishes 
exactly, which leads to the absence of the Josephson current. 
In this way, the phenomenological argument using equa-
tion (39) is consistent with the microscopic theory of the frac-
tional Josephson effect.

5. Conclusion

We have studied the stability of more than one Majorana 
Fermion appearing in a two-dimensional superconductor/
normal metal/superconductor (SNS) junction in terms of 
chiral symmetry of Hamiltonian, where the two supercon-
ductors are characterized by spin-triplet px-wave symmetry. 
When the phase difference across the junction ϕ is either 0 
or π, the Hamiltonian of the SNS junction preserves chiral 
symmetry. At ϕ π= , the Majorana bound states (MBSs) in 
the normal metal can retain their high degree of degeneracy 
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at the zero energy even in the presence of the impurity scat-
terings because all of the MBSs belong to the same chirality. 
As a consequence, the resonant transmission of a Cooper pair 
via such highly degenerate MBSs carries the Josephson cur-
rent at 0ϕ π= − +. The physical picture obtained in this paper 
explains well the persistence of the fractional current-phase 
relationship in a dirty SNS junction which was numerically 
shown in previous papers. We have also discussed a way 
of understanding the fractional current-phase relationship 
derived from a phenomenological tunneling Hamiltonian of 
a Majorana Fermion.
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Appendix.  Wave function of zero energy states

We derive the wave functions of the zero-energy states 
appearing in the two semi-infinite px-wave superconductors 
illustrated in figure 1. In the y direction, the width is denoted 
by W and the hard-wall boundary condition is applied. The 
Bogoliubov-de Gennes equation is given by

H E ,E E, ,ϕ ϕ=α α α (A.1)

ξ

ξ
=

∆
∂

−
∆

∂ −
α

ϕ

ϕ−

α

α

( )

( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

r

r

H
k

k

e

e
,

x

x

i

F
i

F

 (A.2)

where the index Lα = ,R labels the left superconductor 
(x Lx−⩽ ) and the right superconductor (x Lx⩾ ), respectively. 
The superconducting phase is given as

0,Lϕ = (A.3)

.Rϕ ϕ= (A.4)

The Hamiltonian Hα preserves chiral symmetry as
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By solving equation  (A.1), we obtain the wave function 
belonging to an energy E as
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where ci (i  =  1  −  4) are numerical coefficients. At E  =  0, the 
wave function is deformed as

x y x x Y y, ,n n n,0 , ,1 , ,2( ) [ ( ) ( )] ( )ψ φ φ= +α α α (A.13)

x c ce

e
e e e ,n

q x q x x
, ,1

i
2

i
2

1
i

3
in n( ) [ ] /

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

φ =
−

+′ ′α

ϕ

ϕ
ξ

−

− −
α

α
 (A.14)

x c ce

e
e e e ,n

q x q x x
, ,2

i
2

i
2

2
i

4
in n( ) [ ] /

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

φ = +′ ′α

ϕ

ϕ
ξ

−

−
α

α
 (A.15)

q k k m, .n n
2 2 2

F 0/ξ ξ= − = ∆− � (A.16)

We note that the components of n, ,1φα  and n, ,2φα  are the eigen-
states of the chiral symmetry operator as

x xe ,T
n n

i
, ,1 , ,1

3( ) ( ) ( )φ φΓ = −ϕ
α α

α (A.17)

x xe .T
n n

i
, ,2 , ,2

3( ) ( ) ( )φ φΓ =ϕ
α α

α (A.18)

First, we calculate the wave function of the zero-energy states 
in the left superconductor. We apply the boundary condition 
in the x direction as

y L y, , 0.L L x,0 ,0( ) ( )ψ ψ−∞ = − = (A.19)

As a result, we obtain the two zero-energy states for each 
propagating channel as

N
q x L Y y

1 1
1

sin e ,L
n

n x
x

n[ ( )] ( )/⎡
⎣⎢

⎤
⎦⎥ψ = + ξ

 (A.20)

J. Phys.: Condens. Matter 28 (2016) 375702



S Ikegaya et al

6

where the normalization coefficient is denoted by Nn. In is 
easy to show that the zero energy states of left superconductor 
are simultaneously the eigenstates of chiral symmetry oper-
ator Γ with the eigenvalue 1γ = + . Next, we consider the right 
superconductor. By applying the boundary condition in the x 
direction as

L y y, , 0,R x R,0 ,0( ) ( )ψ ψ= ∞ = (A.21)

we find the wave function for the zero-energy states as

N
q x L Y y

1 e

e
sin e .R

n
n x

x
n

i
2

i
2

[ ( )] ( )/
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ψ =
−

−
ϕ

ϕ
ξ

−

− (A.22)

The zero-energy states of the right superconductor Rψ  hold 
1γ = −  for the chiral symmetry operator e Ti 3Γϕ .
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