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We analyze symmetries and magnetic properties of Cooper pairs appearing as subdominant pairing correlations
in inhomogeneous superconductors, on the basis of the quasiclassical Green-function theory. The frequency
symmetry, parity, and the type of magnetic response of such subdominant correlations are opposite to those of
the dominant pairing correlations in the bulk state. Our conclusion is valid even when we generalize the theory of
superconductivity to recently proposed diamagnetic odd-frequency superconductors. As a consequence, Cooper
pairs are classified into eight classes in terms of their symmetries and magnetic properties. Anomalous magnetic
properties of subdominant components can be probed by studying the Meissner effect.
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I. INTRODUCTION

Superconductors demonstrate the diamagnetic response to
magnetic field below the transition temperature as a result
of spontaneous breaking of the continuous gauge symmetry.
At the same time, the superconductor chooses three discrete
symmetry options for Cooper pairing: frequency symmetry,
spin configuration, and parity. In each case there are two
options: pairing can be either symmetric or antisymmetric with
respect to interchange of the corresponding arguments: times,
spins, or coordinates of two electrons forming a Cooper pair.
Since electrons obey the Fermi-Dirac statistics, there is the
constraint that the pairing functions must be antisymmetric
under permutation of the two electrons (i.e., simultaneous
permutation of all the arguments). As a consequence, Cooper
pairs has been classified into four symmetry classes. The pair
potentials in all superconductors discovered so far belong to
the even-frequency symmetry class. A number of theories have
suggested the appearance of Cooper pairs (superconducting
correlations) belonging to the odd-frequency symmetry class
in superconducting proximity structures. Spatial inhomo-
geneities such as surfaces and interfaces break the translational
symmetry, thus leading to the coexistence of even-parity
and odd-parity Cooper pairs [1,2]. Spin-dependent potentials
[3–6] enable mixing of spin-singlet and spin-triplet pairs.
In such inhomogeneous superconducting structures, the odd-
frequency Cooper pairs appear as a subdominant component
of the pairing correlations. As a consequence, anomalous
low-energy transport due to the odd-frequency pairs have been
reported in superconducting junctions [7–10].

In addition to the pairing symmetry, Cooper pairs are
also characterized by their magnetic properties. The even-
frequency pairs in the bulk are usually diamagnetic, which
corresponds to conventional positive pair density. Recent
studies have suggested that the subdominant odd-frequency
Cooper pairs formally have locally negative pair density,
which physically signifies unconventional paramagnetic re-
sponse to the magnetic field [11–15]. The odd-frequency
pairs, however, are not necessarily paramagnetic. Originally,
the odd-frequency pairs were discussed in the framework

of odd-frequency superfluidity [16] and superconductivity
[17–22]. Diamagnetic odd-frequency pairs could form a
homogeneous superconducting ground state [19,21,22]. Al-
though several theoretical papers have suggested possibilities
of odd-frequency superconductivity in strongly correlated
electron systems [23–25], no clear experimental evidence of
odd-frequency superconductivity has been presented so far. It
is difficult to resolve directly the frequency symmetry of pair
potentials. This is part of the reason for lacking experimental
confirmation. The theoretical prediction of the characteristic
phenomena in such exotic phase could assist the detection of
the odd-frequency superconductivity. In this paper, for this
purpose, we generalize the theory of superconductivity to
odd-frequency superconductors. If we assume the existence
of an odd-frequency superconductor, then an inhomogeneity
can generate subdominant Cooper pairs. By applying the gen-
eralized theory, we study symmetries and magnetic properties
of such subdominant Cooper pairs.

Technically, we derive the quasiclassical Eilenberger equa-
tion [26,27] in the form that can be applied, in particular,
to the odd-frequency superconductors. The inhomogeneity
in superconducting pair potential generates the subdominant
Cooper pairs, which have the opposite parity, the opposite
frequency symmetry, and the opposite type of magnetic
response, compared to those of the dominant Cooper pairs in
the bulk (at the same time, the spin symmetry is preserved
since we do not consider spin-dependent potentials). Our
results imply the ubiquitous presence of the paramagnetic
Cooper pairs. The subdominant Cooper pairs behave as if
recovering the broken discrete symmetry options for Cooper
pairing and the global gauge symmetry. We conclude that the
assumption of possibility of bulk odd-frequency supercon-
ducting states leads to a generalized classification of Cooper
pairs into eight classes in terms of their pairing symmetries
and magnetic properties. In the end of this paper, we discuss
in more detail the special case of subdominant Cooper
pairs, which belong to the conventional even-frequency spin-
singlet s-wave symmetry class but at the same time are
paramagnetic.
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II. MEAN-FIELD THEORY

Throughout this paper, we repeatedly use three sign factors
representing the symmetries of the pair potential,

sf =
{

1 even-frequency

−1 odd-frequency
, (1)

sp =
{

1 even-parity

−1 odd-parity
, (2)

ss =
{

1 spin-triplet

−1 spin-singlet
. (3)

The Fermi-Dirac statistics of electrons imply sf spss = −1.
The Pauli matrices are denoted by σ̂j for j = 1,2,3. The unity
matrix in the spin space is denoted by σ̂0. We use the units of
� = kB = c = 1, where kB is the Boltzmann constant and c is
the speed of light.

A. Gor’kov equation

In the mean-field theory of superconductivity, two kinds of
the pair potentials appear in the Gor’kov equation,∫

dx1

{
−δ(x − x1)∂τ Ť3 −

[
ĥ(x,x1) �̂(x,x1)

−�̂(x,x1) ĥ∗(x,x1)

]}

×
[

Ĝ(x1,x′) F̂(x1,x′)

−F̂(x1,x′) −Ĝ(x1,x′)

]
= 1̌δ(x − x′), (4)

ĥ(x,x1) = δ(x − x1)

{
− [∇1 − ieA(r1)]2

2m
− μF

}
σ̂0,

Ť3 =
[
σ̂0 0̂
0̂ −σ̂0

]
, (5)

with x = (r,τ ) in the imaginary-time representation and 1̌ =
diag[σ̂0,σ̂0]. The pair potentials enter the self-consistency
equations

�α,β (x,x′) =
∑
γ,δ

Vαβ;γ δ(x,x′)Fγ,δ(x,x′), (6)

�α,β (x,x′) =
∑
γ,δ

V ∗
αβ;γ δ(x,x′)F

γ,δ
(x,x′), (7)

where Vαβ;γ δ(x,x′) represents the pairing interaction (spin-
dependent in the general case, hence the subscript). The four
electron Green functions are defined by

Gα,β(x,x′) = −〈Tτψα(x)ψ†
β(x′)〉, (8)

Gα,β(x,x′) = −〈Tτψ
†
α(x)ψβ(x′)〉, (9)

Fα,β (x,x′) = −〈Tτψα(x)ψβ(x′)〉, (10)

F
α,β

(x,x′) = −〈Tτψ
†
α(x)ψ†

β(x′)〉. (11)

The functional-integral theories [21,22] have suggested that a
saddle point solution

�α,β (x,x′) = −�∗
α,β (x,x′), (12)

minimizes the free energy and describes the uniform dia-
magnetic superconducting ground states for any frequency
symmetry [22]. Indeed, the usual equal-time pair potentials
satisfy Eq. (12). The pair potential is expressed in the Fourier
representation and decomposed into spin components as

�̂(x1,x2) = �̂(r12,ρ12,τ12), (13)

=
∫

dk
(2π )d

T
∑
ωn

�̂(r12,k̂,iωn)eik·ρ12e−iωnτ12 ,

(14)

�̂(r,k̂,iωn) =
3∑

ν=0

�ν(r,k̂,iωn)iσ̂ν σ̂2 eiϕ, (15)

where d is the dimensionality of the superconductor, ϕ

is the superconducting phase, and ωn = (2n + 1)πT is the
fermionic Matsubara frequency with n being an integer number
and T being the temperature. The center-of-mass coordinate
is denoted by r12 = (r1 + r2)/2. The relative coordinates
are represented by ρ12 = r1 − r2 and τ12 = τ1 − τ2. In the
weak-coupling limit, the orbital part of �̂ is described only
by the wave number on the Fermi surface, so we introduce
k̂ = kF /|kF | with kF being the Fermi wave vector. In this
paper, we do not consider superconductors in which the even-
and odd-frequency pair potentials coexist [28]. When �̂ in
Eq. (15) is an even (odd) function of ωn, the pair potential
belongs to the even-frequency (odd-frequency) symmetry
class sf = 1 (sf = −1). The conventional equal-time pair
potential that does not depend on ωn, belongs to the even-
frequency symmetry class. In what follows, in order to simplify
the theory, we assume that the pairing interaction in Eqs. (6)
and (7) is spin-diagonal,

Vαβ;γ δ(x,x′) = Vα,β (x,x′) δαγ δβδ, (16)

Vα,β(x,x′) = Vβ,α(x′,x). (17)

B. Eilenberger equation

Applying the standard gradient expansion [29], we derive
the Eilenberger equation for quasiclassical Green functions.
We assume that the amplitude of the pair potential � is
much smaller than the Fermi energy μF . The gradient
expansion is justified for ξ0 � λF , where ξ0 = vF /(π�) is
the coherence length, vF = kF /m is the absolute value of the
Fermi velocity, and λF is the Fermi wave length. We first
apply the Fourier transformation to the relative coordinate of
the Green functions,

Ĝ(r12,ρ12,τ12)=
∫

dk
(2π )d

T
∑
ωn

Ĝ(r12,k,iωn)eik·ρ12e−iωnτ12 .

(18)

The momentum integration is replaced by∫
dk

(2π )d
= N0

∫
d k̂
Sd

∫
dξk, ξk = k2

2m
− μF , (19)

where Sd is the full solid angle in d dimensions, and N0 is the
density of states per spin at the Fermi level. The quasiclassical
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Green functions are defined by

ĝ(r,k̂,iωn) = i

π

∮
dξkĜ(r,k,iωn), (20)

where
∮

takes into account the contribution near the Fermi
level [30]. Other Green functions, Ĝ, F̂, and F̂, are transformed
in the same manner to the quasiclassical Green functions ĝ, f̂ ,

and f̂ , respectively. Such quasiclassical Green functions obey
the 4 × 4 Eilenberger equation given by

ivF k̂ · ∇r ǧ + [Ȟ + �̌,ǧ] = 0, (21)

Ȟ =
[

ξ (r,k̂,iωn)σ̂0 �̂(r,k̂,iωn)

�̂∗(r, − k̂, − iωn) ξ ∗(r, − k̂,iωn)σ̂0

]
, (22)

ǧ =
[

ĝ(r,k̂,iωn) f̂ (r,k̂,iωn)

−f̂ (r,k̂,iωn) −ĝ(r,k̂,iωn)

]
, (23)

ξ = iωn + evF k̂ · A(r), (24)

�̌ = i

2τimp
〈ǧ(r,k̂,iωn)〉k̂, (25)

〈ǧ(r,k̂,iωn)〉k̂ ≡
∫

d k̂
Sd

ǧ(r,k̂,iωn), (26)

where τimp is the elastic mean free time. The (2,1) component
in Eq. (22) is represented by

�̂∗(r, − k̂, − iωn) = sf �̂∗(r, − k̂,iωn). (27)

The pair potential is related to the anomalous Green function,

�̂(r,k̂,iωn) =
∫

d k̂′

Sd

T
∑
ωm

Vp(k̂,k̂
′
)Vf (iωn,iωm)

× f̂ (r,k̂
′
,iωm), (28)

where Vp and Vf are the potential representing the attractive
interaction between electrons.

To shorten further notations, we define

X˜ (r,k̂,iωn) ≡ X∗(r, − k̂,iωn) (29)

for all functions of the Matsubara frequency.
From the symmetry of Ȟ ,

Ť1 Ȟ˜ Ť1 = Ȟ (sf = 1), (30)

iŤ2 Ȟ˜ (−iŤ2) = Ȟ , (sf = −1), (31)

we find

f̂ (r,k̂,iωn) = sf f̂˜(r,k̂,iωn), (32)

ĝ(r,k̂,iωn) = ĝ˜(r,k̂,iωn), (33)

where we have introduced 4 × 4 matrices,

Ť1 =
[

0̂ σ̂0

σ̂0 0̂

]
, Ť2 =

[
0̂ −iσ̂0

iσ̂0 0̂

]
. (34)

Thus, Eqs. (22) and (23) can be written as

Ȟ =
⎡⎣ ξ σ̂0 �̂

sf �̂˜ ξ˜ σ̂0

⎤⎦
(r,k̂,iωn)

, (35)

ǧ =
⎡⎣ ĝ f̂

−sf f̂˜ − ĝ˜

⎤⎦
(r,k̂,iωn)

, (36)

with the normalization condition ĝ2 − f̂ sf f̂˜ = σ̂0. In the
presence of spin-dependent potentials, we need to add

ξ̂spin = −V (r) · σ̂ − λ(r) × σ̂ · k̂ (37)

to ξ σ̂0 and add ξ̂˜ spin to ξ˜ σ̂0 in Eq. (35), where V (r) and λ(r)
represent the exchange potential and the spin-orbit coupling,
respectively. It is also possible to obtain the symmetry
relationship between the Green functions,

ĝ(r,k̂, − iωn) = −ĝ†(r,k̂,iωn), (38)

f̂ T (r, − k̂, − iωn) = −f̂ (r,k̂,iωn), (39)

by using the following symmetry of Ȟ :

Ť3Ȟ
†(r,k̂, − iωn)Ť3 = Ȟ (r,k̂,iωn), (sf = 1), (40)

Ȟ †(r,k̂, − iωn) = Ȟ (r,k̂,iωn), (sf = −1). (41)

Equation (39), where T denotes the matrix transposition,
represents the Fermi-Dirac statistics of electrons.

When �̂ has only one spin component as

�̂(r,k̂,iωn) = �(r,k̂,iωn)iσ̂ν σ̂2e
iϕ, (42)

with ν being one of 0, 1, 2, 3, it is possible to reduce the
4 × 4 matrix equation to a 2 × 2 one. Expressing the spin
components of the Green functions as

ĝ(r,k̂,iωn) = g(r,k̂,iωn)σ̂0, (43)

f̂ (r,k̂,iωn) = f (r,k̂,iωn)σ̂ν σ̂2, (44)

we can write the Eilenberger equation in the clean limit as

ivF k̂ · ∇r ĝ + [Ĥ ,ĝ] = 0, (45)

Ĥ =
[

ξ (r,k̂,iωn) i�(r,k̂,iωn)
−isssf �˜ (r,k̂,iωn) ξ˜(r,k̂,iωn)

]
, (46)

ĝ =
[

g(r,k̂,iωn) f (r,k̂,iωn)
−ss sf f˜ (r,k̂,iωn) −g(r,k̂,iωn)

]
. (47)

The pair potential obeys ss�(r, − k̂, − iωn) = −�(r,k̂,iωn).
From the normalization condition, we also obtain

g(r,k̂,iωn) = g˜(r,k̂,iωn), (48)

g2(r,k̂,iωn) − ss sf f (r,k̂,iωn) f˜ (r,k̂,iωn) = 1. (49)
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The components of the Green functions satisfy the following
relations:

g(r,k̂,iωn) = −g∗(r,k̂, − iωn), (50)

ssf (r, − k̂, − iωn) = −f (r,k̂,iωn). (51)

In uniform superconductors, we obtain the solution as

ĝ(k̂,iωn) = 1

�n

[
ωn �(k̂,iωn)

�∗(k̂,iωn) −ωn

]
, (52)

with �n =
√

ω2
n + |�(k̂,iωn)|2 for both the even- and odd-

frequency pair potentials.

C. Real-energy representation

Now we briefly discuss the Eilenberger equation in the real-
energy representation. For all functions in this representation,
we define

X˜ (r,k̂,ε ± iδ) ≡ X∗(r, − k̂, − ε ± iδ). (53)

The frequency symmetry of pair potential is described by

�̂(r,k̂, − ε) = sf �̂(r,k̂,ε). (54)

We note that the pair potential has no causality because it is
the potential in the mean-field theory of superconductivity.
Applying the analytic continuation in Eq. (28), we obtain

�̂(r,k̂,ε) =
∫

d k̂′

Sd

∫
dε′

2π
tanh

(
ε′

2T

)
Vp(k̂,k̂

′
)Vf (ε,ε′)

×[f̂ R(r,k̂
′
,ε′) − f̂ A(r,k̂

′
,ε′)]. (55)

The Eilenberger equation reads

ivF k̂ · ∇r ǧR(A) + [ȞR(A),ǧR(A)] = 0, (56)

ȞR(A) =
⎡⎣ξR(A)σ̂0 �̂

�̂
˜

ξ
˜
R(A)σ̂0

⎤⎦
(r,k̂,ε)

, (57)

ǧR(A) =
⎡⎣ ĝR(A) f̂ R(A)

−f̂
˜

R(A) −ĝ
˜
R(A)

⎤⎦
(r,k̂,ε)

, (58)

ξR(A) = ε ± iδ + evF k̂ · A. (59)

The advanced functions are related to the retarded ones as

ǧA(r,k̂,ε) = −Ť3[ǧR(r,k̂,ε)]†Ť3. (60)

We also obtain the relation

[f̂ A(r, − k̂, − ε)]T = −f̂ R(r,k̂,ε), (61)

which represents the Fermi-Dirac statistics of electrons. In the
real-energy representation, the Eilenberger Eqs. (56)–(58) and
the symmetry relationship in Eq. (60) have the same form
in the two cases: even-frequency pair potential and the odd-
frequency one.

III. INHOMOGENEOUS SUPERCONDUCTORS

To analyze the symmetry of the subdominant component
in inhomogeneous superconductors, we begin our discussion
with the 2 × 2 Eilenberger Eq. (45). In the absence of magnetic
field (i.e., A = 0), it is possible to choose the gauge so that
the pair potential is real. As a result, all the Green functions in
Eq. (47) are real. The Eilenberger equation can be decomposed
into three equations [31],

vF k̂ · ∇g = 2�fS, (62)

vF k̂ · ∇fB = −2ωnfS, (63)

vF k̂ · ∇fS = 2(�g − ωnfB), (64)

fB = 1
2 (f + sp f˜ ), fS = 1

2 (f − sp f˜ ), (65)

with the normalization condition g2 + f sp f˜ = g2 + f 2
B −

f 2
S = 1. Here we omit the arguments of all the functions

above (i.e., r,k̂,iωn). The functions fB and fS introduced in
Eq. (65) can be interpreted as the bulk (dominant) and surface
(subdominant) components of superconducting correlation,
respectively.

In homogeneous superconductors, we obtain the solution
as

g = ωn/�n, f = sp f˜ = fB = �(k̂,iωn)/�n, (66)

and fS = 0. The weak coupling theory requires
limωn→∞ �(k̂,iωn)/ωn = 0 (which mean that at large
frequencies the behavior is normal-metallic). Parity, spin
configuration, and frequency symmetry of fB and those of
the pair potential are identical because they are linked to each
other through the self-consistency equation.

Applying vF k̂ · ∇ to Eq. (64), we obtain

v2
F (k̂ · ∇)2fS = 2gvF (k̂ · ∇�) + 4

(
�2 + ω2

n

)
fS. (67)

The spatial derivative of the pair potential generates the
fS component in inhomogeneous superconductors. In what
follows, we analyze the pairing symmetry of fS . First of all, the
spin configuration of fB and that of fS are the same because we
do not consider any spin-dependent potentials. From Eqs. (48)
and (50), we see that g is an odd function of ωn and has even
parity when g is real. The left-hand side of Eq. (62) is an odd
function of ωn and has odd parity because k̂ is an odd-parity
function. Thus, the frequency symmetry and parity of fS are
opposite to those of �. Applying the same logic to Eq. (63),
we conclude that the frequency symmetry and parity of fS are
opposite to those of fB . Therefore, � and fB belong to the
same symmetry class.

The results of the symmetry classification are summarized
in Table I. The symmetry analysis of the anomalous Green
functions in the presence of the vector potential A is presented
in Appendix B.

Finally, we discuss magnetic properties of the two compo-
nents fB and fS . The linear response of the electric current to
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TABLE I. The classification of Cooper pairs in inhomogeneous
superconductors. In the absence of spin-dependent potentials, the spin
state in the bulk and near an inhomogeneity is the same. At the same
time, due to broken translational invariance, the spatial parity can
change. This leads to changing of the frequency symmetry, in order
to conform with the Pauli principle. ESED states realized in metallic
superconductors and high-Tc cuprates in (a) have OSOP states as
the subdominant component. ETOD states realized in Sr2RuO4 and
UPt3 in (b) have OTEP states as the subdominant component. OSOD
states in (c) and OTED states in (d) have never been confirmed in
real materials. The subdominant component of OSOD states in (c) is
ESEP states. ETOP states appears as a subdominant component of
OTED states in (d).

Frequency Spin Parity Magnetic response

(a) Even Singlet Even Diamagnetic Bulk
Odd Singlet Odd Paramagnetic Induced

(b) Even Triplet Odd Diamagnetic Bulk
Odd Triplet Even Paramagnetic Induced

(c) Odd Singlet Odd Diamagnetic Bulk
Even Singlet Even Paramagnetic Induced

(d) Odd Triplet Even Diamagnetic Bulk
Even Triplet Odd Paramagnetic Induced

the vector potential [32] is given by

jμ(r) = −e2

m
RμνAν(r), (68)

Rμν(r)

ne

= dπT
∑
ωn

〈k̂μk̂ν∂ωn
g(r,k̂,iωn)〉k̂

= dπT
∑
ωn>0

〈
k̂μk̂ν

(
f 2

B − f 2
S

)
∂ωn

log

(
1 + g

1 − g

)〉
k̂
,

(69)

where R(r) is the linear response tensor and ne is the electron
density (see Appendix A for details). To reach the last equation,
we have used the normalization condition in the Matsubara
representation [33]. In simplest geometries, when R becomes
diagonal, its elements are the so-called pair densities. The sign
of the pair density determines the type of magnetic response.
In uniform diamagnetic superconductors (i.e., when fS = 0),
the pair density must be positive. Therefore, the contribution
of the fB component in Eq. (69) to the pair density is positive.
In inhomogeneous superconductors, the induced component
fS gives negative contribution to the pair density as shown
in Eq. (69). As a result, the subdominant Cooper pairs are
paramagnetic (their contribution to the supercurrent is opposite
to the conventional diamagnetic one). The main conclusions of
this paper are summarized in Table I, which classifies Cooper
pairs into eight classes.

IV. CONVENTIONAL COOPER PAIRS WITH
PARAMAGNETIC RESPONSE

If we assume existence of odd-frequency spin-singlet px-
wave (OSOD) superconductors, then, according to the above

analysis, the symmetry of fS must be even-frequency spin-
singlet even-parity. At the same time, Table I suggests that
such conventional pairs have paramagnetic response (ESEP).

To confirm this general conclusion, we explicitly solve
Eqs. (62)–(64) for two particular cases. Namely, we consider
two types of px-wave superconductors in two dimensions and
analyze the anomalous Green functions near the specularly
reflecting surface at x = 0. The pair potentials given by

�(x,θ,iωn) ×
{
iσ̂1σ̂2 (ETOD),

iσ̂2 (OSOD),
(70)

describe inhomogeneity introduced by the surface, while in
the bulk we assume

�(∞,θ,iωn) ≡ �(θ,ωn) = �∞Q(ωn) cos θ. (71)

Here the angle θ is counted from the normal to the surface
(the x axis). We imply that the pair potential in Eq. (70) in
the first case represents the equal-time spin-triplet px-wave
pair potential (i.e., ETOD state), while in the second case—
the pair potential with odd-frequency spin-singlet px-wave
symmetry (i.e., OSOD state). Correspondingly, Q(ωn) is equal
to 1 in the ETOD case and is an odd (real) function of
ωn in the OSOD case. It is known that the px-wave pair
potential is suppressed at the surface [34]. If we model this
suppression by �(x,θ,iωn) = �(θ,ωn) tanh(x/ξ ) with ξ =
|vF cos θ/�(θ,ωn)|, we can analytically find [35] the Green
functions satisfying the Eilenberger equations (62)–(64):

g(x,θ,ωn) = ωn

�n

+ �2(θ,ωn)

2ωn�n

cosh−2

(
x

ξ

)
, (72)

fB(x,θ,ωn) = �(θ,ωn)

�n

tanh

(
x

ξ

)
, (73)

fS(x,θ,ωn) = −�2(θ,ωn)

2�n

cosh−2

(
x

ξ

)
×

{
ω−1

n for ETOD
|ωn|−1 for OSOD,

(74)

with �n = √
ω2

n + �2(θ,ωn). To obtain the last equation, we
have used Eq. (51).

For OSOD pair potential, the subdominant component fS

has the even-frequency spin-singlet symmetry. In addition,
Eq. (74) indicates that fS is proportional to cos2(θ ) = (1 +
cos 2θ )/2 multiplied by the even-parity functions. Thus, fS

includes an s-wave component. At the same time, according
to Table I, such conventional Cooper pairs are paramagnetic
(ESEP).

V. DISCUSSION

Experimentally, direct measurement of the paramagnetic
subdominant components generated due to spatial inhomo-
geneity (see Table I) is not an easy task. The main problem
here is that, in the general case, the paramagnetic subdominant
components are not spatially separated from the conventional
diamagnetic ones (in terms of Table I, one can say that near
a spatial inhomogeneity the induced and bulk components
coexist). At the same time, measurements allowing to probe
quantities determined by the superfluid density (e.g., Meissner
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currents or magnetic susceptibility) are still well-suited for
testing the magnetic properties of the induced components.
The point is that the contribution of those components to the
superfluid density is negative, so reduced superfluid density
would be a sign of induced paramagnetic superconductivity.

The anomalous Meissner effect observed in films of high-Tc

superconductor with artificial internal surfaces (introduced by
heavy-ion irradiation) [36] can be interpreted as the sign of
the negative contribution to the pair density from subdominant
pairing correlations. In the experiment, the penetration depth
increased with decreasing temperature [36], which suggests
the decrease of the pair density at low temperature. In this
case, according to our results, the OSOP state appears at
the surface of the superconductor and decreases the pair
density (in other words, appearance of the OSOP state is
a manifestation of surface Andreev bound states formation
[37]). This picture is totally consistent with a previous
theoretical study on the paramagnetic instability of small
unconventional superconductors [15]. Historically, theoretical
papers [38–42] have tried to explain the anomalous Meissner
effect by the paramagnetic response of a quasiparticle at the
surface Andreev bound states. Even in conventional metallic
superconductors, vortex cores host the OSOP state in the
clean limit [43]. The presence of such paramagnetic Cooper
pairs can be observed through a large zero-energy peak in the
quasiparticle density of states. These results also fully conform
with our general classification.

Since surfaces in anisotropic superconductors can lead
to appearance of subdominant components reducing the
superfluid density, one can view this as suppression of su-
perconductivity near a surface. This effect has a characteristic
length scale given by the coherence length. Therefore, lateral
confinement of a superconducting material by surfaces with
distance between them of the order of the coherence length,
can lead to complete suppression of superconductivity in the
sample. This effect indeed exists, as shown theoretically in
Refs. [34] and [44].

The variety of superconducting correlations discussed in the
main part of this paper and classified in Table I can be realized,
at least in principle, in clean superconductors. The presence of
impurities would lead to mixing different directions of quasi-
particle motion, hence to isotropization of the superconducting
state and to suppression of anisotropic superconducting corre-
lations. Diffusive motion near the surface (due to impurities or
rough surface) is compatible only with the s-wave components
of the even-parity subdominant correlations [cases (b) and
(c) in Table I]. At the same time, all odd-parity subdominant
components [cases (a) and (d)] are suppressed. Impurities of
high concentration in the bulk (the dirty limit) would shrink
the classification almost completely, allowing to consider only
the s-wave superconducting states in the bulk (even parity),
which corresponds to cases (a) and (d) in Table I. At the same
time, the corresponding subdominant correlations disappear
because they belong to the odd-parity class.

Superconductors spontaneously break the continuous
gauge symmetry at the transition temperature. As a result,
superconductors acquire the diamagnetic response to magnetic
field. To form Cooper pairs, a superconductor chooses three
discrete symmetry options for Cooper pairing: frequency sym-
metry, spin configuration, and parity. This can be considered

as the secondary symmetry breaking, reflecting the material
parameters, such as the lattice structure and the properties
of bosons mediating the attractive interactions of electrons.
When we describe the pair potential by �eiϕ , these symmetry
options correspond to the inner degrees of freedom of �. We
have shown that the spatial inhomogeneity ∇� generates the
subdominant pairing correlations whose frequency symmetry
and parity are opposite to those of the bulk state, as summarized
in Table I. Therefore, the subdominant correlations behave as
if recovering the broken symmetries in the pairing options.

The equation ∇ϕ = 0 represents the phase coherence in the
uniform superconducting ground state. The Nambu-Goldstone
mode becomes massive and its typical excitation energy
is the plasma frequency because of the electron-electron
interactions. As a consequence, recovering the global gauge
symmetry is suppressed in the superconducting state. Thus,
the uniform phase-rigid ground state is stable, which is the
basis of success for the mean-field theory of superconductivity.
Table I suggests that subdominant correlations are always
paramagnetic. This implies that the subdominant correlations
attract magnetic field or may generate self-induced magnetic
field [14]. The self-induced field encourages the gradient of
phase ∇ϕ, which locally destroys the phase rigidity. So, the
subdominant correlations also play a role of recovering the
broken gauge symmetry. In the ground state, nucleation of
∇� requires extrinsic triggers that bring inhomogeneity into
the superconductor, such as its own surfaces and interfaces
to other materials, or vortices. The subdominant correlations
can be considered as a deformation of the uniform phase-rigid
ground state. This would explain the ubiquitous presence of
the paramagnetic Cooper pairs.

VI. CONCLUSIONS

We have analyzed the symmetries and magnetic properties
of Cooper pairs appearing as a subdominant component
of pairing correlations in inhomogeneous superconductors
by using the Eilenberger equation for the quasiclassical
Green functions. The spatial gradient of the pair potential
generates the subdominant pairing correlations. The frequency
symmetry, parity, and magnetic response of the subdominant
component are opposite to those of the dominant one in
the bulk. Therefore, the subdominant component can be
interpreted as a deformation of the bulk superconducting
state. We conclude that the assumption of possibility of bulk
odd-frequency superconducting states leads to a generalized
classification of Cooper pairs into eight classes in terms of
their pairing symmetries and magnetic properties. Anomalous
magnetic properties of subdominant components near surfaces
can be probed by studying the Meissner effect (or, more
generally, any effect sensitive to the superfluid density).
Subdominant components generated in the vortex cores can
be probed by the density of states measurement.
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APPENDIX A: PAIR DENSITY

The pair density determines the response of superconductor
to electromagnetic field. Here we consider static magnetic
field H = ∇ × A. In the Matsubara representation, the general
expression for the electric current is given by

j (r) = evF πN0

2i
T

∑
ωn

∫
d k̂
Sd

k̂ Tr[Ť3ǧ(r,k̂,iωn)], (A1)

with N0 being the density of states per spin at the Fermi level.
Here ǧ is the 4 × 4 Green function obeying Eq. (21) with
Eqs. (35) and (36). In the absence of spin-dependent potentials,
we obtain

j (r) = −2ievF πN0T
∑
ωn

∫
d k̂
Sd

k̂g(r,k̂,iωn), (A2)

for the single-spin-component pair potential, where g is the
scalar Green function obeying Eqs. (45)–(47).

In what follows, we find g taking into account the linear
response to A. In the Eilenberger equation in Eq. (45)
with Eq. (24), the vector-potential term evF k̂ · A shifts
the Matsubara frequency. Thus, the Green function can be
expressed as

g = g0 + ∂ωn
g0(−ievF )k̂ · A (A3)

within the linear response, where g0 is the Green function at
A = 0. Substituting this into Eq. (A2), we obtain (below we
deal only with g0 and omit the subscript for brevity)

jμ(r) = −e2

m
RμνAν(r), (A4)

Rμν(r)

ne

= dπT
∑
ωn

〈
k̂μk̂ν∂ωn

g(r,k̂,iωn)
〉
k̂. (A5)

We have used the relation ne = 2mv2
F N0/d, where ne is the

electron density and d denotes the dimensionality of supercon-
ductor. In the clean limit, anisotropic superconductivity can be
realized, and then the linear response coefficient becomes a
tensor due to dependence of g on k̂. In simplest geometries,
when R becomes diagonal, its elements are the so-called pair
densities. To discuss magnetic properties of the anomalous
Green function, we rewrite the derivative of g as [33]

∂ωn
g(r,k̂,iωn) = 1

2

(
f 2

B − f 2
S

)
∂ωn

log

(
1 + g

1 − g

)
, (A6)

where we have used the normalization condition in the Mat-
subara representation, g2 + f 2

B − f 2
S = 1. The fB component

and the fS one contribute to the response function in Eq. (A5)
inversely to each other.

The electric current in the real-energy representation is also
obtained in the same way,

j (r) = −evF πN0

4

∫
dε

2π

∫
d k̂
Sd

k̂ Tr[Ť3ǧ
K (r,k̂,ε)], (A7)

where ǧK is the 4 × 4 Keldysh Green function, which is
given by

ǧK (r,k̂,ε) = [ǧR − ǧA](r,k̂,ε) tanh

(
ε

2T

)
(A8)

in equilibrium. In the absence of spin-dependent potentials,
we obtain

j (r) = −2evF πN0

∫
dε

2π

∫
d k̂
Sd

k̂ Re[gR(r,k̂,ε)], (A9)

in the case of a single-spin-component pair potential. Here
gR is the normal Green function in the presence of the vector
potential. Within the linear response, we obtain the response
function as

Rμν(r)

ne

= d

2

∫ ∞

−∞
dε tanh

(
ε

2T

)
Re

〈
k̂μk̂ν∂εg

R(r,k̂,ε)
〉
k̂.

(A10)

The real part of the normal Green function represents the
local density of states and is an even function of ε. Therefore,
∂ε Re gR is an odd function of ε.

APPENDIX B: ANALYSIS OF fB AND fS IN MAGNETIC
FIELD

In the presence of magnetic field, Eqs. (62)–(64) should be
generalized as

vF k̂ · ∇g = 2[�cfS − i�sfB], (B1)

vF k̂ · ∇fB = 2[−(ωn − ievF k · A)fS + �sig], (B2)

vF k̂ · ∇fS = 2[�cg − (ωn − ievF k · A)fB], (B3)

�c = �(r,k̂,iωn) cos ϕ(r), (B4)

�s = �(r,k̂,iωn) sin ϕ(r), (B5)

where we have introduced coordinate-dependent phase of the
pair potential, ϕ(r). The ground state is no longer uniform in
this case. The normal Green function can be represented as

g(r,k̂,iωn) = gr (r,k̂,iωn) + igi(r,k̂,iωn), (B6)

with gr and gi being real functions. From Eqs. (48) and
(50), we find that gr is an odd function of ωn and has even
parity. On the other hand, gi is an even function of ωn and
has odd parity. When we decompose the anomalous Green
functions as

fS(r,k̂,iωn) = f r
S (r,k̂,iωn) + if i

S (r,k̂,iωn), (B7)

fB(r,k̂,iωn) = f r
B(r,k̂,iωn) + if i

B(r,k̂,iωn), (B8)

we find that �, f r
B , and f i

S belong to the same symmetry. On
the other hand, the frequency symmetry and parity of f i

B and
f r

S are opposite to those of �. For example, the real part of
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Eq. (B2) becomes

vF k̂ · ∇f r
B = 2

[ − ωnf
r
S − evF k · Af i

S − �sg
i
]
. (B9)

In the last term in the right-hand side, the frequency symmetry
is the same as that of �, whereas the parity is opposite to �.

Both the frequency symmetry and parity of f r
B are the same as

those of � because of k̂ in the left-hand side. In the same way,
we find that f i

S belongs to the same symmetry class as �. On
the other hand, both the frequency symmetry and parity of f r

S

are opposite to those of �.
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[6] M. Eschrig and T. Löfwander, Nature Phys. 4, 138 (2008).
[7] Y. Tanaka and S. Kashiwaya, Phys. Rev. B 70, 012507 (2004).
[8] Y. Asano, Y. Tanaka, and S. Kashiwaya, Phys. Rev. Lett. 96,

097007 (2006); Y. Asano and Y. Tanaka, Phys. Rev. B 87, 104513
(2013).

[9] Y. Asano, Y. Tanaka, A. A. Golubov, and S. Kashiwaya, Phys.
Rev. Lett. 99, 067005 (2007).

[10] Ya. V. Fominov, Pis’ma Zh. Eksp. Teor. Fiz. 86, 842 (2007);
,JETP Lett. 86, 732 (2007).

[11] Y. Tanaka, Y. Asano, A. A. Golubov, and S. Kashiwaya, Phys.
Rev. B 72, 140503(R) (2005).

[12] Y. Asano, A. A. Golubov, Ya. V. Fominov, and Y. Tanaka, Phys.
Rev. Lett. 107, 087001 (2011).

[13] S. Higashitani, H. Takeuchi, S. Matsuo, Y. Nagato, and K. Nagai,
Phys. Rev. Lett. 110, 175301 (2013).

[14] S. Mironov, A. Mel’nikov, and A. Buzdin, Phys. Rev. Lett. 109,
237002 (2012).

[15] S.-I. Suzuki and Y. Asano, Phys. Rev. B 89, 184508 (2014).
[16] V. L. Berezinskii, ZhETF Pis. Red. 20, 628 (1974) [,JETP Lett.

20, 287 (1974)].
[17] A. Balatsky and E. Abrahams, Phys. Rev. B 45, 13125 (1992).
[18] M. Vojta and E. Dagotto, Phys. Rev. B 59, R713 (1999).
[19] T. R. Kirkpatrick and D. Belitz, Phys. Rev. Lett. 66, 1533 (1991);

D. Belitz and T. R. Kirkpatrick, Phys. Rev. B 46, 8393 (1992).
[20] P. Coleman, A. Georges, and A. M. Tsvelik, J. Phys. Condens.

Matter 9, 345 (1997); P. Coleman, E. Miranda, and A. Tsvelik,
Phys. Rev. B 49, 8955 (1994).

[21] D. Solenov, I. Martin, and D. Mozyrsky, Phys. Rev. B 79, 132502
(2009).

[22] H. Kusunose, Y. Fuseya, and K. Miyake, J. Phys. Soc. Jpn. 80,
054702 (2011).

[23] Y. Fuseya, H. Kohno, and K. Miyake, J. Phys. Soc. Jpn. 72, 2914
(2003).

[24] H. Kusunose, Y. Fuseya, and K. Miyake, J. Phys. Soc. Jpn. 80,
044711 (2011).

[25] S. Hoshino and Y. Kuramoto, Phys. Rev. Lett. 112, 167204
(2014).

[26] G. Eilenberger, Z. Phys. 214, 195 (1968).
[27] A. I. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 66,

2262 (1968) [,Sov. Phys. JETP 28, 1200 (1969)].
[28] A possibility of a coexisting pair potential has been discussed

in the absence of time-reversal symmetry by H. Kusunose,
M. Matsumoto, and M. Koga, Phys. Rev. B 85, 174528 (2012);
M. Matsumoto, M. Koga, and H. Kusunose, J. Phys. Soc. Jpn.
81, 033702 (2012).

[29] A. I. Larkin and Yu. N. Ovchinnikov, in Nonequilibrium
Superconductivity, edited by D. N. Langenberg and A. I. Larkin
(Elsevier, New York, 1986), p. 530.

[30] N. Kopnin, Theory of Nonequiribrium Superconductivity
(Clarendon Press, Oxford, 2001).

[31] Y. Tanaka, M. Sato, and N. Nagaosa, J. Phys. Soc. Jpn. 81,
011013 (2012).

[32] Yu. S. Barash, M. S. Kalenkov, and J. Kurkijarvi, Phys. Rev. B
62, 6665 (2000).

[33] S. Higashitani, Phys. Rev. B 89, 184505 (2014).
[34] J. Hara and K. Nagai, Prog. Theor. Phys. 76, 1237 (1986).
[35] N. Schopohl, arXiv:cond-mat/9804064.
[36] H. Walter, W. Prusseit, R. Semerad, H. Kinder, W. Assmann,

H. Huber, H. Burkhardt, D. Rainer, and J. A. Sauls, Phys. Rev.
Lett. 80, 3598 (1998).

[37] Y. Tanaka, Y. Tanuma, and A. A. Golubov, Phys. Rev. B 76,
054522 (2007).

[38] S. K. Yip and J. A. Sauls, Phys. Rev. Lett. 69, 2264
(1992).

[39] A. Zare, T. Dahm, and N. Schopohl, Phys. Rev. Lett. 104, 237001
(2010).

[40] M. Fogelström, D. Rainer, and J. A. Sauls, Phys. Rev. Lett. 79,
281 (1997).

[41] S. Higashitani, J. Phys. Soc. Jpn. 66, 2556 (1997).
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