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All-electrical generation and control of odd-frequency s-wave Cooper pairs in double quantum dots
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We propose an all-electrical experimental setup to detect and manipulate the amplitude of odd-frequency
pairing in a double quantum dot. The odd-frequency pair amplitude is induced from the breakdown of orbital
symmetry when Cooper pairs are injected in the double dot with electrons in different dots. When the dot levels
are aligned with the Fermi energy, i.e., on resonance, nonlocal Andreev processes are directly connected to the
presence of odd-frequency pairing. Therefore, their amplitude can be manipulated by tuning the level positions.
The detection of nonlocal Andreev processes by conductance measurements contributes a direct proof of the
existence of the odd-frequency pair amplitude and is available using current experimental techniques.
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Introduction. The symmetry analysis of Cooper pairs
is a key element in the study of superconductivity. For
example, Cooper pairs at conventional BCS superconductors
form a spin-singlet even-parity state, where the electrons
have opposite spins and are coupled in momentum space
by the isotropic s-wave channel. A current trend in the
study of superconductivity is to engineer unconventional
superconductors by breaking down symmetries of a BCS
superconductor. Consequently, a new type of pairing emerges
which is odd in frequency, i.e., odd under an exchange
of the time coordinates [1–4]. Plenty of theoretical studies
suggest the ubiquitous presence of odd-frequency supercon-
ductivity in inhomogeneous superconducting systems [5–17].
Unfortunately, experimental evidence for the odd-frequency
pair amplitude is very limited. Odd-frequency spin-triplet s-
wave superconductivity can explain the long-range proximity
effect [18,19], the intrinsic paramagnetic Meissner effect
[20–23], and the subgap structure [24] observed in
ferromagnet-superconductor hybrids. However, in those ex-
periments, odd-frequency pairs are mixed with conventional
ones and their amplitude is not tunable but accidentally
determined by the configuration of magnetic moments realized
at the junction. To unambiguously establish the presence
of odd-frequency pairing, proposals that filter odd-frequency
pairs and allow one to control their amplitude are required.

In this Rapid Communication, based on recent experimental
progress on double quantum dot (DQD) Cooper pair splitter
devices [25,26], we propose a setup that allows for the
detection and manipulation of odd-frequency pairing without
using any magnetic elements. Such pair splitters consist of a
DQD independently connected to two normal leads and one su-
perconducting electrode, as sketched in Fig. 1(a). We show that
the symmetry of the induced pairing from the superconducting
lead is broken due to the DQD orbital degree of freedom, thus
becoming a superposition of symmetric and antisymmetric
orbital states. For a spin-singlet superconductor, induced
Cooper pairs that are antisymmetric (symmetric) in DQD space
must be odd (even) in frequency, according to Fermi-Dirac
statistics, since parity and spin rotation symmetries are not
broken [27]. Cooper pairs transmitted to the same lead are in
an even-frequency state [see Fig. 1(b)]. On the other hand,
when the levels are on resonance, only an odd-frequency pair
amplitude is responsible for the splitting of Cooper pairs into

different leads [see Fig. 1(c)]. Antisymmetric odd-frequency
singlet pairing is greatly enhanced if each dot is coupled
differently to the leads, resulting in a measurable contribution
to the conductance. Such a connection between symmetry
and microscopic transport processes is a unique feature of
our proposal. Additionally, the amplitude of odd-frequency
Cooper pairs can be controlled by tuning the DQD level
positions on or off resonance. Alternatively, using a spin-triplet
superconductor, the same geometry can be used for the study
of Majorana edge states [28]. In such a case, odd-frequency
triplet pairs are now transmitted to the same electrode. Our
proposal opens a different direction in the study of exotic
Cooper pairing owing to the unique connection between the
symmetry of the Cooper pair and tunneling processes and due
to the tunability of the pair amplitude.

Model. DQD-based three-terminal devices [29–32] are an
ideal platform for exploring the symmetry of induced pairing.
Recent experiments are very well modeled by two-level sys-
tems and show an exquisite degree of tunability [25,26,33–35].
Moreover, strong evidence for the splitting of Cooper
pairs [36–39], which we shall link to the presence of odd-
frequency spin-singlet s-wave pairing, has been presented.
Here, we consider a system with two quantum levels at
positions εL,R . In the limit of large level separation at the
quantum dots, it describes very well a DQD close to the
crossing point of the dot resonances [40]. In the absence
of external magnetic fields and spin-orbit coupling terms,
we describe the system in the combined Nambu-dot space

using spinor fields � = (dL↑,dR↑,d
†
L↓,d

†
R↓)

T
, where dμσ (d†

μσ )
annihilates (creates) an electron with spin σ = ↑,↓ at dot
μ = L,R. In the following, σ̂ν (τ̂ν), with ν = 0,1,2,3, are
Pauli matrices in dot (Nambu) space, with identity matrix
σ̂0 (τ̂0). The Hamiltonian of the isolated DQD is given by
Ȟd = (εLσ̂+ + εRσ̂− + �LRσ̂1)τ̂3, with σ̂± = (σ̂0 ± σ̂3)/2 and
the interdot tunneling rate �LR > 0. Transport properties are
characterized by the Green’s function

ǧ(ω) = [ωσ̂0τ̂0 − Ȟd − 	̌N (ω) − 	̌S(ω)]−1, (1)

where ω denotes ω ± i0+ or iωn for retarded/advanced or Mat-
subara Green’s function, respectively, with ωn = π (2n + 1)
kBT for temperature T , Boltzmann constant kB , and integer n.
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FIG. 1. Proximity-induced superconductivity in a DQD three-
terminal device. (a) Schematics of a DQD with level positions εL

and εR contacted by a superconducting lead S and two normal leads
L and R. (b) In a local Andreev process, the electrons of a Cooper pair
tunnel through one dot into the normal lead. The amplitude for these
processes, FLL,RR (blue dashed lines), is enhanced for symmetric de-
vices, i.e., those where each dot is similarly coupled to the leads. (c) In
a nonlocal Andreev process, each electron of the Cooper pair tunnels
to a different lead. The nonlocal amplitude, FLR (red solid line),
is enhanced in asymmetric devices. On resonance (εL = εR = 0),
FLR is odd in frequency if S is a BCS superconductor.

Following the geometry described in Fig. 1(a), we include the
normal and superconducting leads as self-energies,

	̌N (ω) = is(ω)(�Lσ̂+ + �Rσ̂−)τ̂0, (2)

	̌S(ω) = i(�SLσ̂+ + �SRσ̂−)[g(ω)τ̂0 − f (ω)τ̂1], (3)

with s(ω ± i0+) = ∓1, s(iωn) = sgn(ωn), and �μ,�Sμ > 0
the tunneling rates between dots and leads. We consider the
regime where Kondo and exchange interactions between dots
can be neglected. The effect of Coulomb repulsion on each
dot is to renormalize the level positions εμ and tunneling rates
�Sμ [40–42]. We assume that the superconducting region is
well described by a constant pair potential � and neglect
its spatial dependence at the surface of the superconductor.
The dimensionless Green’s functions at the edge of the
superconducting lead, for a BCS superconductor, are f (ω) =
−(�/ω)g(ω) = −�/

√
ω2 − �2.

Symmetry of induced pair amplitude. The uncoupled su-
perconducting lead in Eq. (3) represents an even-frequency
spin-singlet s-wave superconductor which satisfies f (ωn) =
f (−ωn), for Matsubara frequency. We analyze the symmetry
of the proximity-induced pair amplitude in the DQD system
from the anomalous part of the Green’s function of Eq. (1),
Fμν = (ǧ)ehμν ∼ 〈dμ↑dν↓〉, with indexes in dot space μ,ν =
L,R. Induced superconductivity in the DQD system thus
acquires an extra orbital quantum number. Owing to this
symmetry, the elements of Fμν are divided into even- and
odd-orbital terms. Defining Fs,a = (FLR ± FRL)/2, Fa is the
only element with odd parity in the dot orbital degree of

TABLE I. Symmetry classification of Cooper pairs according to
frequency/spin/momentum/dot. From left to right, pairs can be even
(E, +) or odd (O, −) under time-reversal (frequency), spin (σ,σ ′ = ↑,

↓), momentum (k), and dot index (L, R), with S for spin singlet (top
rows) and T for triplet (bottom rows). The last column shows the
corresponding element of the anomalous Green’s function: Fμμ, with
μ = L,R, for local elements and Fs,a for the nonlocal ones.

Class ωn → −ωn σ ↔ σ ′ k → −k L ↔ R Element

ESEE + − + + Fμμ, Fs

OSEO − − + − Fa

ETEO + + + − Fa

OTEE − + + + Fμμ,Fs

freedom. To be consistent with Fermi-Dirac statistics, Fa must
be odd in frequency. Explicitly, we find [43]

Fs(ωn) = − i
f (ωn)

D(ωn)
�LR(�SRεL + �SLεR), (4)

Fa(ωn) = sgn(ωn)
f (ωn)

D(ωn)
�LR(�SRωL − �SLωR), (5)

with ωμ = |ωn| − �μ and D(ωn) = det[ǧ−1(ωn)] = D(−ωn).
If f (ωn) = f (−ωn) is satisfied, we find that Fs(ωn) =
Fs(−ωn) and Fa(ωn) = −Fa(−ωn). A complete description
of the allowed symmetries in the DQD system is given in
Table I, for both spin-singlet and triplet superconductors.

It is possible to enhance odd-frequency over even-frequency
pairing on one of the dots, as sketched in Fig. 1(c). To study
this effect, we define the local ratios [44]

RL,R(ω) = |Fa(ω)|
√|FLL,RR(ω)|2 + |Fs(ω)|2 . (6)

From Eqs. (4) and (5), we see that nonlocal pair amplitudes are
proportional to the interdot coupling �LR , which is an essential
element of our model [45]. Moreover, Fs is zero when the dot
levels are on resonance (εL = εR = 0) [46]. Therefore, dom-
inant odd-frequency pairing on one of the dots requires left-
right asymmetry, which can be achieved by setting �L �= �R

or �SL �= �SR . Odd-frequency pairing is suppressed when the
DQD levels are out of resonance (εL �= 0 and/or εR �= 0).

Detection and manipulation of odd-frequency pairing.
We consider two different transport measurements. First,
a voltage bias V is applied symmetrically to both normal
leads [Fig. 2(a)]. This configuration is known as a Cooper
pair splitter setup and has been used in recent experi-
ments [26,33,37,38]. At zero temperature, conductance at lead
L is given by

GL(V ) = 2G0
[
T

qp

L (eV ) + T eh
LL(eV ) + T eh

LR(eV )
]
, (7)

with G0 = 2e2/h and quasiparticle tunneling transmission
T

qp

L . T eh
LL and T eh

LR are the contributions from local and
nonlocal Andreev processes, respectively. For subgap voltages
(|eV |<�), conductance is mainly given by Andreev processes
while the quasiparticle contribution is almost negligible.

Alternatively, a current can flow through lead L if a voltage
is applied to lead R [Fig. 3(a)]. This is the basis for a
nonlocal conductance measurement [25,36,47] which, at zero
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FIG. 2. Cooper pair splitter configuration. (a) A voltage V is
applied symmetrically to both normal electrodes which allows us
to measure the conductances GL(V ) and GR(V ) (left). Right: In an
asymmetric DQD system, odd-frequency nonlocal FLR (red line) can
be enhanced on dot L and GL is mainly due to nonlocal Andreev
processes (red arrow). (b), (c) Map of the (b) ratio RL and (c)
conductance GL as a function of applied voltage and level position
δε = εL + 3εR . RL > 1 inside the white dashed line. (d) Conductance
(black solid lines), nonlocal Andreev (red dashed lines), and local
processes (blue dotted-dashed lines) for eV = 0 (left) and 0.75�

(right). For all plots, T = 0, �L/� = 5, �R = � = 1, �SL/� = 0.1,
�SR/� = 0.9, and �LR/� = 0.5.

temperature, is given by

GLR(V ) = G0
[
T eh

LR(eV ) − T ee
LR(eV )

]
, (8)

where T ee
LR represents an electron tunneling process. At

zero temperature, transmission probabilities for each pro-
cess are calculated from the retarded Green’s func-
tion as T αβ

μν (ω) = 4�μ�ν[|(ǧr )αβ
μν(ω + i0+)|2 + |(ǧr )αβ

μν(−ω +
i0+)|2], with α,β = e,h and μ,ν = L,R [43]. Specifically, the
transmission probability for Andreev processes reduces to

T eh
μν (ω) = 4�μ�ν[|Fμν(ω)|2 + |Fμν(−ω)|2]. (9)

Consequently, we can connect each microscopic process to a
symmetry class. Indeed, local even-frequency pair amplitudes
Fμμ provide the probability amplitude for the transmission
of the two electrons of a Cooper pair into the same lead,
i.e., a local Andreev process sketched in Fig. 1(b). On the
other hand, nonlocal components FLR,RL account for the
probability amplitude of a process where the electrons of a
Cooper pair split into different leads: a nonlocal Andreev
process [Fig. 1(c)]. If both dot levels are aligned to the
chemical potential, i.e., when the DQD is on resonance with
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FIG. 3. Nonlocal conductance measurement. (a) A voltage is
applied to lead R, allowing one to measure the conductance GLR on
lead L (left). Right: On resonance, odd-frequency nonlocal Cooper
pairs provide a dominant contribution to GLR (red arrow), while
electron tunneling dominates out of resonance (blue arrow). (b) Map
of GLR as a function of the applied voltage and the position of dot
R, εR , for εL = 0. GLR > 0 inside the black dashed line. (c) Ratio
on dot L (top) and nonlocal conductance (bottom) for εL = εR (red
solid line) and εL �= εR (blue dashed line). For all plots, �L/� = 5,
�R/� = 0.2, �SL = �SR = �LR = � = 1, and T = 0.

εL = εR = 0, nonlocal pair amplitudes FLR,RL are odd in
frequency. The presence of odd-frequency pairing in the DQD
and its connection to a specific microscopic process that has
been successfully observed in recent experiments is one of the
main conclusions of this work.

In an ideal setup, we can choose to uncouple one of the dots
from the superconductor setting �SL = 0. By local transmis-
sion through that dot, FLL is suppressed and Eq. (6) reduces
to RL = 1/RR =

√
ω2 + �2

L/�LR . As a result, for subgap
energies |ω| < �, odd-frequency pairing becomes dominant at
dot R (L) if �L < �LR (�L > �LR) is satisfied. Consequently,
in the Cooper pair splitter configuration, the conductance at one
of the leads, Eq. (7), can be completely dominated by nonlocal
Andreev processes, which is a signature of the presence of
odd-frequency superconductivity [43]. Decoupling one of the
dots requires careful patterning of the DQD, similarly to recent
experiments in graphene [47]. In many other experiments,
however, DQDs are constructed by electrical confinement
from electrodes on quasi-one-dimensional materials [25,26],
as sketched in Fig. 2(a). It is thus challenging to decouple one
of the dots from the superconductor. Therefore, we consider
�SL �= 0 in the following. We start with strong left-right
asymmetry by setting �L �= �R and �SL �= �SR at the same
time. To exclude double occupancy on the dots, we work
in the regime with �L,R > �SL,SR where a single-particle
description of transport at the DQD system is allowed [29].
In Fig. 2(b) we show the ratio on dot L, RL, as a function
of ω and δε = εL + αεR , with α a constant. In agreement
with our previous analysis, odd-frequency pairing is dominant
on dot L for subgap energies as long as the dot levels are
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close to the chemical potential, i.e., for |ω|,|δε| � �. At zero
temperature, the applied voltage corresponds to the frequency
ω. The conductance at lead L is enhanced for the same bias
voltage regime, as shown in Fig. 2(c). A detailed analysis
shows that the conductance is mainly given by nonlocal
Andreev processes which stem from induced odd-frequency
pairing [red lines in Fig. 2(d)].

A small degree of asymmetry is experimentally inevitable.
However, by setting �SL ∼ �SR in the previous results, the
contribution from local Andreev processes is enhanced and
becomes comparable to that of nonlocal processes, making it
more difficult to establish a connection between conductance
and odd-frequency pairing. For weakly asymmetric setups,
with �SL ∼ �SR , it is better to perform a nonlocal conductance
measurement where odd-frequency-induced nonlocal Andreev
processes only compete with electron tunneling processes [see
Fig. 3(a)]. In principle, the two contributions should cancel
each other [30,48]. In a DQD three-terminal device, however,
the relative position of the dot levels becomes very important
to favor Andreev processes, since they mainly take place
when the levels are aligned on resonance. For this condition,
the pair amplitude FLR is odd in frequency. Therefore, a
positive nonlocal conductance proves the presence of the
odd-frequency pair amplitude [11]. Setting εL = 0, we show
in Fig. 3(b) a map of GLR as a function of eV and εR .
Within the black dashed line, conductance is positive, i.e.,
dominated by nonlocal Andreev processes. As |eV | ∼ �,
however, electron tunneling processes become more important
and the conductance changes sign. The connection between
positive Andreev-dominated conductance and odd-frequency
symmetry is explicitly shown in Fig. 3(c). When the dot R
is on resonance (red solid lines), the nonlocal conductance is
positive for subgap energies (bottom) while the odd-frequency
pair amplitude is dominant on dot L (top). If the dot R is taken
out of resonance, the conductance becomes negative and the
odd-frequency pair amplitude is suppressed.

Spin-triplet superconducting lead. When the central su-
perconducting lead is a one-dimensional spin-triplet p-wave
superconductor, as in the case of a metallic nanowire on
Sr2RuO4 [49], the induced pairing amplitude at its edges is
odd-frequency triplet s wave represented by f (ωn) = �/ωn,
which displays Majorana edge states [28,50,51]. On the DQD,

FLL, FRR , and Fs are now odd-frequency functions, while
Fa is even-frequency pairing (see Table I). Consequently,
conductance measured in the Cooper pair splitter configuration
is a very useful tool to study the symmetry of edge states
at spin-triplet superconductors. For the perfectly symmetric
case, where both �L = �R ≡ �N and �SL = �SR ≡ �S are
satisfied, the even-frequency term Fa vanishes and Cooper
pairs injected on the same lead maintain the odd-frequency
symmetry of the superconducting lead. Fa increases pro-
portionally to the difference between the tunneling rates for
left and right dots. For example, if the asymmetry originates
from the coupling to the normal leads (superconducting lead),
the even-frequency component follows Fa ∝ �S(�L − �R)
[Fa ∝ (�SL − �SR)(|ωn| − �N )].

Conclusions. We propose a way to generate odd-frequency
spin-singlet s-wave Cooper pairs on DQD-based three-
terminal devices. Due to the orbital degree of freedom in
the DQD, the symmetry of induced Cooper pairs can be
broken, featuring a superposition of even- and odd-frequency
terms. Each symmetry type, however, is responsible for a
different transport process, a unique feature of this setup.
For spin-singlet superconductors, nonlocal Andreev processes
on resonance are uniquely caused by odd-frequency pairing.
Therefore, odd-frequency pairs can be detected from standard
conductance measurements in asymmetric devices where the
contribution of nonlocal Andreev processes is greatly en-
hanced. Additionally, it is possible to manipulate the amplitude
of odd-frequency Cooper pairs by tuning the position of the
dot levels. The situation is reversed if the central electrode
is a spin-triplet p-wave superconductor. Odd-frequency triplet
s-wave pairing is now associated with local Andreev processes
which are the dominant contribution to the conductance if the
dots are symmetrically coupled to the leads.
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