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Paramagnetic instability of small topological superconductors
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The diamagnetism is an essential property of all superconductors. However, we will show that small topological
(or unconventional) superconductors can be intrinsically paramagnetic by solving the quasiclassical Eilenberger
equation and the Maxwell equation self-consistently on two-dimensional superconducting disks in weak magnetic
fields. Because of the topologically nontrivial character of the wave function, the unconventional superconductors
host the zero-energy surface Andreev bound states, which always accompany so-called odd-frequency Cooper
pairs. The paramagnetic property of the odd-frequency pairs explains the paramagnetic response of the disks at
low temperature.
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I. INTRODUCTION

The Meissner effect is a fundamental property of super-
conductors as shown in standard textbooks [1]. The response
of superconductors is usually diamagnetic because a super-
conductor excludes weak enough magnetic fields from its
interior. The anomalous paramagnetic response, however, has
been observed in small disks of metallic superconductor [2,3],
small high-Tc compounds [4–6], and mesoscopic proximity
structures [7,8]. The spatial inhomogeneity of the magnetic
property is a key feature to realize the paramagnetic phase.
In metallic superconductors, the inhomogeneous distribution
of magnetic fields [9] and the formation of giant vortex are
responsible for the paramagnetic Meissner effect PME [10].
The presence of the π junctions is also pointed out as an
origin of PME in a network of Josephson junction [11]. In
unconventional superconductors (USs), on the other hand, an
experiment [6] has shown the decrease of the pair density with
decreasing temperature, which suggests a peculiar mechanism
of the PME unique to the USs. As a result of the topological
nature in the wave function, the USs have the topologically
protected surface Andreev bound states (ABSs) at the zero
energy [12–16]. So far, theoretical studies have shown that the
magnetic response at the (110) surface of high-Tc superconduc-
tor is nonlinear [17,18] and paramagnetic [19–22] due to the
ABSs. The paramagnetic response has been mainly explained
in terms of the energetics of the ABSs. Weak magnetic
fields shift the energy of the surface ABSs away from the
Fermi level and decrease the total energy of superconductor,
which leads to the paramagnetic response or the paramagnetic
instability. However, there is an important open question: what
carries the large paramagnetic supercurrent? By addressing
this issue, we will conclude that the magnetic properties of
USs are intrinsically inhomogeneous and that small USs can
be paramagnetic at low temperature.

The electric current in equilibrium has two contributions,
(i.e., j = jpq + jA). The quasiparticle current jpq due to the
spatial phase gradient of the wave function is paramagnetic,
whereas jA = −ne2 A/mc is diamagnetic. In a normal metal,
jpq cancels jA because the phase of an electron is not rigid
at all [23]. In a superconductor, on the other hand, the phase
rigidity of superconductivity drastically suppress the spatial
gradient of phase, which leads to jqp = 0. As a result, a

superconductor shows the perfect diamagnetism. In contrast
to excited quasiparticles above, the superconducting gap, the
quasiparticles below the gap have the phase rigidity because
they are the shadow of Cooper pairs. In fact, a normal metal
attaching to a metallic superconductor shows the diamagnetic
Meissner effect [24]. This phenomenon is explained by two
different but equivalent pictures: the penetration of a Cooper
pair into the normal metal (proximity effect) and the Andreev
reflection of a quasiparticle below the gap. The appearance of
the surface ABSs is a direct result of the coherent Andreev
reflections of a quasiparticle at the Fermi level [25]. Therefore
such phase-rigid quasiparticles at the ABS cannot carry the
large paramagnetic current.

In this paper, we theoretically study the spatial distribution
of magnetic fields and that of electric currents on small
two-dimensional superconducting disks with unconventional
pairing symmetry such as spin-singlet d wave and spin-triplet
p wave. There are several d-wave superconductors in organic
compounds and heavy fermionic materials in addition to
high-Tc cuprates. Recently, the effective Hamiltonian for
superconducting states in nanowires [26,27] has shown to
be unitary equivalent to that for px-wave superconducting
states [28]. The simulation at least two-dimensional system is
necessary to evaluate the magnetic susceptibility quantitatively
because the d and p-wave pair potentials are anisotropic
in real space. We solve the Eilenberger equation for the
quasiclassical Green function and the Maxwell equation for
magnetic fields self-consistently. The self-consistency of pair
potential and magnetic field is necessary to regularize the
nonlinear property in the magnetic response [17,18]. The
solution of the Green function near the disk edge shows
the presence of the odd-frequency Cooper pairs. The odd-
frequency pairs have paramagnetic property [29–31] because
of their negative pair density. The calculated results of
the magnetic susceptibility suggest the PME in small USs.
We conclude that the odd-frequency Cooper pairs carry
the large paramagnetic current and causes the paramagnetic
response of small superconducting disks.

II. FORMULATION

Let us consider a superconducting disk in two-dimension as
shown in Fig. 1, where R is the radius of the disk. We assume
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(a) (b) (c)

FIG. 1. (Color online) (a) The schematic figure of a supercon-
ducting disk. The pair potentials in momentum space are illustrated
for the d wave symmetry in (b) and for the p wave symmetry in (c).

that the disk is in the clean limit and its surface is specular
enough. To analyze the superconducting states in equilibrium,
we solve the Eilenberger equation [32],

i�vF k̂ · ∇r ǧ + [Ȟ,ǧ] = 0, (1)

Ȟ (r,k,iωn) =
[
ξ̂ (r,k,iωn) �̂(r,k)

�̂˜(r,k) ξ̂˜(r,k,iωn)

]
, (2)

ǧ(r,k,iωn) =
[

ĝ(r,k,iωn) f̂ (r,k,iωn)
−f̂˜(r,k,iωn) −ĝ˜(r,k,iωn)

]
, (3)

ξ̂ (r,k,iωn) = iωn + (evF /c)k · A(r), (4)

where k is the unit vector on the Fermi surface, vF is the Fermi
velocity, ωn = (2n + 1)πT is the Matsubara frequency, n is
an integer number, and T is a temperature. In this paper, the
symbol ˆ· · · represents 2 × 2 matrix structure in spin space and
σ̂j for j = 1–3 are the Pauli matrices. The vector potential is
denoted by A and the magnetic field H = ∇ × A is in the z

direction. We introduced a definition X˜(r,k,iωn) ≡ X∗(r, −
k,iωn) for all functions X. The electric current is given by

j (r) =πevF N0

2i
T

∑
ωn

∫
dk
2π

Tr[Ť3 k ǧ(r,k,ωn)], (5)

with Ť3 = diag[σ̂0, − σ̂0], where σ̂0 is the identity matrix in
spin space and N0 is the density of state per spin at the Fermi
level. We mainly consider the two equal-time pairing order
parameters in two dimension: spin-singlet d-wave symmetry
�̂(r,θ ) = �(r) cos(2θ )iσ̂2 and spin-triplet p-wave symmetry
�̂(r,θ ) = �(r) cos(θ )σ̂1, where θ is a directional angle with
kx = cos θ and ky = sin θ . The pair potentials are determined
self-consistently from the gap equation

�(r)iσ̂ν σ̂2 = πN0gT
∑
ωn

∫ 2π

0

dθ

2π
f̂ (r,θ,iωn)Vx(θ ), (6)

where x = s,p and d indicate the pairing symmetry, ν = 0
and 3 for the spin-singlet and the spin-triplet order parameters,
respectively. The coupling constant g satisfies {N0g}−1 =
ln(T/Tc) + ∑

0�n<ωc/2πT (n + 1/2)−1 with Tc and ωc being the
transition temperature and the cutoff energy, respectively. The
attractive potentials depends on the pairing symmetry Vx(θ ) =
sxφx(θ ) with ss = 1 and φs(θ ) = 1 for s-wave symmetry,
sp = 2 and φp(θ ) = cos θ for p-wave symmetry, and sd = 2
and φd (θ ) = cos(2θ ) for d-wave symmetry. The local magnetic
susceptibility is defined by

χm(r) = (H (r) − H ext)/(4πH ext), (7)

where H ext is the uniform external magnetic field in the z

direction. The susceptibility of the whole disk is calculated to
be χ = ∫

d rχm(r)/(πR2). In the absence of spin-dependent
potential, the spin structure of �̂ and that of f̂ are always the
same with each other. We use the standard Riccati parametriza-
tion [33–35] to solve the Eilenberger equation Eq. (1). To
obtain numerical solutions of the Riccati type differential
equation in closed disks, we apply a method discussed in
Ref. [36]. An initial value at a certain place in the closed
system is necessary to solve the Riccati equation. The obtained
solution usually depends on the initial condition. However,
when we solve the equation along the long enough classical
trajectory, the effects of the initial condition is eliminated. In
numerical simulation, we increase the length of the trajectory
until solutions do not depend on the initial conditions. The
vector potential A is obtained by solving the Maxwell equation
∇ × H = (4π/c) j with Eq. (5). We calculate self-consistent
solutions of the vector potential and pair potential by solving
the Maxwell equation and the Eilenberger equation simultane-
ously. The anomalous Green function f̂ (r,θ,iωn) is originally
defined by the two annihilation operators of two electrons
consisting of a Cooper pair. Therefore f̂ (r,θ,iωn) must be
antisymmetric under the interchange of the two electrons,
which stems from the Fermi-Dirac statistics of electrons. Such
fundamental relation is represented by

f̂ (r,θ,iωn) = −[f̂ (r,θ + π, − iωn)]T, (8)

where T represents the transpose of matrices.

III. RESULTS

The external magnetic field and the cut-off energy are
fixed at H ext = 0.001Hc1 and ωc = 10�0, respectively. Here,
Hc1 = �c/|e|ξ 2

0 is the first critical magnetic field. The length
is measured in units of ξ0 = �vF /�0 with �0 being the
amplitude of the pair potential at T = 0. The current density is
normalized to J0 = �c/|e|ξ 3

0 . The characteristic length scale
of the Maxwell equation is λL = (4πne2/mc2)−1/2 and is a
parameter in the numerical simulation. Throughout this paper,
we use a unit of kB = 1.

In Fig. 2, we first show the calculated results of the
local susceptibility (a) and the current density (b) for the
d-wave superconducting disk, where we fix the parameters
as R = 3 ξ0, λL = 3 ξ0, and T = 0.3 Tc. We set +x and +y

axes to be identical to (100) and (010) directions of the high-Tc

crystal. The central region of the disk is diamagnetic as usual,
whereas the surfaces in the (110) and (11̄0) directions are
paramagnetic as shown in (a). The current density has the
complex structure near the surface as shown in (b), where the
arrow indicates the direction of current and its length represents
the amplitude of current. Here we present the picture only
for x > 0 and y > 0 in (b) because the results are fourfold
symmetric due to the d-wave character of order parameter.
The diamagnetic current flows at the edges in the (100) and
(010) directions, whereas the paramagnetic current flows at
the edges in the (110) direction. The vortexlike current profile
can be seen near the surfaces because the two currents flow the
opposite directions to each other. At the central region, on the
other hand, only the diamagnetic current flows. Such magnetic
properties are unique to unconventional superconductors. In
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FIG. 2. (Color) (a) The local susceptibility and (b) the current
density of the d-wave superconductor, where R = 3 ξ0, λL = 3 ξ0,
ωc = 10 �0, and H ext = 0.001Hc1. (c) The d-wave and (d) the
p-wave components of the anomalous Green function.

s-wave case, the susceptibility is diamagnetic everywhere in
the disk as show in the Appendix A.

The anomalous paramagnetic response is well explained
by appearing the odd-frequency Cooper pairs. The anomalous
Green function can be decomposed into s-, p-, and d-wave
components by

fx(r,iωn)iσ̂ν σ̂2 =
∫ 2π

0

dθ

2π
Vx(θ )f̂ (r,θ,iωn), (9)

for x = s,p, and d. Figure 2(c) shows the amplitude of
the d-wave component at ω0 = πT . The spatial profile of
the order parameter is almost similar to that of (c). The
d-wave component drastically suppresses in (110) and (11̄0)
directions, which has been well known as a result of appearing
of topologically protected Andreev surface bound states at the
zero energy [14,15]. At the same time, the p-wave component
of the anomalous Green function grows at the corresponding
edges as shown in (d). The spin-singlet p-wave Cooper pairs
must have the odd-frequency symmetry to satisfy Eq. (8). The
breakdown of the translational symmetry at the surface mixes
the even- and odd-parity components. The appearance of the
Andreev surface bound states and that of the odd-frequency
pairs are the two different faces of the same phenomenon.
To have the zero-energy peak in the density of states, the
frequency symmetry of Cooper pair must be odd [29,37,38].
The odd-frequency pairs have so called negative pair den-
sity [29], which leads to the paramagnetic instability as shown
in Appendix B. Therefore we conclude that the paramagnetic
current is carried by the induced odd-frequency Cooper pairs.
Comparing the Figs. 2(b) with 2(d), the paramagnetic current
flows at the regions where the odd-frequency Cooper pairs stay.

We have also obtained qualitatively the same results for
a spin-triplet p-wave superconducting disk at T = 0.2Tc as
shown in Fig. 3, where the local magnetic susceptibility (a),

FIG. 3. (Color) (a) The local susceptibility and (b) the current
density of the p-wave superconductor, where R = 3 ξ0, λL = 3 ξ0.
(c) The p-wave and (d) the s-wave component of the anomalous
Green function.

the current density (b), the p-wave component of f̂ (c),
and s-wave component of f̂ (d) are presented in the same
manner as Fig. 2. The results in Fig. 3 show the twofold
symmetry reflecting the p-wave order parameter. The surface
bound states are appear at the (100) surfaces at which
the p-wave component of the anomalous Green function is
suppressed. Correspondingly, the s-wave component becomes
large at the surfaces of (100) directions. The spin-triplet
s-wave component belongs to the odd-frequency symmetry
class according to Eq. (8). The main difference between Figs. 2
and 3 is the property of the surface ABS at the zero energy.
In the spin-triplet p-wave disk, Majorana fermions appear
at the surface [28]. From Figs. 2 and 3, we conclude that
the magnetic property of unconventional superconductors are
intrinsically inhomogeneous and can be paramagnetic because
of the odd-frequency Cooper pairs at the surface.

The magnetic properties of superconductors strongly de-
pends on the disk size because the odd-frequency pairs
spatially localize near the surface limited by ξ0 from the edge.
Next, therefore, we discuss the relation between the magnetic
property and the disk size. Figure 4 is the paramagnetic-
diamagnetic phase diagram of the d- and p-wave supercon-
ducting disks, where the vertical axis is the paramagnetic-
diamagnetic crossover temperature Tp and the horizontal one is
the radius of superconducting disk R. The disk is paramagnetic
χ > 0 at the temperatures below Tp. The results show that Tp

decrease with increasing the radius of the superconductor. As
shown in Figs. 2 and 3, the paramagnetic area is limited to
ξ0 from the surface because odd-frequency pairs are confined
there. On the other hand, the bulk area are diamagnetic because
even-frequency pairs stay there. Roughly speaking, the relative
area of staying the odd-frequency pairs to the whole area
of disk qualitatively determines the magnetic response of
the disk. Therefore the paramagnetic phase disappears in

184508-3



SHU-ICHIRO SUZUKI AND YASUHIRO ASANO PHYSICAL REVIEW B 89, 184508 (2014)

FIG. 4. (Color online) (a) The diamagnetic-paramagnetic phase
diagram of superconducting disks for the d -wave (square) and p -
wave (circle) pairing symmetry, where λL = 3 ξ0, ωc = 10�0. (b) The
penetration length dependencies of the paramagnetic-diamagnetic
crossover temperatures, where the square and circle symbols are the
results for the d -wave and p -wave pairings, and the open and closed
symbols are the results for the R = 3 ξ0 and R = 5 ξ0 superconducting
disks, respectively.

large disks with R � ξ0. because the contribution from the
surface is negligible in large enough disks. This argument is
supported by the λL dependence of Tp shown in the inset
of Fig. 4, where open (filled) symbols represent the results
for R/ξ0 = 3 (5) and the circles (squares) are the results
for p (d) wave disks. The crossover temperature is totally
insensitive to λL. To be paramagnetic, the larger disks require
the stronger contribution from the odd-frequency Cooper
pairs. The odd-frequency Cooper pairs energetically localize
around the zero-energy [29]. The temperature smears effects
of them on the magnetic response. Therefore Tp decreases with
increasing the disk size as shown in Fig. 4.

Finally, we discuss the susceptibility of whole supercon-
ducting disk as a function of temperature as shown in Fig. 5,
where we fix the penetration depth at λL = 3 ξ0. The results
for d- and p-wave symmetries are presented in (a) and (b),
respectively. The magnetic susceptibility just below Tc is neg-
ative as usual. With decreasing temperature, the paramagnetic
current due to the odd-frequency Cooper pairs increases. As
a consequence, the susceptibility upturns at low temperature,
which is qualitatively different from the susceptibility in the

FIG. 5. (Color online) The temperature dependencies of the mag-
netic susceptibility for the (a) d-wave and (b) p-wave superconduct-
ing disks.

s-wave case as shown in Appendix A. Below Tp, the para-
magnetic odd-frequency Cooper pairs dominate the magnetic
response of the superconductor. Therefore the dependence of
the susceptibility on temperature shows the reentrant behavior
as demonstrated in Fig. 5. In experiments, it is possible to
measure the susceptibility as a function of temperature.

IV. DISCUSSION

Our theoretical results may correlate to the measurement
of the pair density at low temperature [6]. They measured the
penetration depth λL = (4πnse

2/mc2)−1/2 of a YBCO film
on which (110) oriented internal surfaces are introduced by
heavy-ion bombardment. They found that λ first decreases
with decreasing temperature from Tc then increases at very
low temperature. This results can be interpreted as a result
of decreasing the pair density ns at low temperature. The
odd-frequency pairs have the negative pair density. Thus the
decrease of ns may suggest the increase of odd-frequency pair
fraction. The experimental results on a high-Tc superconductor
are consistent with our theoretical results.

In real materials, the inelastic scatterings dephase the
Cooper pairs and broaden the energy profile of the pairing
functions. The inelastic mean free path also limits the size
of disks in the phase diagram shown in Fig. 4. In d-wave
superconductors, it has been shown that the surface roughness
also broadens the zero-energy peak at the surface. In such
situation, we infer that the roughness would suppress the
paramagnetic effect. On the other hand in p-wave super-
conductors, the surface zero-energy peak is robust under the
disordered potential. Therefore effects of surface roughness on
the paramagnetic effect would be different in the two pairing
symmetries. This is an important future issue.

The diamagnetism of superconductor is a result of gaining
the condensation energy below the transition temperature.
Therefore the paramagnetic superconducting states may be
impossible in uniform thermodynamic limit. The paramagnetic
phase in Fig. 4 can be considered as an unstable state and
should disappear for large R/ξ0. As shown in Figs. 2 and 3, the
magnetic inhomogeneity is an intrinsic feature of unconven-
tional superconductors. Such inhomogeneous property assists
the appearance of the paramagnetic phase in small disks.
Indeed, we confirm that the paramagnetic phase appears in
two cooling processes: field cool and zero-field cool.

The spontaneously time-reversal symmetry (TRS) breaking
states has been discussed in high-Tc grains [42]. The subdom-
inant component of order parameter near the surface breaks
TRS. The results in Fig. 2 also indicates the TRS breaking
superconducting state even when we simply assume the pure
d-wave order parameter. We are thinking that the symmetry
crossover from d wave to TRS breaking d + is might be
possible in small samples. To prove this, however, we need
to compare the free-energy among possible symmetry states.
This issue goes beyond the scope of this paper.

Odd-frequency pairs appear also in superconduc-
tor/ferromagnet proximity structures [38]. When odd-
frequency pairs are dominant in the ferromagnet [39–41],
the paramagnetic instability may lead to spontaneous current
there [31].
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V. CONCLUSION

In conclusion, we have theoretically studied the magnetic
response of small unconventional superconducting disks by
using the quasiclassical Green function method. We con-
clude that small unconventional superconductors can be
paramagnetic at low temperature due to the appearance of
odd-frequency Cooper pairs at their surface. The magnetic
properties of unconventional superconductors are intrinsically
inhomogeneous as a result of their topologically nontrivial
nature. Our results show up such universal property of
unconventional superconductivity.
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APPENDIX A: RESULTS FOR s-WAVE DISK

We supply the calculated results for conventional spin-
singlet s-wave superconductors. Figure 6 shows the calculated
results of the local susceptibility (a) and the current density
(b) for the s-wave superconducting disk, where we fix the
parameters as R = 3 ξ0, λL = 3 ξ0, and T = 0.2 Tc. Because
of the isotropic property in the s-wave pair potential, the
results are also isotropic in real space. Therefore we plot
the results as a function of x at y = 0. The results in (a)
show that the response is diamagnetic everywhere in the
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FIG. 6. (Color online) (a) The local susceptibility and (b) the
current density of the s-wave superconductor, where R = 3 ξ0, λL =
3 ξ0, ωc = 10 �0, H ext = 0.001Hc1 and T = 0.2Tc. (c) The s-wave
component of the anomalous Green function. (d) The susceptibility
vs temperature.

disk. Correspondingly, the current profile in (b) suggests
the usual Meissner screening current. The amplitude of the
s-wave component of the anomalous Green function is almost
uniform because s-wave superconductors are topologically
trivial and do not host any surface states. The amplitude of
the p-wave component is much smaller than that of s-wave
one. The susceptibility of disk is plotted as a function of
temperature in (d). The susceptibility decreases monotonically
with decreasing temperature, which is usually observed in
experiments. Since the disk size is not much larger than λL,
the perfect diamagnetism (i.e., 4πχ = −1) is not archived.

APPENDIX B: PARAMAGNETIC CURRENT DUE TO
ODD-FREQUENCY PAIRS

We discuss the contribution of odd-frequency pairs to the
paramagnetic current within the linear response theory. Here
we consider that the pair potential has a single component in
spin space �̂(r,k) = �(r,k)iσ̂ν σ̂2, where ν is one of 0–3. In
such case, the Eilenberger equation is reduces to a 2 × 2 matrix
equation:

i�vF k · ∇r ĝ + [Ĥ,ĝ] = 0, (B1)

Ĥ =
[
iωn + evF

c
k · A i�(r,k)

i�(r,k) −iωn − evF

c
k · A

]
, (B2)

ĝ(r,k,ωn) =
[

g(r,k,ωn) f (r,k,ωn)
sp f˜(r,k,ωn) −g(r,k,ωn)

]
, (B3)

where sp is 1 for even-parity order parameter and −1 for
odd-parity one. The electric current is given by

j (r) = −2ievF πN0T
∑
ωn

∫
dk
Sd

kg(r,k,ωn). (B4)

Here, g is the normal Green function in the presence of the
vector potential. In what follows, we estimate g within the
linear response of A. In the Eilenberger equation, the vector
potential formally shifts the energy. Thus the Green function
can be expressed as

g = g0 + ∂ωn
g0(−ievF /c)k · A (B5)

within the linear response, where g0 is the Green function at
A = 0. In what follows, we omitted “0” from the subscript
of the Green function for simplicity. By substituting the
expression to Eq. (B3), we obtain

j (r) = −ne2π A
2mc

T
∑
ωn

∂ωn
〈g(r,ωn)〉k (B6)

= −nse
2 A

mc
, (B7)

ns

n
= πT

∑
ωn

〈∂ωn
g(r,ωn)〉k (B8)

= 1

2

∫ ∞

−∞
dω 〈∂ωg(r,ω)〉k, (B9)

where n is the density of electrons in the normal state and
N0 is the density of states per spin at the Fermi level. The
ωn derivative of the Green function can be defined only at
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T = 0. To discuss magnetic property of the anomalous Green
function, we write the derivative of g to

∂ωg(r,k,ω) =1

2

(
f 2

E − f 2
O

)
∂ω ln

(
1 + g

1 − g

)
, (B10)

fE(r,k,ωn) =1

2
(f + spf˜)

∣∣∣∣
(r,k,ωn)

, (B11)

fO(r,k,ωn) =1

2
(f − spf˜)

∣∣∣∣
(r,k,ωn)

, (B12)

where we have used the normalization condition in the
Matsubara representation g2 + spf f˜ = 1 [43].

At A = 0, the Eilenberger equation is decomposed into
three equations for the three components in the matrix
structure,

�vF k · ∇rg = 2�fO, (B13)

�vF k · ∇rfE = −2ωnfO, (B14)

�vF k · ∇rfO = 2(�g − ωnfE). (B15)

Here we note that the all functions are real when we delete the
superconducting phase. For the uniform case, we obtain the

solution

g = ωn√
ω2

n + �2
, f = spf˜ = fE = �√

ω2
n + �2

, (B16)

and fO = 0. In the uniform bulk region, fE is the source
of the order parameter �. Thus parity, spin, and frequency
symmetries of fE and those of � should be identical to each
other. The contribution of fE to the pair density must be
positive in Eq. (B10) because the uniform superconductor
is diamagnetic. The surface and the interface are source
of the inhomogeneity in superconductor and mix the two
orbital symmetry: even parity and odd parity. Nonzero spatial
derivative in Eqs. (B13)–(B15) allows fO component.

The component fO is an odd function of ωn as shown in
Eq. (B13) because g is always an odd function of ωn due to
a symmetry relationship g(r,k,ωn) = −g∗(r,k, − ωn). Equa-
tion (B14) indicates that the frequency symmetry of fO are
always opposite to those in fE. Therefore inhomogeneity in-
duces fO component which has the odd-frequency symmetry.
Eq. (B10) tells us that the pair density of odd-frequency com-
ponent is negative, which leads to the paramagnetic response.
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