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Effects of surface roughness on the paramagnetic response of small unconventional superconductors
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We theoretically study the effects of surface roughness on the magnetic response of small unconventional
superconductors by solving the Eilenberger equation for the quassiclassical Green function and the Maxwell
equation for the vector potential simultaneously and self-consistently. The paramagnetic phase of spin-singlet
d-wave superconducting disks is greatly suppressed by the surface roughness, whereas that of spin-triplet
p-wave disks is robust even in the presence of the roughness. This difference derives from the orbital symmetry
of paramagnetic odd-frequency Cooper pairs appearing at the surface of the disks. The orbital part of the
paramagnetic pairing correlation has p-wave symmetry in the d-wave disks, whereas it has s-wave symmetry in
the p-wave disks. Calculating the free energy, we also confirm that the paramagnetic state is more stable than
the normal state, which indicates a possibility of detecting the paramagnetic effect in experiments. Indeed, our
results are consistent with an experimental finding on high-Tc thin films.
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I. INTRODUCTION

A diamagnetic response to an external magnetic field is a
fundamental property of all superconductors [1]. The Meissner
current (coherent motion of the Cooper pairs) screens a weak
magnetic field at the surface of a superconductor. As a result,
the phase coherence of the superconducting condensate is well
preserved far away from the surface. A number of experiments,
however, have reported the paramagnetic response of small
superconductors and mesoscopic proximity structures [2–7].

Recent theoretical studies have suggested the existence
of paramagnetic Cooper pairs in inhomogeneous supercon-
ductors [8–13]. A spatial gradient of the superconducting
order parameter induces subdominant pairing correlations.
The pairing symmetry of such induced Cooper pairs is
different from that of the principal Cooper pairs in the bulk
superconducting state [13–15]. For example, the principal
Cooper pairs in high-Tc superconductors belong to the spin-
singlet d-wave (even-parity) class. In the (110) direction
of high-Tc cuprates, a surface acts as a pair breaker and
greatly suppresses the pair potential. Simultaneously, spin-
singlet odd-parity pairs are locally induced at the surface
as a subdominant correlation. A surface generates odd-parity
pairing correlations from the d-wave even-parity correlation
because the surface breaks inversion symmetry locally. Since
the pairing correlation function must be antisymmetric under
the permutation of two electrons, the induced pairs have odd-
frequency symmetry [16]. To our knowledge, such induced
odd-frequency pairs indicate a paramagnetic response to an
external magnetic field. Odd-frequency Cooper pairs can
be generated also from conventional superconductors in the
presence of spin-dependent potentials [17].

In a previous paper [18], we showed that the magnetic
susceptibility of small enough unconventional superconduct-
ing disks can be paramagnetic at a sufficiently low temper-
ature. Odd-frequency Cooper pairs induced by a surface are
responsible for the unusual paramagnetic Meissner effect. The
magnetic response of Cooper pairs is well characterized by the
so-called “pair density,” which is defined by diagonal elements

of the response function to a magnetic field. Even-frequency
Cooper pairs have a positive pair density, whereas induced
odd-frequency pairs have a negative pair density. So far an
experiment has reported the decrease of the pair density at
low temperature in high-Tc superconducting films on which
internal surfaces are introduced by heavy-ion irradiation [19].
Thus our theoretical results are consistent with the experiment
at least qualitatively. However, the signs of the paramagnetic
effect in the experiment [19] are much weaker than our
theoretical prediction. The discrepancy may come from the
sample quality at surfaces. Artificially introduced internal sur-
faces can be very rough in experiments, whereas the surfaces
are specular in the theory. Actually, several theories have
pointed out that the surface roughness affects properties of
the surface Andreev bound states of a high-Tc superconductor
[20–24].

The purpose of this paper is to clarify the effects of
surface roughness on the paramagnetic Meissner response of
small unconventional superconductors. We consider a two-
dimensional superconducting disk with spin-singlet d-wave
or spin-triplet p-wave symmetry. In a numerical simulation,
we solve the Eilenberger equation and the Maxwell equation
simultaneously and self-consistently. Surface roughness is
considered through an impurity self-energy within the self-
consistent Born approximation. We find that the surface
roughness greatly suppresses the paramagnetic response of a
spin-singlet d-wave superconducting disk. On the other hand
in a spin-triplet p-wave disk, the paramagnetic property is
robust even in the presence of surface roughness. The induced
odd-frequency pairing correlation has p-wave symmetry in the
former, whereas it has s-wave symmetry in the latter. In addi-
tion, we also confirm that the paramagnetic superconducting
states are more stable than the normal state by calculating the
free energies.

This paper is organized as follows. In Sec. II, we explain
the theoretical method used to analyze the magnetic response
of small superconducting disks. In Sec. III, we discuss the
magnetic response of small superconducting disks with a rough
surface. In Sec. IV, we consider the stability of a paramagnetic
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state by calculating the free energies of the superconducting
state. We summarize this paper in Sec. V.

II. FORMULATION

Let us consider a superconducting disk in two dimensions
as shown in Fig. 1(a), where R is the radius of the disk.
To describe rough surfaces, we introduce random impurity
potentials near the surface. The width of the disordered region
w is measured from the surface as shown in Fig. 1(a). An
external magnetic field H ext is applied in the z direction.
Throughout this paper, we use units of � = c = kB = 1 with
kB and c being the Boltzmann constant and the speed of light,
respectively.

Superconducting states in equilibrium are described by
solutions of the quasiclassical Eilenberger equation [25],

ivF k · ∇r ǧ + [Ȟ + �̌,ǧ] = 0, (1)

where vF is the Fermi velocity, and k is a unit vector on the
Fermi surface. ǧ and Ȟ are defined as follows:

ǧ(r,k,iωn) =
[

ĝ(r,k,iωn) f̂ (r,k,iωn)
−f̂

˜
(r,k,iωn) −ĝ

˜
(r,k,iωn)

]
, (2)

Ȟ (r,k,iωn) =
[ξ̂ (r,k,iωn) �̂(r,k)

�̂
˜

(r,k) ξ̂
˜
(r,k,iωn)

]
, (3)

ξ̂ (r,k,iωn) = [iωn + evF k · A(r)]σ̂0, (4)

where ωn = (2n + 1)πT is the fermionic Matsubara fre-
quency, n is an integer number, and T is the temperature.
In this paper, the symbol ·̌ represents a 4 × 4 matrix structure,
·̂ represents a 2 × 2 matrix structure in spin space, and σ̂0

is the identity matrix in spin space. The vector potential is
denoted by A(r). We introduced the definition K

˜
(r,k,iωn) ≡

K∗(r,−k,iωn) for all functions K(r,k,iωn). The effects of
rough surfaces are taken into account through the impurity
self-energy of a quasiparticle defined by

�̌(r,iωn) = �(|r| − R + w)
i

2τ0

∫
dk
2π

ǧ(r,k,iωn), (5)

where τ0 is the lifetime of the quasiparticle and �(x) is
the Heaviside step function. The mean free path of the
quasiparticle is defined by 
 = vF τ0 in the disordered region.

(a) (b) (c)

FIG. 1. (Color online) (a) Schematic figure of a superconducting
disk with a rough surface, with R and w the radius of the disk and the
width of the disordered region, respectively. An external magnetic
field is applied in the z direction. The origin of a spatial coordinate
is located at the center of the disk. The pair potential in momentum
space for a d-wave superconductor and that for a p-wave one are
illustrated in (b) and (c), respectively.

The anomalous Green function f̂ (r,k,iωn) is defined by the
average of two annihilation operators of an electron. The
relation

f̂ (r,k,iωn) = −f̂ T(r,−k,−iωn) (6)

represents the antisymmetric property of the anomalous Green
function under the permutation of two electrons, where T
represents the transpose of a matrix.

The direction of k in two-dimensional momentum space is
represented by the angle θ measured from the x axis (i.e.,
kx = cos θ and ky = sin θ ). In what follows, we consider
two unconventional superconductors with different pairing
symmetries. One has spin-singlet d-wave symmetry �̂(r,θ ) =
�(r) sin(2θ ) iσ̂2. The other has spin-triplet p-wave symmetry
�̂(r,θ ) = �(r) cos(θ ) σ̂1, where σ̂j for j = 1–3 are the Pauli
matrices in spin space. A d-wave and a p-wave pair potential
in momentum space are shown schematically in Figs. 1(b)
and 1(c), respectively. We do not consider any spin-dependent
potentials in this paper. The matrix structure of the Green
function is represented by

ĝ(r,θ,iωn) = g(r,θ,iωn)σ̂0, (7)

f̂ (r,θ,iωn) = f (r,θ,iωn) ×
{
σ̂2 for a spin singlet,
−iσ̂1 for a spin triplet,

(8)

with scalar Green functions g(r,θ,iωn) and f (r,θ,iωn). The
spatial dependence of �(r) is determined self-consistently
from the gap equation

�(r) = πN0g0T
∑
ωn

∫
dθ

2π
f (r,θ,iωn)Vx(θ ), (9)

where N0 is the density of states per spin of a normal metal at
the Fermi level, g0 is the coupling constant, and Vx represents
attractive electron-electron interactions with x = p wave or d

wave indicating the pairing symmetries. The interaction kernel
Vx depends upon the pairing symmetries as

Vx(θ ) =
{

2 cos θ for x = p wave,
2 sin(2θ ) for x = d wave. (10)

The constant N0g0 is determined by

(N0g0)−1 = ln

(
T

Tc

)
+

∑
0�n<ωc/2πT

1

n + 1/2
, (11)

with Tc and ωc being the transition temperature and the cutoff
energy, respectively.

In a type-II superconductor, an electric current is repre-
sented by

j (r) = πevF N0

2i
T

∑
ωn

∫
dθ

2π
Tr[Ť3kǧ(r,θ,ωn)], (12)

with Ť3 = diag[σ̂0,−σ̂0]. From Eq. (12) and the Maxwell
equation ∇ × H(r) = 4π j (r), we obtain the spatial profiles
of the vector potential A(r) and the local magnetic field H(r).
The local magnetic susceptibility is defined by

χ (r) = 1

4π

H (r) − H ext

H ext
, (13)
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where H ext is the amplitude of an external magnetic field ap-
plied in the z direction. By integrating the local susceptibility,
we obtain the susceptibility of the whole disk X as

X = 1

πR2

∫
|r|�R

d r χ (r). (14)

To solve the Eilenberger equation (1) in a disk geometry,
we use a Riccati parametrization [26–28] and a numerical
method discussed in Ref. [29]. Using this parametrization, the
Eilenberger equation can be separated into two Riccati-type
differential equations. When we solve the Riccati-type equa-
tion along a long enough quasiclassical trajectory, solutions of
the equation do not depend on the initial conditions [29]. In this
paper, the length of the classical trajectories is more than 30
times the coherence length. Solving the Eilenberger equation
and the Maxwell equation, we determine the pair potential, the
vector potential, and the self-energy self-consistently with one
another. At surfaces, we consider specular classical trajectories
for calculating the Green functions [29]. The vector potential
outside the superconducting disk is A(r) = (H ext/2)(−y x̂ +
x ŷ) which gives a uniform magnetic field in the z direction,
where x and y are the unit vectors in the x and y directions,
respectively.

III. RESULTS

Throughout this paper, we fix several parameters as R =
10ξ0 and ωc = 10�0, where �0 is the amplitude of the
pair potential at zero temperature, and ξ0 = �vF /2πTc is the
coherence length. The strength of the disorder is tuned by
changing the parameter ξ0/
. The width of the disordered
region is w = 3ξ0 because odd-frequency pairs induced by
a surface are localized within this range. All lengths are

measured in units of ξ0. The current density is normalized
to J0 = �c2/4π |e|ξ 3

0 . Here we express � and c explicitly
to avoid misunderstandings. The characteristic length scale
of the Maxwell equation is the penetration depth defined
as λL = (4πne2/mc2)−1/2 and is a parameter in numerical
simulations. In this paper, we choose λL = 5ξ0 to realize
type-II superconductors and fix H ext = 0.01Hc2 . Here Hc2 =
�c/|e|ξ 2

0 is the second critical magnetic field. The first critical
magnetic field at low temperature is estimated as Hc1 =
Hc2 (ξ0/λL)2 ln(λL/ξ0) ≈ 0.03Hc2 > H ext at λL = 5ξ0. Thus
vortices are not expected at low temperatures. We start the
numerical simulations with initial conditions of a spatially
uniform pair potential �(r) = |�bulk(T )| and a homogeneous
magnetic field A(r) = (H ext/2)(−y x̂ + x ŷ), where �bulk(T )
is the pair potential obtained in a homogeneous superconductor
at a temperature T . If we choose an alternative initial condition
hosting a vortex in a superconductor, a vortex state might be
realized in numerical simulations [30] even for H ext < Hc1.
This vortex issue, however, goes beyond the scope of this
paper.

First we discuss the calculated results for a small supercon-
ducting disk with a specular surface (i.e., w = 0, ξ0/
 = 0).
Then we discuss the effects of surface roughness by comparing
the numerical results in a disk with a rough surface with those
with a specular disk.

A. Disks with a specular surface

We briefly explain the paramagnetic Meissner effect in a su-
perconducting disk with a specular surface. Figure 2(a) shows
the local susceptibility in a d-wave superconductor. The result
are fourfold symmetric, reflecting the d-wave pair potential.
The magnetic susceptibility is positive (paramagnetic) near

FIG. 2. (Color) Local susceptibilities of small superconducting disks. The results for a d-wave and those for a p-wave superconductor with
a clean surface (i.e., w = 0, ξ/
 = 0) are presented in (a) and (b), respectively. The results for a d-wave and those for a p-wave superconductor
with a rough surface (w = 3ξ0, ξ0/
 = 1.0) are demonstrated in (c) and (d), respectively. The parameters used in the simulation are R = 10ξ0,
λL = 5ξ0, ωc = 10�0, H ext = 0.01Hc1 , and T = 0.1Tc.
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FIG. 3. (Color online) Local susceptibilities on the x axis (i.e.,
y = 0). The results for a d-wave disk and for a p-wave disk are
plotted in (a) and (b), respectively. All the parameters are set to be the
same as those of Fig. 2. The solid and the broken lines indicate the
results for the disk with the clean surface and those with the rough
surface, respectively. The shadowed areas indicate the disordered
regions.

four surfaces in the x and the y directions. In Fig. 3(a), we
show a spatial profile of the local susceptibility of Fig. 2(a)
along the x axis at y = 0. We also show the amplitude of
the pair potential in real space |�(r)| in Fig. 4(a). The pair
potential is calculated along a trajectory ρα oriented at an
angle α measured from the x axis as shown in Fig. 4. In a
d-wave disk, the pair potential is fourfold symmetric. The pair
potential is strongly suppressed at the four surfaces in the x and
y directions as a result of the surface Andreev bound states that
appear [31], whereas it is totally constant in the directions in
which the surface Andreev bound states are absent. In contrast
to the pair potential around a vortex core [30], the results in
Fig. 4(a) are anisotropic in real space. As shown in Ref. [13],

0.0
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0.4
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0.8

1.0 (b) clean p-wave
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0.4
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0.8
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(a) clean d-wave

(c) disordered d-wave (d) disordered p-wave

FIG. 4. (Color online) Amplitudes of pair potentials in real space
for several azimuthal angles α measured from the x axis. The results
for a d-wave disk with 
/ξ0 = 0.0 and 
/ξ0 = 1.0 are shown in (a)
and (c), respectively. Since the pair potential is fourfold symmetric,
we plot its spatial profile for α = 0, π/8, and π/4. The results for a
p-wave disk with 
/ξ0 = 0.0 and 
/ξ0 = 1.0 are shown in (b) and (d),
respectively. The pair potentials for α = 0,π/8,π/4,3π/8,π/2 (from
bottom to top) are shown since the results are twofold symmetric. The
pair potentials are normalized to �bulk(T ). All the parameters are set
to be the same as those of Fig. 2. The shadowed areas in (c) and (d)
indicate the disordered regions.

FIG. 5. (Color online) Spatial dependencies of the decomposed
pairing functions at the lowest Matsubara frequency on the x axis
for (a) a clean d-wave, (b) a clean p-wave, (c) a disordered d-wave,
and (d) a disordered p-wave disk. The parameters are set to the same
values as those in Fig. 2. The shadowed areas indicate the disordered
regions.

the spatial gradient of the pair potential generates paramagnetic
pairing correlations with odd-frequency symmetry. Thus odd-
frequency pairs are expected at four surfaces in the x and
y directions, which explains the inhomogeneous and angular
anisotropic paramagnetic response in Fig. 2(a). In this paper,
we analyze the frequency symmetries of Cooper pairs by
decomposing the pairing functions into a series of Fourier
components. In a d-wave disk, the anomalous Green functions
are described by two components

f̂ (r,θ,iωn) = [fep(r,θ,iωn) + fop(r,θ,iωn)]σ̂2, (15)

where fep is an even-parity (d-wave) function representing the
principal pairing correlation and fop is an odd-parity function
representing the induced pairing component at the surface.
To satisfy Eq. (6), fop must be an odd function of ωn. We
decompose the pair functions f (r,θ,iωn) as

Pl(r,iωn) = 2
√

C2
l + S2

l , (16)

Sl =
∫

dθ

2π
Re[f (r,θ,iωn)] sin(lθ ), (17)

Cl =
∫

dθ

2π
Re[f (r,θ,iωn)] cos(lθ ), (18)

where l = 0, 1, 2, and 3 correspond to s-, p-, d-, and f -wave
orbital functions, respectively. In the presence of a magnetic
field, the imaginary part of f (r,θ,iωn) is induced by the vector
potential as analytically shown in the Appendix. We focus
only on the real part of f to analyze the pairing symmetries.
Figure 5(a) indicates the spatial profile of Pl(x,iω0) at the
lowest Matsubara frequency as a function of x at y = 0.
The pairing functions of induced Cooper pairs have p-
and f -wave symmetries and their amplitudes are localized
near the surface. Such odd-frequency Cooper pairs show
a paramagnetic response to a magnetic field. The surface
also generates spin-singlet s-wave correlations. Its amplitude,
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FIG. 6. (Color online) Spatial distribution of the current density
on a superconducting disk. The results for a d-wave and a p-wave
superconductor with a clean surface (w = 0, ξ/
 = 0.0) are shown in
(a) and (b), respectively. The results with a rough surface are shown
in (c) and (d). The outer circles indicate the edge of the disk and the
inner circles in (c) and (d) indicate the effective interface between the
clean region and the disordered region. The parameters are set to
the same values as those in Fig. 2.

however, is too small to confirm this at the scale of the plot
in Fig. 5(a). Figure 6(a) shows the spatial distribution of the
electric current on a d-wave disk. A diamagnetic current flows
in the central region because of the usual Meissner effect.
Near the surfaces in the x and y directions, however, the
current flows in the opposite direction to the Meissner current.
Therefore a small d-wave superconductor can be paramag-
netic due to the induced odd-frequency Cooper pairs at its
surface.

A spin-triplet p-wave disk also indicates a similar para-
magnetic effect as shown by the results for the magnetic
susceptibility in Fig. 2(b), its spatial profile on the x axis in
Fig. 3(b), the pair potential in Fig. 4(b), and the electric current
in Fig. 6(b). The results are twofold symmetric, reflecting
the p-wave superconducting pair potential. The paramagnetic
effect can be seen near the surface in the x direction because
of the induced odd-frequency Cooper pairs. The anomalous
Green function is represented by Eq. (15) with the replacement
of σ̂2 by −iσ̂1. In the p-wave case, fep represents induced
pairing correlations and is an odd function of ωn. As shown
in Fig. 5(b), fep mainly consists of s- and d-wave pairing
correlations.

Finally in this section, we summarize an important dif-
ference between the paramagnetic effects of a d-wave and
of a p-wave superconductor. In a d-wave disk, the surface
odd-frequency Cooper pairs have p- or f -wave symme-
try [15,18]. In a p-wave disk, on the other hand, s- or

d-wave odd-frequency Cooper pairs are responsible for the
paramagnetic effect [15,18]. In the next section, we will show
that the paramagnetic response of a disk with a rough surface
depends sensitively on the orbital symmetry of the induced
odd-frequency pairs at the surface.

B. Disks with a rough surface

Next, we discuss the effects of the surface roughness
on the magnetic response of a small superconductor. The
calculated results for the local susceptibility for a d-wave
superconducting disk with a rough surface are shown in
Fig. 2(c), where we choose ξ0/
 = 1.0. Comparing Fig. 2(a)
with Fig. 2(c), we find that the surface roughness completely
suppresses the paramagnetic response at the four surfaces in
a d-wave disk. The central region of the disk with the rough
surface recovers the usual diamagnetic response. This effect
is demonstrated more clearly in the spatial profile of local
susceptibilities at y = 0 in Fig. 3(a), where the shadowed
area indicates the disordered region. The amplitude of the
pair potential in real space is shown in Fig. 4(c). The pair
potential in the disordered region is totally suppressed because
the random impurity potential acts as a pair breaker for
d-wave Cooper pairs. Spatial profiles of the decomposed
pairing functions are shown in Fig. 5(c). In the disordered
region, a d-wave pairing function Pd is drastically suppressed
due to impurity scattering. The disordered region can be
considered as a diffusive normal metal because the spatial
profile of the order parameter is proportional to Pd . Odd-
frequency Cooper pairs are also fragile in the presence of
surface roughness because they have p- or f -wave pairing
symmetry. Therefore, both the paramagnetic and the diamag-
netic currents disappear in the disordered region as shown
in Fig. 6(c). The magnetic property of a disk is determined
by that in the clean central region where even-frequency
d-wave Cooper pairs remain and contribute to the diamagnetic
response. We conclude that the paramagnetic effect in a
d-wave disk is fragile in the presence of surface roughness
because odd-frequency pairs have p-wave or f -wave orbital
symmetry.

A p-wave disk shows a qualitatively different magnetic
response from a d-wave one. The local susceptibility of a p-
wave disk with a rough surface is shown in Figs. 2(d) and 3(b)
with a broken line. Although the surface is rough enough, a p-
wave superconducting disk still shows a strong paramagnetic
response. The peak of χ in Fig. 3(b) shifts to the inside of the
disk in the presence of surface roughness. This suggests that
Andreev bound states appear at the boundary between the clean
central region and the disordered surface region. Such Andreev
bound states always accompany paramagnetic odd-frequency
Cooper pairs. In addition to this, the paramagnetic response
in Fig. 3(b) suggests the penetration of odd-frequency Cooper
pairs into the surface disordered region. The spatial profile of
the electric current in Fig. 6(d) shows that the paramagnetic
current flows not only in the clean region but also in the
disordered one. Odd-frequency pairs in a p-wave disk survive
even in the presence of surface roughness because they have
s-wave orbital symmetry. Therefore, the paramagnetic effect
in a p-wave disk is robust against surface roughness.
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FIG. 7. (Color online) Temperature dependencies of the whole
disk susceptibility X(T ) for the d-wave (a) and the p-wave (b) disk.

C. Temperature dependence

Here we discuss the magnetic susceptibility of the whole
disk, which is a measurable value in experiments. The disk
susceptibility in a d-wave and that in a p-wave superconductor
is plotted as a function of temperature in Figs. 7(a) and 7(b),
respectively. We present the results for several choices of the
disorder ξ0/
. In simulation, we first calculate the pair potential
and the vector potential self-consistently at a temperature just
below Tc under an external magnetic field H ext = 0.01Hc2 .
Then the temperature is decreased while keeping H ext un-
changed. In the clean limit (ξ0/
 = 0.0), both a d-wave and
a p-wave disk show the usual diamagnetic response just
below Tc. With decreasing temperature, however, the sign of
the susceptibility changes around T = Tp ∼ 0.3Tc for both
cases. Here, we define Tp as the diamagnetic-paramagnetic
crossover temperature. Below Tp, superconducting disks show
an anomalous paramagnetic response. The paramagnetic effect
is stronger at lower temperatures because odd-frequency
Cooper pairs are energetically localized at the Fermi level.

In a d-wave disk, the reentrance is slightly suppressed in
the presence of moderate surface roughness with ξ0/
 = 0.1
as shown in Fig. 7(a). When we increase the degree of rough-
ness further, the paramagnetic response gradually becomes
weaker. At ξ0/
 = 0.5, the response is diamagnetic and the
susceptibility recovers the monotonic temperature dependence
which is usually observed in large enough superconductors in
experiments. In d-wave superconductors, specular Andreev
reflection is necessary for forming surface bound states at
zero energy [32] and for the odd-frequency pairs that appear.
In other words, odd-frequency pairs have p- or f -wave
orbital symmetry. Therefore the rough surface breaks odd-
frequency pairs and suppresses the paramagnetic response.
This conclusion is totally consistent with the experiment [19],
where the temperature dependence of the pair density in a
high-Tc superconducting film shows a slight reentrant behavior
at low temperature. But the total pair density remains positive.
Actually, the experimental data are very similar to the results
for ξ0/
 = 0.2 in Fig. 7(a). The experimental results can
be interpreted as the appearance of a small amount of odd-
frequency pairs. In the experiment, the surface roughness
may partially break odd-frequency pairs because a number of
internal surfaces are introduced by the heavy-ion irradiation.

In contrast to d-wave disks, the susceptibility of a p-
wave disk X(T ) shows reentrance and a crossover to the
paramagnetic phase at low temperature for all ξ0/
 as shown
in Fig. 7(b). It has been pointed out that the surface Andreev
bound states of a p-wave superconductor are robust under
potential disorder because of the purely chiral property of
surface bound states [33]. In other words, odd-frequency
pairs accompanied by Andreev bound states have s-wave
orbital symmetry [15,18]. Since s-wave pairs are robust under
a disordered potential, the paramagnetic effect in p-wave
superconductors persists even in the presence of surface
roughness. We conclude that the robust paramagnetic response
in a small size sample is a unique property of spin-triplet
p-wave superconductors. This property would enable us to
identify spin-triplet p-wave superconductivity in experiments.

IV. STABILITY OF PARAMAGNETIC
SUPERCONDUCTING STATES

Generally speaking, a superconducting phase is more
stable than a normal one as long as the superconductor is
diamagnetic and homogeneous [1]. Therefore a homogeneous
paramagnetic superconducting phase is usually unstable. The
calculated results in Sec. III, however, show that the para-
magnetic phase on a small superconducting disk is spatially
inhomogeneous. In this situation, it would be worth checking
if the paramagnetic phase is a stable state at a free-energy
minimum or a metastable state corresponding to a free-energy
local minimum. In this section, we discuss the stability of the
paramagnetic phase in small unconventional superconductors
by calculating the free energy in clean superconducting disks.

The free energy is calculated from the quasiclassical Green
functions [34]

FS − FN =
∫

d rF(r), (19)

F(r) = F�(r) + FH (r), (20)

FH (r) = {H (r) − H ext}2

8π
, (21)

F�(r) = Ff (r) + Fg(r), (22)

Ff (r) = πN0

∫
dθ

2π
T

∑
ωn

�∗(r,θ )f (r,θ,iωn), (23)

Fg(r) = 4πN0

∫
dθ

2π
T

ωc∑
ωn>0

∫ ωc2

ωn

dω

× Re{g(r,θ,iω) − 1}, (24)

whereF�(r) is the condensation energy density of the electron
system and FH (r) is the energy density of the magnetic field.
We introduce an additional energy cutoff ωc2 to evaluate the in-
tegration in Eq. (24). In this paper, we set ωc2 = 400�0 so that∫

d rF(r) reaches a converged value. The free-energy densities
are normalized to F0 = N0|�0|2/2 which is the condensation
energy density in a homogeneous s-wave superconductor. The
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FIG. 8. (Color online) Free-energy densities on a trajectory ρα of
a d-wave disk (a) and a p-wave disk (b), where F(r) is normalized
to F0 = N0�

2
0/2. The angle α is measured from the x axis as shown

in schematics in the figures. The temperature is set to T = 0.1Tc so
that the superconducting disks show the paramagnetic response. The
second energy cutoff is set to ωc2 = 400�0. The other parameters are
fixed as R = 10ξ0, λL = 5ξ0, ωc = 10�0, and H ext = 0.01Hc1 .

temperature is set to be sufficiently low at T = 0.1Tc so that
the superconductor is in the paramagnetic phase.

The calculated results for the free-energy density for a d-
wave and those for a p-wave disk are shown in Figs. 8(a)
and 8(b), respectively. The free-energy density is calculated
along a trajectory ρα oriented at an angle α which is measured
from the x axis as shown in Fig. 8. In a d-wave disk, the
results in Fig. 8(a) show that F(r) is negative around the
disk center. However, it becomes positive near the surfaces at
α = 0. On the other hand, F(r) at α = π/4 is almost flat and
is always negative along the trajectory because odd-frequency
pairs are absent in this direction. The results for α = π/2 are
identical to those for α = 0 due to the fourfold symmetry.
The free-energy density varies gradually from the line with
α = 0 to that with α = π/4 as α increases from α = 0. The
free energy of the whole disk

∫
d rF(r) can be negative even

though the disk is in the paramagnetic phase. In a p-wave
disk, the increase of F(r) occurs only on two surfaces due to
its p-wave symmetry. Therefore, we can conclude that both d-
and p-wave superconducting states are more stable than the
normal state even in the paramagnetic phase.

To analyze the details of the free-energy density further, we
decompose the free-energy density at α = 0 into FH and F�

as shown in Fig. 9(a). When a superconductor shows a perfect
Meissner effect, the energy of the magnetic field becomes
FH = (H ext)2/8π . In a small superconductor (i.e., R ∼ λL),
an external magnetic field penetrates into the whole disk. This
suppresses FH from (H ext)2/8π at the center of the disk. Near
the surface, on the other hand, paramagnetic odd-frequency

FIG. 9. (Color online) Condensation energy density and energy
density of a magnetic field for α = 0. The results for a d-wave disk
and those for a p-wave disk are plotted in (a) and (b), respectively.
F , F�, and FH are indicated by solid lines, broken lines, and dotted
lines, respectively. All of the energy densities are normalized to F0 =
N0�

2
0/2, which is the condensation energy density of a homogeneous

s-wave superconductor. All the parameters are set to be the same as
those of Fig. 8.

Cooper pairs attract the magnetic field, which increases FH

locally. The appearance of odd-frequency pairs also increases
F� as discussed in the Appendix. As a result, F(r) becomes
positive at the disk surface in both Figs. 9(a) and 9(b). The
condensation energy F� is negative at the disk center, while,
near the surface, F� increases due to the suppression of
the pair potential there in both Figs. 9(a) and 9(b). In the
Appendix, we analytically calculate the Green functions and
the free-energy density near the surface of a semi-infinite
px-wave superconductor. The result in Eq. (A21) indicates
that the free-energy density is positive due to the appearance
of odd-frequency Cooper pairs. The numerical results in
Figs. 9(a) and 9(b) show that the free energy of the whole
disk

∫
d rF(r) remains negative because odd-frequency pairs

are confined only near the surface. Therefore the paramagnetic
superconducting state on d- and p-wave disks is more stable
than the normal state.

Next, we study the energetic properties of odd-frequency
pairs. In our simulation, it is possible to obtain two super-
conducting states: a superconducting state in the absence
of a magnetic field H ext = 0 and one in the presence of a
magnetic field H ext �= 0. At H ext = 0, there is no electric
current anywhere. Superconducting states at H ext �= 0, on the
other hand, carry electric currents as shown in Figs. 5(a)–5(d).
Here we compare the condensation energies of two such
different superconducting states as shown in Fig. 10, where
we plot F� on a p-wave disk for α = 0. The solid line
and the broken line indicate results for H ext �= 0 and those
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FIG. 10. (Color online) Condensation energy density F� ob-
tained with an external field (solid line) and without an external
field (dotted line). The calculations are carried out for a p-wave
superconducting disk. All the parameters are set to be the same as
those of Fig. 8.

for H ext = 0, respectively. As shown in Fig. 10, F� near
surfaces for H ext �= 0 is lower than that for H ext = 0. The
odd-frequency pairing state in the presence of electric currents
is more stable than that in the absence of electric currents.
This energetic property explains the paramagnetic property
of odd-frequency Cooper pairs. The argument above is valid
also for a d-wave disk. In the Appendix, we present the
analytical expression for the difference between the free energy
at H ext = 0 and that at H ext �= 0. The results show that a
magnetic field decreases the free energy at low temperature
because odd-frequency Cooper pairs have the paramagnetic
property.

V. CONCLUSION

We have theoretically studied the effects of surface rough-
ness on the anomalous paramagnetic response of small uncon-
ventional superconducting disks by using the quasiclassical
Green function method. We conclude that the paramagnetic
property of p-wave superconductors is robust under surface
roughness because p-wave superconductors host s-wave odd-
frequency Cooper pairs at their surface. On the other hand, the
paramagnetic property in d-wave superconductors is fragile
in the presence of surface roughness. In this case, the odd-
frequency pairs at the surface have p-wave orbital symmetry.
We have also confirmed that the paramagnetic superconducting
phase is more stable than the normal state by calculating the
free energy.
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APPENDIX: ANALYSIS IN A SEMI-INFINITE px-WAVE
SUPERCONDUCTOR

In a semi-infinite superconductor in two dimensions, it
is possible to obtain an analytical expression for the Green
functions in the clean limit. The evaluation of the electric
current and free energy by using analytical expressions is
helpful in understanding the numerical results in the text.

We assume that the superconductor occupies x � 0 and is
uniform in the y direction. A magnetic field is applied in the z

direction and its vector potential is given by A = A(x) ŷ. The
Eilenberger equation in 2 × 2 Nambu space reads

ivF k · ∇ĝ + [Ĥ ,ĝ] = 0, (A1)

ĝ(x,k,iωn) =
[

g f

spf
˜

−g

]
(x,k,iωn)

, (A2)

Ĥ =
[
iωn + evF k · A i�(x,k)

isp�
˜

(x,k) −iωn − evF k · A

]
, (A3)

sp =
{

1, even parity,

−1, odd parity, (A4)

where the factor sp depends on the parity of the order parameter
and the Green functions satisfy g2 + spf

˜
f = 1. The Green

functions can be expanded with respect to the vector potential
as

g = g(0) + (−ievF k · A)∂ωn
g(0)

+ 1
2 (−ievF k · A)2∂2

ωn
g(0) + · · · , (A5)

f = f (0) + (−ievF k · A)∂ωn
f (0)

+ 1
2 (−ievF k · A)2∂2

ωn
f (0) + · · · , (A6)

because a vector potential shifts the Matsubara frequency;
here g(0) and f (0) are the Green functions in the absence of a
vector potential. In what follows, we omit “(0)” from the Green
function for simplicity. We note in Eq. (A6) that the parity and
frequency symmetry of the second term on the right-hand side
are opposite to those of the first term because k is an odd-parity
function and ∂ωn

f changes the frequency symmetry [13]. The
imaginary part of an anomalous Green function represents a
pairing correlation deformed by a vector potential.

In the case of a px-wave superconductor, it is possible to
obtain a reasonable solution of the Eilenberger equation at
A = 0. When we assume the spatial dependence of the pair
potential as

�(x,θ ) = �(θ ) tanh(x/ξ ), (A7)

with ξ = vF /�0, the Green functions are represented by [27]

g(x,θ,iωn) = ωn

�
+ �2(θ )

2ωn�
cosh−2

(
x

ξ

)
, (A8)

fP (x,θ,iωn) = �(θ )

�
tanh

(
x

ξ

)
, (A9)
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fI (x,θ,iωn) = − �2(θ )

2ωn�
cosh−2

(
x

ξ

)
, (A10)

where � = [ω2
n + �2(θ )]1/2 and �(θ ) = �0 cos(θ ). The

Green function fP represents the principal pairing correlation
in the bulk state, whereas fI represents the pairing correlation
induced by a surface at x = 0. They are calculated from the
anomalous Green function as

fP (x,θ,iωn) = 1
2 (f + spf

˜
)
∣∣
(x,θ,iωn), (A11)

fI (x,θ,iωn) = 1
2 (f − spf

˜
)
∣∣
(x,θ,iωn). (A12)

Deep inside the superconductor (i.e., x � ξ ), we obtain fP =
f and fI = 0.

1. Current density

From the expression for the electric current in Eq. (12), we
define a linear response function Rμ,ν by

jμ(r) = − e2

m
Rμ,νAν, (A13)

Rμ,ν

ne

= 4πT
∑
ωn

∫
dθ

2π
kμkν∂ωn

g(r,θ,iωn) (A14)

with k = (cos θ, sin θ ) and ne = v2
F N0m the electron density

in two dimensions. The diagonal elements of the response
function Rμ,μ correspond to the so-called pair density. In the
present situation, by substituting Eq. (A8) into Eq. (A14), we
obtain

Ry,y

ne

= 1 − κ1
�0

ω0
cosh−2

(
x

ξ

)
, (A15)

κ1 =
∫

dθ

2π
sin2(θ )|cos(θ )| = 2

3π
, (A16)

where ω0 = πT is the low-energy cutoff in the Matubara
summation. Using the normalization condition, the integrand
in Eq. (A14) can be represented in an alternative way,

∂ωn
g = [−fP ∂ωn

fP + fI ∂ωn
fI

]/
g. (A17)

It is possible to confirm that −fP ∂ωn
fP /g corresponds to the

first term in Eq. (A15), whereas fI ∂ωn
fI /g contributes to the

second term. In this way, we can confirm that induced odd-
frequency Cooper pairs indicate a paramagnetic response to
an external magnetic field. Equation (A15) suggests that the
paramagnetic response is stronger at a lower temperature.

2. Free-energy density

Substituting Eqs. (A8)–(A10) into Eqs. (22)–(24), we find
the free-energy density at A = 0,

Ff = N0κ2�
2
0 ln

(
2ωc

�0

)
tanh2

(
x

ξ

)
, (A18)

Fg = − N0κ2�
2
0 ln

(
2ωc

�0

)
tanh2

(
x

ξ

)

+ N0�
2
0κ2

[
cosh−2

(
x

ξ

)
− 1

2

]
, (A19)

κ2 =
∫

dθ

2π
cos2(θ ) = 1

2
. (A20)

As a result, we obtain

F� = N0�
2
0κ2

[
cosh−2

(
x

ξ

)
− 1

2

]
. (A21)

The free-energy density becomes positive at x = 0 due to the
appearance of odd-frequency pairs.

The contribution of a magnetic field to the free energy can
be evaluated by applying the expansion in Eqs. (A5) and (A6)
to Eqs. (A8)–(A10). Within a second-order expansion, we find
that both the pair potential obtained by Eq. (9) and Ff remain
unchanged. The second-order correction to Fg is given by

F (2)
g =1

2
N0 [evF A(x)]2

[
1 − κ1

�0

ω0
cosh−2

(
x

ξ

)]
. (A22)

The results indicate that F (2)
g can be locally negative (param-

agnetic) at low enough temperature. This explains the decrease
of the free energy in a magnetic field shown in Fig. 10. We
also obtain the electric current in Eqs. (A13) and (A15) from
jy(x) = −∂F/∂Ay .
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