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Three-dimensional symmetry-breaking nontrivial topological states
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We discuss topological electronic states described by the Dirac Hamiltonian plus an additional one in three
dimensions. When the additional Hamiltonian is an element of an Abelian group, electronic states become
topologically nontrivial even in the absence of the fundamental symmetries such as the time-reversal symmetry
and the particle-hole one. Such symmetry-breaking topological states are characterized by the Chern number
defined in the two-dimensional partial Brillouin zone. The topological insulators in Zeeman fields are an example
of the symmetry-breaking topological electric state. We show the crossover from the topological insulating phase
to the topological semimetal one in strong Zeeman fields.
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Topological classification has successfully predicted a
number of topologically nontrivial electronic states in the
condensed matter. Each topological phase is characterized by a
topological number defined in the presence of the fundamental
symmetries preserved in the materials such as the time-reversal
symmetry in topological insulators [1–4], the particle-hole
symmetry in superfluids and topological superconductors
[5,6], and the crystal symmetry in topological crystalline
insulators [7,8]. The table of the topological classes [9,10] has
suggested a close relationship between the appearance of the
topological phase and the invariance of the Hamiltonian under
the fundamental symmetries. However, the surface states, an
evidence of the topological phase, often remain gapless even
when the fundamental symmetries are broken by perturbations.
For instance, Z2 number in the presence of the time-reversal
symmetry characterizes the topological state of the 3He-B
phase belonging to class DIII. In the Zeeman field, however,
3He-B phase still hosts the gapless states on a surface parallel
to the Zeeman field. Mizushima et al. [11] have explained the
existence of the gapless surface states in terms of a topological
number defined by using the remaining symmetry of the 3He-B
phase under the Zeeman field. Finding a particular topological
number for explaining a particular gapless surface states is a
way to understand physics of topological materials. However,
there may be a more general route to characterize topological
electronic states.

In this paper, we will show an alternative way to search the
topological materials in three dimensions in the absence of the
fundamental symmetries. The electronic structures of topolog-
ical materials are described by the 4 × 4 Dirac Hamiltonian. A
unitary transformation in the two-dimensional partial Brillouin
zone (BZ) deforms the 4 × 4 Dirac Hamiltonian into two
decoupled 2 × 2 quantum Hall Hamiltonians whose electric
states are characterized by the nontrivial Chern number. The
Chern number characterizes the two-dimensional topological
states in class A where the Hamiltonian is not necessary to
preserve any fundamental symmetries. Therefore the Chern
number in each quantum Hall state (QHS) remains unchanged
as far as perturbations do not mix them. Such perturbed Hamil-
tonian preserves a certain symmetry in the two-dimensional
BZ but is not necessary to hold the fundamental symmetries
globally in all the whole BZ. Therefore, the Dirac Hamiltonian

plus such perturbed Hamiltonian describes topological states
characterized by the Chern number without any fundamental
symmetries. Our method to define the topological states in
terms of the symmetry held locally in the partial BZ can
be a tool to search topologically nontrivial states in novel
materials. On the basis of the prescription, we propose
semimetal phases of a time-reversal invariant topological
insulator under the strong Zeeman field. Such semimetals are
an example of the symmetry-breaking topological materials
because they are characterized only by the Chern number in the
partial BZ.

We begin with the three-dimensional Dirac Hamiltonian
which describes electronic structures of topological materials
such as topological insulators, topological superconductors,
and superfluids,

H0 = aαμpμ + Mβ, μ = x,y,z, (1)

M = (m − b p2), (2)

where a, b, and m are positive constants, α and β are the 4 × 4
Dirac matrices,

αμ = σμτx =
(

0 σμ

σμ 0

)
, β = σ 0τ z.

The diagonal 2 × 2 blocked sectors describe the two orbital
spaces in the topological insulators [12] or the particle-hole
subspace in the topological superconductors. Here the Pauli
matrices σμ and τμ for μ = x,y,z act on the spin and the
orbital indices of an electron, respectively. The matrices σ 0 and
τ 0 are the 2 × 2 identity matrix in the corresponding subspace.
The index which appears twice in a single term means the
summation for μ = x,y,z.

We first focus on a partial Brillouin zone specified by
pz = 0. The Hamiltonian can be separated into two blocks
as

HU
0 =

(
d(M) · σ 0

0 d(−M) · σ

)
, (3)

d(M) = (apx,apy,Mpz=0), (4)
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FIG. 1. (Color online) In (a), a plane represents the two-
dimensional partial Brillouin zone (BZ) embedded in the three-
dimensional one. In the partial BZ, the two blocked Hamiltonians
h(M) and h(−M) describe the two quantum Hall states (QHSs) with
the opposite chiral edge mode as shown in (b), where the arrows
denote the direction of the chiral edge current. The corresponding
dispersion of the edge modes is shown in (c). (d) Illustrates the
dispersion of the edge modes under the antisymmetric Zeeman field
which shifts the chemical potential of the two QHSs inversely. As a
consequence, the Dirac point moves to another point in the BZ.

by applying the unitary transformation HU = UHU † with

U =

⎛
⎜⎜⎜⎝

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

⎞
⎟⎟⎟⎠. (5)

The Hamiltonian of the blocked sector h(±M) = d(±M) · σ

is a simple model of the quantum Hall systems [13] as shown
in Fig. 1(b). The chiral edge modes of the two quantum Hall
states (QHSs) have the opposite chirality to each other. When
the Chern number C is 1 for h(M), it is −1 for h(−M).
The dispersion of the chiral edge modes goes across the
zero energy at the so-called Dirac point in px and py axes
on the xz and yz surfaces, respectively, as schematically
shown in Fig. 1(c). The Dirac point is stable even when
we add a perturbation HU

P to HU
0 as far as HU

P is invariant
under the unitary transformation given by PU

xy = τ z [i.e.,
PU

xyH
U
P (PU

xy)† = HU
P ]. This is because such HU

P does not mix
the two QHSs. In the original representation before applying
U , the perturbed Hamiltonian HP should satisfy PxyHPP†

xy =
HP , where Pxy = σ zτ z represents the combined operation
of the pseudospin inversion τμ → −τμ and spin inversion
σμ → −σμ for μ = x and y. The set of Hermite matrices HP
forms an Abelian group AP whose elements are invariant under
the unitary transformation by Pxy . Nontrivial Chern numbers
in the partial BZ of the pxpy plane explain the existence of
the gapless states on the four surfaces perpendicular to the
xy plane. It is possible to generalize the above argument to
the partial BZ specified by pρ = 0. In this case, the unitary

operator is represented by

Pμν = εμνρσ
ρτ z, (6)

where εμνρ is antisymmetric symbol. Using the property of
the Abelian group is a simple way to describe physics of
the present issue. But it is not essential. To advance concrete
discussions on HP , we explicitly express an example of HP ,(

a0 + aρσ
ρ bμσμ + bνσ

ν

b∗
μσμ + b∗

νσ
ν c0 + cρσ

ρ

)
, (7)

where μ, ν, and ρ represent x, y, and z, and they are not
equal to one another. Coefficients a0, aρ , c0, and cρ are
real numbers but they are not necessary to be constants.
The additional Hamiltonian contains the various effects: the
intraband scattering without spin flip for a0 and c0, that with
spin flip for aμ and cμ, the modulation of spin-orbit interaction,
e.g., anisotropy, for bμ, and etc.

The Abelian group AP has a subgroup of APQ. The
perturbed Hamiltonian belonging to APQ does not remove
the gapless states on all the surfaces. To show this property,
we consider the elements that commute with Pyz. The gapless
states remain on the four surfaces perpendicular to the yz plane
under such perturbed Hamiltonian. Thus we show the gapless
states on the remaining two surfaces parallel to the yz plane.
After applying the transformation by U in Eq. (5), Eq. (1) with
py = pz = 0 becomes

HWU
0 = WHU

0 W † =
(

d ′(M) · σ 0

0 d ′(M) · σ

)
,

(8)
d ′(M) = (

apx,0,m − bp2
x

)
,

where W is an unitary matrix of W = diag[σ 0,−iσ x]. At the
point of py = pz = 0, the edge states on the yz surface are
degenerate at the zero energy. This is because the two blocked
sectors are equivalent to each other in this representation
and because each blocked sector preserves the “particle-hole
symmetry” within the 2 × 2 space represented by a relation
σy(d ′ · σ )σy = −d ′ · σ . Thus the degeneracy of the two
edge states remains even when we add the “particle-hole”
symmetrical Hamiltonian HWU

Q to HWU
0 . Such Hamiltonian

HWU
Q should satisfy the relation QWU

yz HWU
Q (QWU

yz )† = −HWU
Q

with QWU
yz = σyτ 0. The Hermitian matrices form the Abelian

subgroup APQ whose elements HPQ satisfy QyzHPQQ†
yz =

−HPQ and PyzHPQP†
yz = HPQ at the same time. In the

original representation before applying the transformation of
W and U , the unitary matrix Qyz is given by

Qyz = σxτ y. (9)

When we consider elements invariant underPμν in general, the
unitary matrix in Eq. (9) is represented as Qμν = εμνρσ

ρτ y . In
addition to the elements in APQ, the Hamiltonian proportional
to the 4 × 4 identity matrix does not affect the gapless surface
states at all.

In a short summary, we have discussed the three-
dimensional symmetry-breaking topological state whose elec-
tronic structures are represented by

H = H0 + HP , (10)
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where HP commutes with Pμν = εμνρσ
ρτ z. The set of such

Hamiltonian forms the Abelian group AP . The Chern number
defined in the two-dimensional partial BZ specified by pρ =
0 characterizes the topologically nontrivial states. Generally
speaking, the symmetry in a two-dimensional partial BZ is
not necessary to be held in whole BZ in three dimensions.
In addition, the gapped energy spectra in a two-dimensional
partial BZ are not necessary to be held in whole BZ in three
dimensions. The word “symmetry breaking” means that the
symmetries preserved in H0 are broken by HP , and those
preserved in HP are broken by H0. In what follows, we discuss
electronic states of the three-dimensional topological insulator
under the Zeeman field as an example of the three-dimensional
symmetry-breaking topological states.

The Zeeman field is represented by two vectors B and B̃ as

H1 = Bμσμτ 0 + B̃μσμτ z, (11)

where Bμσμτ 0 and B̃μσμτ z are the symmetric and the
antisymmetric parts of the Zeeman field with respect to the
two orbitals, respectively. The antisymmetric part of B̃μσμτ z

is attributed to the difference of the coupling constants to the
Zeeman field in the two orbitals and is dominant in Bi2Se3

[12]. We consider the subgap states on the yz surface for a
while. When the weak Zeeman field of B,B̃ < m is applied
along the z axis parallel to the yz surface, the two QHSs in
the two-dimensional partial BZ on the pypz plane still remain
decoupled from each other because the H1 commutes withPxy .
Applying the unitary transformation of U , the Hamiltonian
becomes

HU
1 = Bzσ

zτ 0 + B̃zσ
0τ z. (12)

The symmetric Zeeman field Bz gives a constant correction
to M in Eq. (3) and does not affect the Dirac point in two-
dimensional BZ at all. On the other hand, the antisymmetric
Zeeman field B̃z shifts the chemical potential of the two QHSs
inversely. As a result, the Dirac point moves from the 	 point
(py,pz) = 0 as shown in Fig. 1(d). The situation is similar
to the shift of the Dirac point at the interface facing to a
ferromagnetic insulator [14–17].

Next we consider the Zeeman field in the direction per-
pendicular to the yz surface. We conclude that the symmetric
Zeeman field would remove the gapless states from the yz

surface because it does not belong to the Abelian subgroup
APQ. On the other hand, the antisymmetric Zeeman field
leaves the gapless states because it belongs to the Abelian
subgroup APQ. It is easy to confirm these conclusions by
the argument below. Both the symmetric Bxσ

xτ 0 and the
antisymmetric B̃xσ

xτ z Zeeman field commute with Pyz =
σxτ z but do not commute with either Pxy = σ zτ z or Pxz =
−σyτ z. The symmetric Zeeman field does not anticommute
with Qyz in Eq. (9), which indicates the gapless states are
no longer guaranteed on the yz surface. On the other hand,
the antisymmetric Zeeman field anticommutes with Qyz,
which means the antisymmetric Zeeman field belongs to APQ.
This is because the antisymmetric Zeeman field preserves
the “particle-hole symmetry” in each QHS. As a result, the
symmetric (antisymmetric) Zeeman field removes (leaves)
the gapless energy spectra on the surface perpendicular to
the Zeeman field. So far we have considered the weak Zeeman
field of m > |B| and m > |B̃|. In the strong Zeeman field

m < |B| and m < |B̃|, another topological phases would be
also expected because the two QHSs still remain decoupled
from each other. We will confirm the last statement by
numerical calculation.

In what follows, we confirm the analysis above by the
numerical calculation for the combined Hamiltonian H =
H0 + H1 on the tight-binding lattice,

H =
∑

p

c( p)†
[(

m − b
∑

ν=x,y,z

(1 − cos pν)

)
σ 0τ z

+ a sin pμσμτx + σ ν(Bντ
0 + B̃ντ

z)

]
c( p), (13)

with the parameters m, a, and b used in Ref. [17]. Here
c( p) = (c1↑,c1↓,c2↑,c2↓)T is the annihilation operator with
four components corresponding to spin ↑,↓ and orbital 1,2
subspaces. To calculate the energy spectra of the surface state
on the yz plane, we consider the lattice along x axis with∑

px

cos pxc
†(px)c(px) → 1

2

∑
j

(c†(j + 1)c(j ) + H.c.),

∑
px

sin pxc
†(px)c(px) → 1

2i

∑
j

(c†(j + 1)c(j ) − H.c.),

where we utilize j as the position on the x axis and employee
the hard-wall boundary condition in the x axis.

At first, we consider the weak Zeeman field. The topological
phases can be confirmed by the appearance of the gapless
surface states. In Fig. 2, we show the energy spectra of the
surface states on the yz plane under the symmetric Zeeman
field with |B| = m/2 and |B̃| = 0 in (a) and (c), and those

FIG. 2. (Color online) The energy spectra of the yz surface states
under the symmetric Zeeman field (a) and (c) or the antisymmetric
Zeeman field (b) and (d). The Zeeman field is applied in a parallel
direction to the surface in (a) and (b). In (c) and (d), the Zeeman field is
applied in the perpendicular direction to the surface. The momentum
in the z direction is fixed at pz = 0 in all figures.
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FIG. 3. (Color online) The energy spectra on the yz surface under
the large Zeeman field applied in the y direction. The results are
plotted along the py axis with pz = 0 (upper figures) and along the
pz axis with py = 0 (lower figures). The left figures of (a) and (c) are
the results for the symmetric Zeeman field at By = 1.5m. The right
figures of (b) and (d) are calculated under the antisymmetric Zeeman
field at B̃y = 1.5m.

under the antisymmetric Zeeman field |B| = 0 and |B̃| = m/2
in (b) and (d). The results for the Zeeman field parallel to
the yz surface are shown in Figs. 2(a) and 2(b). The energy
spectra on the surface remain gapless in both the symmetric
and the antisymmetric Zeeman field. Especially, under the
antisymmetric field in Fig. 2(b), the Dirac point shifts from the
	 point. When the symmetric Zeeman field is perpendicular
to the surface, the gapless states on the yz plane vanish as
shown in Fig. 2(c). On the other hand, as shown in Fig. 2(d),
the gapless states survive under the antisymmetric Zeeman
field. The numerical results in Fig. 2 suggest the validity of the
analysis.

Finally, we show the numerical results for the large Zeeman
field m < |B| and m < |B̃|. According to Eqs. (3) and (12),
the large enough symmetric Zeeman field equalizes two of
the Chern numbers of the two QHSs because sgn[M + B] =
sgn[−M + B]. Therefore, the net Chern number becomes
nontrivial in the two-dimensional BZ. The electronic states of
the topological insulator under the large symmetric Zeeman
field consist of a number of QHSs with the same Chern
number stacking in momentum space. As a consequence,
electronic states become the Weyl semimetal phase [18–21].

In Figs. 3(a) and 3(c), we show the energy spectra on the
yz surface under the strong symmetric Zeeman field in the y

axis with By = 1.5m. The semimetal hosts the chiral surface
modes, so-called the Fermi arc as shown by a pair of linear
dispersion in (c). The spectra in Fig. 3 include the contribution
from the two yz planes parallel to the Zeeman field. When one
yz surface hosts a chiral mode with the positive velocity, the
other yz surface hosts a chiral mode with the negative velocity.
The results are consistent with a study of the large Zeeman
field in Ref. [22]. In the purely two-dimensional system, the
semimetallic states are realized in the junction between a TI
and a ferromagnetic insulator [23]. On the other hand, the
antisymmetric Zeeman field biases the two QHSs reversely but
holds the Chern number unchanged. As a result, the topological
insulator qualitatively changes into the nodal semimetal as
shown in Figs. 3(b) and 3(d), where we show the excitation
spectra of bulk states under the strong antisymmetric Zeeman
field in the y axis with B̃y = 1.5m. We have confirmed that
the semimetallic states always appear even when the two types
of Zeeman components coexist. The characteristic feature of
the resulting semimetallic state is dominated by the larger
component. The numerical results in Fig. 3 might imply the
applicability of our approach to metallic materials.

In summary, we have discussed topologically nontrivial
electronic states described by the Hamiltonian of H = H0 +
HP , where H0 is the Dirac Hamiltonian, and HP is an
additional Hamiltonian belonging to an Abelian group of AP .
The Chern number defined in the two-dimensional partial
Brillouin zone characterizes the topological states. Generally
speaking, such topological states can be realized without any
fundamental symmetries such as the time-reversal, the particle-
hole, and the chiral symmetries. Thus we have proposed a
possibility of a symmetry-breaking topological state in three
dimensions. When HP belongs to an Abelian subgroup of
APQ, the symmetry-breaking topological state has the gapless
states on all the surfaces. We have numerically studied the
electronic states in a topological insulator in Zeeman fields
as an example of the three-dimensional symmetry-breaking
topological states. The results of the low-energy excitation
spectra suggest the Weyl semimetal phase or the line-nodal
semimetal one depending on characters of large Zeeman
fields. In some topological insulators, the m is controllable
in the range of 0–500 meV [24,25]. Therefore it would
be possible to confirm the proposed semimetal phase in
experiments.
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