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We theoretically study low energy electric transport in a junction consisting of a Weyl semimetal and a metallic
superconductor. The characteristic features of the differential conductance depend on the relative directions between the
current and the vector connecting the two Weyl points. When the electric current is perpendicular to the vector, the
conductance spectra are sensitive to the direction and the amplitude of magnetic moment at the junction interface. This is
a direct consequence of the chiral spin configuration on the fermi surface near the Weyl points.

1. Introduction

Weyl semimetals are a novel topological material in three-
dimension.1–7) In the bulk, Weyl semimetal has the gapless
spectra characterized by even number of Weyl points with
opposite topological charges in Brillouin zone, which leads to
unusual transport properties.8–15) Topological properties in
these cases result from the separation of the individual Weyl
points in the absence of of either time-reversal or inversion
symmetry. Various theoretical model has been discussed to
realize the semimetal phase.16–18) In experiments, the semi-
metal is realized in multilayers of GeTe/Sb2Te319,20) and
Cd3As2.21–23) Recently a possibility of superconductivity has
been discussed in several theoretical studies.24–26) Unconven-
tional Cooper pairing symmetry would be expected because
of the chiral spin structure on the fermi surface. Although
finding the superconductivity within existing semimetals
might be difficult, realizing the superconducting correlation
there is basically possible by injecting Cooper pairs due to
the proximity effect.27) As the first step in this research
direction, we address the Andreev reflection in Weyl
semimetal in the present paper.

In this paper, we theoretically study the low energy
transport through a junction consisting a Weyl semimetal and
a metallic superconductor. The differential conductance of
the Wely-semimetal/superconductor junction is calculated
from the normal and the Andreev reflection coefficients of the
junction. We consider a 2� 2 simple Hamiltonian which
describes the electronic structure of a Weyl semimetal
breaking the time-reversal symmetry. Within this model,
the semimetallic excitation is characterized by the linear
energy-momentum dispersion relations near the two sepa-
rated Weyl points. The spin structures at the two fermi
surfaces are characterized by the opposite spin chiral texture
to each other. When the two Weyl points stay at �K0 with
K0 ¼ ð0; 0; k0Þ, the topological surface states appears on
the four surfaces parallel to K0 direction. We consider two
types of junction: the current parallel to K0 and the current
perpendicular to K0. When the potential barrier at the
interface is spin-independent, the conductance spectra in the
junctions are similar to those in the usual normal-metal/
superconductor junctions. When the potential at the interface
is spin active, on the other hand, the conductance spectra
depend sensitively on types of the junction and directions
of the magnetic moment. In particular, for the current
perpendicular to K0, both the normal and the Andreev

reflections are suppressed due to the chiral spin structure on
the fermi surface. The spin-flip potentials at the interface
relax the spin mismatch in the reflection process.

2. Weyl Semimetal

To describe the electronic states in Weyl semimetals, we
use a simple model given by10)

HW ¼
X
�;�

Z
dr y

�ðrÞ
�
� h�

2

2mW
ðr2 þ k20Þ�̂z

� i�ð@x�̂x þ @y�̂yÞ � �W�̂0

�
�;�

 �ðrÞ; ð1Þ

where  y
�ðrÞ ( �ðrÞ) is the creation (annihilation) operator of

an electron with spin ¡ at r, r is the three-dimensional
Laplacian, mW is the effective mass of an electron, ­

denotes the coupling constant of the spin–orbit interaction,
and �W is the chemical potential measured from the Weyl
point. We originally begin with the spin-degenerate two-
band model as shown in Fig. 1(a). The Zeeman field
decreases (increases) the energy of the spin-up (spin-down)
band. Large enough Zeeman fields result in the inverted
band structure. The effects of the Zeeman field is taken into
account through k0 in Eq. (1). The Pauli’s matrices �̂j for
j ¼ x, y, and z represent the real spins of an electron. The
unit matrix in spin space is �̂0. By neglecting the two bands
away from the fermi level, the electric structure are
described by Eq. (1). In the Fourier representation, Eq. (1)
becomes
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z (b)

Fig. 1. (Color online) (a) Schematic band structures of theoretical model.
The Zeeman effect shifts the bands depending on their spin. We consider two
bands on the fermi level indicated by a broken line. (b) We consider two
types of junction: current parallel to the z-axis and that parallel to the x. The
topological surface states appear on the surfaces perpendicular to the x-axis
and those to the y-axis.
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HWðkÞ ¼
�k � �W �ðkx � ikyÞ
�ðkx þ ikyÞ ��k � �W

" #
; ð2Þ

with �k ¼ ðh� 2=2mWÞðk2 � k20Þ. The energy dispersion and
the wave functions are obtained as

�k

�kðkx þ ikyÞ=p

 !
;

��kðkx � ikyÞ=p
�k

 !
; ð3Þ

for EW
k � �W and �EW

k � �W, respectively. Here we define
following quantities,
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
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The two Weyl points appear at �K0. When we consider low
energy transport around the chemical potential, the energy
band with EW

k � �W carries the electric current. The group
velocity of Weyl semimetal is anisotropic. The velocities are
represented by

vxðyÞ ¼ h�kxðyÞ
mW

�k
EW
k

þ �2kxðyÞ
h�EW

k

; vz ¼ h�kz
mW

�k
EW
k

; ð6Þ

in the xðyÞ and the z-direction, respectively. In addition,
the expectation value of spin S ¼ ðh�=2Þ�̂ are calculated to
be

hSxðyÞi ¼ �kxðyÞ
EW
k

; hSzi ¼ �k
EW
k

; ð7Þ

in units of h�=2.
The Hamiltonian in the hole space is represented by

�H�
Wð�kÞ. The wave function at E ¼ �Ek þ �W is given

by

�k

��kðkx � ikyÞ=p

 !
: ð8Þ

The spin expectation values are calculated to be

hSxðyÞi ¼ ��kxðyÞ
EW
k

; hSzi ¼ �k
EW
k

; ð9Þ

in the hole space.

2.1 Fermi surface
To study transport properties unique to the Weyl semi-

metals, we need to set the chemical potential �W to be small
enough values. We show the shape of the fermi surface at
� ¼ 0:5�0 for several �W in Fig. 2, where the line connects
the equal energy points in the Brillouin zone. For
�W=�0 < 0:4, the two disconnected fermi surfaces enclose
the two Weyl points at ð0; 0;�k0Þ. We only show the fermi
surface around K0 ¼ ð0; 0; k0Þ in Fig. 2. At �W=�0 ¼ 0:2, the
shape of fermi surface is still distorted. The fermi surface
becomes more ellipsoidal for smaller �W. In this paper, we
fix the parameters as � ¼ 0:5�0 and �W ¼ 0:1�0.

2.2 Wave function at a fixed energy
It is possible to consider two types of junction: (i) the

current in the z-direction and (ii) the current in the x-
direction. We first discuss the wave function for the current in
the z-direction. At an energy E > 0, such wave function in
the z-direction proportional to eiðkxxþkyyÞ is described by

�Wðz � 0Þ ¼ 1
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fzeðhÞ ¼ �W þ ð�ÞE þ
ffiffiffiffiffiffiffiffiffiffi
DzeðhÞ

p
; �� ¼ �ðkx � ikyÞ; ð11Þ

k�eðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 � p2 � ð2mW=h�

2Þ ffiffiffiffiffiffiffiffiffiffi
DzeðhÞ

pp
; ð12Þ

DzeðhÞ ¼ f�W þ ð�ÞEg2 � ð�pÞ2; ð13Þ
where ze� and zh� are factors which normalize the wave
functions. The coefficients a� (b�) are the amplitudes of
wave function incoming into the junction interface as an
electron (hole). While A� (B�) are the amplitudes of wave
function outgoing from the junction interface as an electron
(hole). We note that EW

k was replaced by �W þ E in the
electron space. At the same time, �k was replaced by �Dze for
k�e channel. In the hole space, we have applied relations
EW
k ! �W � E and �k ! �Dzh for k�h channel. In this way,

we obtain Eq. (10).
When the current flows in the x-direction, on the other

hand, the wave function in the x-direction proportional to
eiðkyyþkzzÞ becomes
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Fig. 2. (Color online) The fermi surface around K0 are plotted at
�=�0 ¼ 0:5 for several �W. The shape of the fermi surface is independent
of the direction of momenta p ¼ ðkx; ky; 0Þ in the xy plane.
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fxeðhÞ;� ¼ �W þ ð�ÞE þ
ffiffiffiffiffiffiffiffiffiffi
DxeðhÞ

p
� �k0 ~�2=2; ð15Þ

k�eðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0 � ð2mW=h�

2Þ ffiffiffiffiffiffiffiffiffiffi
DxeðhÞ

pp
; ð16Þ

�k;� ¼ �ðk� ikyÞ; ~� ¼ �k0=�0; �0 ¼ h�
2k20=ð2mWÞ; ð17Þ

A0 ¼ k20 � k2y � k2z � k20 ~�2=2; ð18Þ
DxeðhÞ ¼ �2ðk2z � k20Þ þ ð�k0Þ2 ~�2=4þ f�W þ ð�ÞEg2: ð19Þ

On the way to Eq. (14), we have used relations Ek !
�W þ E and �k ! � ~��k0=2�

ffiffiffiffiffiffi
Dxe

p
for k�e channel in the

electron space. In the hole space, we have applied Ek !
�W � E and �k ! � ~��k0=2�

ffiffiffiffiffiffi
Dxh

p
for k�h channel.

2.3 Surface bound states
The topologically protected surface bound states appear at

the surfaces perpendicular to the x-axis and those perpendic-
ular to the y-axis. However it is absent on the surface
perpendicular to the z-axis. It is possible to study the spectra
of such topological surface states by using the wave function
in Eq. (14). In the electron space, the wave function of the
bound states neat the surface (i.e., x ¼ 0) can be described by

�e
WðxÞ ¼

fxe;þ
��kþe ;þ

" #
e�ik

þ
e xAþ þ

�k�e ;�

fxe;�

" #
eik

�
e xA�: ð20Þ

These two wave functions represent the wave decaying into
the Weyl semimetal (x < 0) for Dxe < 0. The condition
Dxe < 0 results in the complex wave number in the x-
direction. By imposing the boundary condition �e

Wð0Þ ¼ 0,
we obtain the dispersion of the surface bound states as
EBS ¼ �ky � �W for k2y < k20ð1� ~�2=4Þ � k2z . Thus chiral
electric current flows in the y-direction. The wave function of
the bound states are obtained as

�BSðxÞ ¼ C0e
~�k0x=2 sinð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 � k2z � k2y

p
xÞ

	0

	�0

 !
; ð21Þ

for x < 0, where 	0 ¼ ei
=4 and C0 is a constant. We have
used a relation ~� � 1. The bound states are the eigen states

of �̂y. At ky ¼ �=� , a bound state appears on the fermi level.
Due to the complex wave number under Dxe < 0, unfortu-
nately, the surface bound state does not contribute to the
electric transport in the x-direction. In the ballistic regime, the
wave numbers in the parallel directions to the interface are
conserved in the transmission and the reflection processes.
An electron incoming into the interface through a propaga-
tion channel cannot be reflected or transmitted via the bound
state. This is because the bound states is formed by the
decaying waves belonging to the evanescent channel.

2.4 Junction with a superconductor
The Hamiltonian in a metallic superconductor is repre-

sented in the momentum space,

HSðkÞ ¼
�k�̂0 �i�̂y

��i�̂y ����k�̂0

" #
; ð22Þ

�k ¼ h�
2k2

2mS
� �S; ð23Þ

where ¦ is the amplitude of the pair potential, and mS (�S)
is the mass of an electron (the chemical potential) in the
superconductor. The wave function in the z-direction, for
example, is represented by

�SðzÞ ¼
u0�̂0

v0ð�i�̂yÞ
� �

C"
C#

� �
eiq

ez

þ v0ði�̂yÞ
u0�̂0

� �
D"
D#

� �
e�iq

hz; ð24Þ
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u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
1þ �

E

� �s
; v0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
1� �

E
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; ð25Þ

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 ��2

p
; qeðhÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F � p2 þ ð�Þ2mS�=h�

2
p

: ð26Þ
The wave functions on either sides of the junction are

connected by the boundary conditions,
�Wðz ¼ 0Þ ¼ �Sðz ¼ 0Þ; ð27Þ

� h�
2

2mW

�̂z 0

0 �̂z

" #
@z�WðzÞ

�����
z¼0

¼ � h�
2

2mS
@z�SðzÞ

����
z¼0

þ V0�̂0 þ V 	 �̂½ 
�Sðz ¼ 0Þ; ð28Þ

for the current in the z-direction. Here we introduce the
barrier potential V0	ðzÞ and the magnetic potential V 	 �̂	ðzÞ at
the interface. For the current in the x-direction, we change z
to x in the above conditions. In addition to this, we need to
add

�

2i

�̂x 0

0 ��̂x

" #
�Wðx ¼ 0Þ ð29Þ

on the left hand side of Eq. (28) to satisfy the current
conservation law. By using the boundary conditions in
Eqs. (27) and (28), it is possible to obtain the reflection
matrix,
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2
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" # aþ
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2
66664

3
77775: ð30Þ

The differential conductance of the junction is calculated
as28,29)

GWSðeVÞ ¼ e2

h

X
P

Tr½1̂ee � R̂eeR̂
y
ee þ R̂heR̂

y
he

����
E¼eV

; ð31Þ

R̂ee ¼
ffiffiffiffiffiffi
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p
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0
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p
 !
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ffiffiffiffiffiffi
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ffiffiffiffiffiffi
v�e
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; ð32Þ

R̂he ¼
ffiffiffiffiffiffi
vþh

q
0

0
ffiffiffiffiffiffi
v�h

p
0
@

1
Ar̂he 1=

ffiffiffiffiffiffi
vþe

p
0

0 1=
ffiffiffiffiffiffi
v�e

p
 !

; ð33Þ

1̂ee ¼
sþe 0

0 s�e

 !
; ð34Þ

where v�e (v�h ) is the velocity of k�e (k�h ) channel at the
electron (hole) space in the Weyl semimetal and P denotes
the momenta parallel to the interface. We define that s�e is 1
for the propagating k�e channel and 0 for the evanescent k�e
channel in the electron space.

3. Differential Conductance

Throughout this paper, we fix material parameters in the
superconductor as mS ¼ mW and �S ¼ 2�0. These parame-
ters only modify the transmission probability of the junction.
The amplitude of the pair potential is fixed at � ¼ 0:01�0
which gives the smallest energy scale in our model. As we
discussed in Sect. 2.1, we choose �W ¼ 0:1�0 and � ¼ 0:5�0
in the Weyl semimetal. The barrier potentials are parameter-
ized as z0 ¼ ðmW=h�

2k0ÞV0 and M ¼ ðmW=h�
2k0ÞV.

We first discuss the differential conductance without
magnetic barrier at the interface (i.e., M ¼ 0). Figure 3
shows the differential conductance of Weyl-semimetal/
superconductor junction for the current parallel to the z-axis
in (a) and that for the current parallel to the x-axis in (b). The
results are normalized to the conductance of Weyl-semi-
metal/normal-metal junction (GWN) at eV ¼ 0. The all
results in (a) and (b) show the dip structure below the gap
because the transmission probability of the junction is less
than unity even at z0 ¼ 0 reflecting the difference in the band
structure between the Weyl semimetal and the superconduc-
tor. The transmission probability TN in the normal state is
0.76, 0.48, 0.16, and 0.076 for z0 ¼ 0, 1, 3, and 5,
respectively in (a). In (b), TN is 0.71, 0.31, and 0.05 for
z0 ¼ 0, 1, and 3, respectively. The gap structure becomes
clearer when we decrease TN by increasing z0. Such
behaviors are well known in the conductance spectra in
normal-metal/superconductor junctions. At the first glance,
we cannot find any characteristic features of Weyl semimetals
in Fig. 3.

The results, however, reflect the characteristic spin
configuration of Weyl semimetals. In Fig. 4, we illustrate
the spin configuration on the fermi surface for the two types
of junction. When the current is parallel to the z-direction as
shown in (a), an electron goes into the interface from the two
fermi surface near �K0. Here we focus on an electron wave
incoming from kz ¼ kþe > 0 channel as enclosed by the
dotted rectangular. The spin calculated from Eq. (7) are

Sðkx; ky; kþe Þ ¼
�kx

�W þ E ;
�ky

�W þ E ;
ffiffiffiffiffiffi
Dze

p
�W þ E

 !
; ð35Þ

for an incoming electron at kz ¼ kþe . The wave numbers in
the z-direction for outgoing channel in the electron space are
k�e and �kþe . The former is in the same fermi surface as that
in the incident wave, whereas the latter belongs to the
opposite fermi surface. In such outgoing channels, Sx and Sy
remain unchanged from those in the incoming one. However,
Sz ¼

ffiffiffiffiffiffi
Dze

p
=ð�W þ EÞ and � ffiffiffiffiffiffi

Dze
p

=ð�W þ EÞ for �kþe and k�e ,
respectively. In Fig. 4(a), the direction of spin within xz spin
plane is illustrated by arrows on the fermi surface at ky ¼ 0.
It is possible to obtain the same spin configuration within yz
plane at kx ¼ 0. Due to the spin mismatch in Sz, the normal
reflection to k�e is basically suppressed. To conserve the spin
direction, therefore, an electron incoming at kþe is reflected
into �kþe in the normal reflection. In the outgoing channels in
the hole space, the spin becomes
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Fig. 3. (Color online) The differential conductance of Weyl-semimetal/
superconductor junction is plotted as a function of the bias voltage for the
current parallel to the z-axis in (a) and for the current parallel to the x-axis in
(b). Here we choose muW ¼ �S, �S ¼ 2�0, � ¼ 0:5�0, and �W ¼ 0:1�0.
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Sðkx; ky; kþh Þ ¼
��kx
�W � E ;

��ky
�W � E ;

ffiffiffiffiffiffi
Dzh

p
�W � E

 !
ð36Þ

at kz ¼ kþh , and

Sðkx; ky;�k�h Þ ¼
��kx
�W � E ;

��ky
�W � E ;

� ffiffiffiffiffiffi
Dzh

p
�W � E

 !
ð37Þ

at kz ¼ �k�h . For E � � � �W, Sx and Sy components in the
hole space are almost opposite to those in the incoming
electron. However, Sz component depends on the outgoing
channels. The Andreev reflection flips the spin of an
incoming electron because we assume the spin-singlet
superconductor. Thus the Andreev reflection is possible at
�k�h belonging to the opposite fermi surface. An incident
electron from one fermi surface is reflected in to the opposite
fermi surface without suffering the spin mismatch. In the
junction for the current parallel to z-direction, therefore, the
reflection processes are as usual as those in the normal metal.
We note that there is no spin mismatch in the Sy component.

The situation in the junction for the current parallel to the x
is more complicated. The spin of an incoming electron at
kx ¼ kþe > 0 channel is

Sðkþe ; ky; kzÞ ¼
1

�W þ E �kþe ; �ky;�
~��k0
2

þ ffiffiffiffiffiffi
Dxe

p� �
: ð38Þ

On the other hand, they are

Sð�kþe ; ky; kzÞ ¼
1

�W þ E ��kþe ; �ky;�
~��k0
2

þ ffiffiffiffiffiffi
Dxe

p� �
;

ð39Þ
in the normal reflection at kx ¼ �kþe in the electron space,
and

Sðkþh ; ky; kzÞ ¼
1

�W � E ��kþh ;��ky;�
~��k0
2

þ ffiffiffiffiffiffi
Dxh

p� �
;

ð40Þ
in the Andreev reflection at kx ¼ kþh > 0 in the hole space.
Although the Sy component always satisfies the spin selection
rule, Sx and Sz components violate the selection rule
depending on the incident angle. In Fig. 4(b), the spin
configuration within xz spin plane is illustrated by arrows on
the fermi surface. We only show the spin structure on the
fermi surface around kz ¼ k0 because the wave number in the
yz plane is conserved in the reflection process. When the
incident electron has a wave number as indicated by A in
Fig. 4(b), the normal reflection to A1 is suppressed due to the
spin mismatch in Sx component but the Andreev reflection to
A2 is possible. On the other hand, when the incident electron
has a wave number as indicated by C, the normal reflection
to C itself is possible but the Andreev reflection to C2 is
suppressed because of the spin mismatch in Sz component. At
the intermediate incident wave number as indicated by B,
both the normal and the Andreev reflections are allowed.
Therefore the reflection property depends strongly on the
incoming wave number. The results in Fig. 3(b) indicate that
the Andreev reflection probability is small near the zero-bias
because of the spin mismatch in the reflection process. The
conductance spectra, however, are expected be sensitive to
spin active potential at the interface.

In Fig. 5, we show the conductance spectra in the presence
of the spin dependent potential at the interface, where z0 ¼ 0

and jMj ¼ 0:1. In (a), results for the current in the z-direction
is plotted for three directions of M. The conductance spectra
are almost unchanged from the results in Fig. 3(a) with
z0 ¼ 0 because there is no spin mismatch in the reflection
processes. However, the conductance spectra for the current
parallel to x depends sensitively on the direction of the
magnetic moment M. For example, þz and ¹z mean the
magnetic moment points þz and ¹z-direction in spin space,
respectively. The conductance for þx and that for ¹x are
identical to each other. The magnetic moment at the interface
drastically modifies subgap spectra for the current parallel to
x-direction because it relaxes the spin mismatch in both the
normal and the Andreev reflection processes.

The conductance spectra also depends on the amplitude of
the magnetic moment. In Fig. 6, we show the conductance
spectra for jMj ¼ 0:5. The peak at eV ¼ � is suppressed by
the magnetic moment for the current parallel to z-direction as
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Fig. 4. (Color online) Spin configuration on the fermi surface within xz
plane in spin space. In the junction for the current parallel to z, an electron is
incident from the two fermi surfaces near ð0; 0;�k0Þ having the opposite spin
chiral texture to each other as shown in (a). For the current parallel to x in (b),
an electron is reflected into the same fermi surface because ky and kz are
conserved due to the translational symmetry in yz plane. We only show the
spin configuration on the fermi surface around ð0; 0; k0Þ in (b). The spin is
conserved in the normal reflection and it becomes opposite direction in the
Andreev reflection. The þð�Þ in the bottom of figures indicates the sign of
the velocity in the current direction.
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shown in (a). The subgap spectra are totally smooth function
of eV . In (b), on the other hand, the results show a rich
variety of the subgap spectra depending on the directions
of magnetic moment. In particular, the amplitudes of the
conductance around the zero-bias for for �z and x are larger
than those at M ¼ 0 in Fig. 3(b). This means the large
amplitude of the Andreev reflection probability.

4. Discussion

The Andreev reflection means the penetration of a Cooper
pair into the Weyl semimetal. When the current is parallel to
z-direction, the results in Fig. 3(a) are qualitatively the same
as those in normal-metal/superconductor junction as we
discussed in Sect. 3. Thus a spin-singlet s-wave Cooper pair
would be dominant in the semimetal. When the current is
parallel to x, on the other hand, the spin-flip scattering assists
the Andreev reflection as shown in Figs. 5(b) and 6(b). Thus
the spin-triplet Cooper pairs are expected in the Weyl
semimetal. In addition to this, the orbital part of a Cooper pair
is also modified by the reflection. The junction interface can
mix the even-parity and odd-parity components because it
breaks the translational invariance. Thus the odd-parity spin-
triplet component is expected as well as the even-parity spin-
singlet one. Moreover a Cooper pair with odd-frequency
symmetry might stay in the Weyl semimetal in the dirty
limit.30,31) To resolve the pairing symmetry, we need calculate
the anomalous Green function and analyze it. This would be
an interesting issue in the future.

5. Conclusion

We have theoretically studied the differential conductance
in the junction of Weyl-semimetal and metallic super-
conductor. The Weyl semimetals have the two Weyl points
in the Brillouin zone at �K0 with K0 ¼ ð0; 0; k0Þ. Therefore,
it is possible to consider two different configurations of the
junction: the current parallel to z-axis and the current parallel
to x one. The characteristic features of the conductance
spectra for the current parallel to z are essentially the same as
those in the usual normal-metal/superconductor junctions.
Namely, the conductance spectra becomes the bulk density of
states in the superconductor when the normal transmission
probability of the junction is low. In addition, the con-
ductance spectra are insensitive to the weak magnetic
moment at the junction interface. In this case, the chiral spin
structure on the fermi surface does not affect the reflection
process at the interface. In the case of the junction for the

current parallel to the x-axis, on the other hand, the chiral spin
structure on the fermi surface suppress the Andreev reflection
depending on the incident angles of a quasiparticle. This
feature is explained by the spin mismatch between the
incoming wave and the outgoing ones. The conductance
spectra depends sensitively on the direction and the
amplitudes of the magnetic moment at the interface because
the spin flip scatterings relax the spin mismatch. The
topological bound states appear on the xy surface of the
Weyl semimetal. They, however, do not affect the low energy
transport in the junctions.

Acknowledgment

The authors are grateful to Y. Tanaka for useful discussion.
This work was supported by the “Topological Quantum
Phenomena” (No. 22103002) Grant-in Aid for Scientific
Research on Innovative Areas from the Ministry of Education,
Culture, Sports, Science and Technology of Japan (MEXT).

1) S. Murakami, New J. Phys. 9, 356 (2007).
2) X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev.

B 83, 205101 (2011).
3) A. A. Burkov, M. D. Hook, and L. Balents, Phys. Rev. B 84, 235126

(2011).
4) A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205 (2011).
5) G. B. Halász and L. Balents, Phys. Rev. B 85, 035103 (2012).
6) T. Ojanen, Phys. Rev. B 87, 245112 (2013).
7) A. A. Zyuzin, S. Wu, and A. A. Burkov, Phys. Rev. B 85, 165110

(2012).
8) Y. Chen, S. Wu, and A. A. Burkov, Phys. Rev. B 88, 125105 (2013).
9) H. Wei, S. P. Chao, and V. Aji, Phys. Rev. Lett. 109, 196403 (2012).
10) K.-Y. Yang, Y.-M. Lu, and Y. Ran, Phys. Rev. B 84, 075129 (2011).
11) A. A. Zyuzin and A. A. Burkov, Phys. Rev. B 86, 115133 (2012).
12) P. Hosur, S. A. Parameswaran, and A. Vishwanath, Phys. Rev. Lett.

108, 046602 (2012).
13) P. E. C. Ashby and J. P. Carbotte, Phys. Rev. B 87, 245131 (2013).
14) B. Rosenstein and M. Lewkowicz, Phys. Rev. B 88, 045108 (2013).
15) Y. Ominato and M. Koshino, Phys. Rev. B 89, 054202 (2014).
16) J. H. Jiang, Phys. Rev. A 85, 033640 (2012).
17) G. Y. Cho, arXiv:1110.1939.
18) P. Delplace, J. Li, and D. Carpentier, Europhys. Lett. 97, 67004 (2012).
19) R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi,

and J. Tominaga, Nat. Nanotechnol. 6, 501 (2011).
20) B. Sa, J. Zhou, Z. Sun, J. Tominaga, and R. Ahuja, Phys. Rev. Lett.

109, 096802 (2012).
21) M. Neupane, S. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I.

Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, and
M. Z. Hasan, arXiv:1309.7892.

22) S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Buechner,
and R. J. Cava, arXiv:1309.7978.

23) Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Phys. Rev. B 88,
125427 (2013).

24) T. Meng and L. Balents, Phys. Rev. B 86, 054504 (2012).
25) H. Wei, S. P. Chao, and V. Aji, Phys. Rev. B 89, 014506 (2014).
26) G. Y. Cho, J. H. Bardarson, Y.-M. Lu, and J. E. Moore, Phys. Rev. B

86, 214514 (2012).
27) W. Chen, L. Jiang, R. Shen, L. Sheng, B. G. Wang, and D. Y. Xing,

Europhys. Lett. 103, 27006 (2013).
28) G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B 25, 4515

(1982).
29) Y. Takane and H. Ebisawa, J. Phys. Soc. Jpn. 61, 1685 (1992).
30) F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Phys. Rev. Lett. 86, 4096

(2001).
31) Y. Asano, Y. Tanaka, and A. A. Golubov, Phys. Rev. Lett. 98, 107002

(2007).

3

2

1

0

 G
W

S
  /

 G
W

N

1.51.00.50.0
eV / Δ

 |M| = 0.5

 (a) j || z

 z

 x, y

3

2

1

0

 G
W

S
  /

 G
W

N

1.51.00.50.0
eV / Δ

 (b) j || x

 + z  - z

 x

 + y

 - y

 |M| = 0.5

Fig. 6. (Color online) The differential conductance at jzj ¼ 0:5. (a): the
current parallel to the z-axis. (b): the current parallel to the x-axis.
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