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a b s t r a c t

We discuss Andreev bound states appearing at the interface between two different superconductors
characterized by different nontrivial topological numbers such as one-dimensional winding numbers
and Chern numbers. The one-dimensional winding number characterizes dxy and px wave super-
conductors. The Chern number characterizes chiral superconductors. The number of interfacial bound
states at the zero-energy is equal to the difference between the topological numbers on either sides of
the Josephson junction. We also discuss relation between properties of the Andreev bound states at the
zero-energy and features of Josephson current at low temperature.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

According to the topological classification of matter [1], a number
of unconventional superconductors have been categorized in terms of
nontrivial topological numbers [2,3] such as Z2 number, Chern
number, and one-dimensional winding number. The non-
centrosymmetric superconductor [4,5] is topologically nontrivial when
the amplitude of spin-triplet helical-p wave order parameter is larger
than that of spin-singlet swave one [6]. Such superconducting phase is
characterized by a topological number Z2 ¼ 1. The transport properties
of non-centrosymmetric superconductors are qualitatively different
depending on Z2 number [7]. The spin-triplet chiral-p wave super-
conductivity in Sr2RuO4 [8,9] is characterized by Chern numbers
n¼ 71 [10]. The Chern numbers here are referred to as Thouless–
Kohmoto–Nightingale–den Nijs (TKNN) number in solid state physics
[11]. The spin-singlet chiral-d wave (n¼ 72) superconductivity has
been suggested in NaxCoO2 � yH2O [12–15], heavy fermionic com-
pounds [16,17], graphene [18], high-Tc superconductors [19,20], and
β�MNCl [21]. Unconventional dxy wave symmetry in high-Tc super-
conductors and px wave symmetry in the polar state in 3He are
characterized by the one-dimensional winding number [22,23] which
we call Sato number in this paper.

The unconventional superconductors have subgap Andreev
bound states (ABSs) at their surface [24–28], which has been known
for some time. Such surface state is responsible for unusual low
energy transport in high-Tc superconductors [29–35], chiral-p wave

superconductor [36–41]. In particular in spin-triplet superconductors,
the surface states attract much attention these days because they are
recognized as Majorana fermion bound states [42–47]. The proximity
effect of spin-triplet superconductors is known to be anomalous
because of the penetration of the Majorana bound state into a normal
metal [48,49].

Today the presence of such surface bound state is explained in
terms of the bulk-boundary correspondence of topological super-
conductivity. According to the bulk-boundary correspondence, the
number of the surface bound state at the zero-energy would be
identical to the absolute value of topological number defined in
the bulk superconductor. In fact, this prediction has been con-
firmed in a number of theoretical studies. The validity of the bulk-
boundary correspondence should be confirmed also in Josephson
junctions.

In this paper, we discuss the number of zero-energy ABS at the
interface between two superconductors belonging to different
topological class by solving the Bogoliubov–de Gennes equation
analytically. We first study the interfacial states between two
superconductors belonging to different Sato numbers. Since defi-
nition of the Sato number requires the presence of the time-
reversal symmetry (TRS) of the junction, the zero-energy ABS
appears only when the phase difference across the junction (φ) is
0 or π. At φ¼ 0 or π, we confirm that the number of the zero-
energy ABSs is equal to the difference of Sato numbers in the two
superconductors consistently with the bulk-boundary correspon-
dence. We also show that the Josephson current at the zero
temperature has large values near φ¼ 0 or π because of the
resonant tunneling through ABS at the zero-energy. Next we
confirmed that the number of zero-energy ABSs appearing at the
interface between two different chiral superconductors is equal to
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the difference in the TKNN numbers in the two superconductors.
In contrast to dxy and px cases, the ABSs at the zero-energy do not
directly affect the Josephson current between two chiral super-
conductors at low temperature. We also discuss the stability of π
state at the Josephson junctions just below superconducting
transition temperature Tc.

This paper is organized as follows. In Section 2, we discuss a
theoretical model of Josephson junction consisting two topological
superconductors. In Section 3, we study the interfacial ABS
between two superconductors characterized by different Sato
numbers. The number of the zero-energy ABS and the Josephson
effect are studied for two chiral superconductors in Section 4. We
summarize this paper in Section 5.

2. Model

Let us consider a Josephson junction consisting of two super-
conductors as shown in Fig. 1, where the electric current flows in
the x direction and the junction width in the y direction is LJ. We
apply the periodic boundary condition in the y direction and
consider the limit of LJ-∞.

The Bogoliubov–de Gennes (BdG) Hamiltonian in momentum
space reads

HBdGðkÞ ¼
ĥðkÞ Δ̂ðkÞ

−Δ̂
nð−kÞ −ĥ

nð−kÞ

2
4

3
5; ð1Þ

ĥðkÞ ¼ ξkŝ0; ξk ¼
ℏ2k2

2m
−μ; ð2Þ

where ŝj for j¼1–3 are the Pauli matrices, ŝ0 is the unit matrix in
spin space, and μ is the chemical potential. In this paper, we
consider the following pair potentials Δ̂ðγÞ
Δiŝ2 singlet s;
Δ2 cosðγÞ sinðγÞiŝ2 singlet dxy;
Δ cosðγÞŝ1 triplet px;
Δeinγ iŝ2 singlet chiral;
Δeinγ ŝ1 triplet chiral;

ð3Þ

where Δ is the amplitude of the pair potential, −π=2≤γ≤π=2 is the
angle between the direction of the quasiparticle's motion and the
x-axis as shown in Fig. 1, kx ¼ kF cos γðky ¼ kF sin γÞ is the wave-
number on the fermi surface in the x (y) direction, and kF is the
Fermi wave number. The Sato number is defined for each angle
γ and each spin sector in the presence of TRS. For spin-singlet
superconductors, the BdG Hamiltonian in Eq. (1) is block diagonal
in two Nambu space: N1 and N2. In N1, spin of electron-like
(hole-like) quasiparticle is ↑ (↓). On the other hand in N2, spin of
electron-like (hole-like) quasiparticle is ↓ (↑). In this paper, we
assume that d vector in the spin-triplet symmetry aligns along the
third axis in spin space. Under this choice, the BdG Hamiltonian in
Eq. (1) in the spin-triplet cases is also decoupled into N 1 and N2.
In Table 1, we summarized the Sato number WðγÞ for dxy and px
superconductors.

In the chiral states, n in Eq. (3) must be an even integer number
for spin-singlet symmetry, whereas it should be an odd integer for
spin-triplet symmetry. The chiral-p, -d and -f wave symmetries are
characterized by the TKNN number n¼ 71, 72 and 73, respec-
tively. The TKNN number is defined in the absence of TRS. We note
that the s wave superconductor is topologically trivial. Thus both
the Sato number and the TKNN one are always zero in the s wave
superconductor.

The energy eigen values of Eq. (1) are E¼ 7Ek;7 with

Ek;7 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2k þ jΔ7 j2

q
, Δþ ¼ ΔðγÞ, and Δ− ¼ Δðπ−γÞ. All the pair poten-

tials in Eq. (3) satisfy jΔþj ¼ jΔ−j. In such case, the wave functions
in the left and the right superconductors in N1 are obtained as
[50]

Ψ Lðx; yÞ ¼ Φ̂L

uL

vLsnLþ

" #
aeik

e
Lx þ

vLsL−
uL

" #
be−ik

h
L x

"

þ
uL

vLsnL−

" #
Ae−ik

e
Lx þ

vLsLþ
uL

" #
Beik

h
L x

#
eikyy; ð4Þ

ΨRðx; yÞ ¼ Φ̂R

uR

vRsnRþ

" #
Ceik

e
Rx þ

vRsR−
uR

" #
De−ik

h
Rx

" #
eikyy; ð5Þ

uj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

1þΩj

E

� �s
; vj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

1−
Ωj

E

� �s
; Ωj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2−jΔjj2

q
; ð6Þ

sj7 ¼ Δj7

jΔj7 j
; Φ̂ j ¼ diagfeiφj=2; e−iφj=2g; ð7Þ

kej ¼ k2x þ
2m
ℏ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2−jΔjj2

q� �1=2
; khj ¼ k2x−

2m
ℏ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2−jΔjj2

q� �1=2
; ð8Þ

where j¼L (R) indicates the left (right) superconductor and φj is
the macroscopic phase of the superconductor. The coefficients A, B,
C, and D are the amplitudes of outgoing waves from the interface
and a and b are those of incoming waves. At the junction interface,
we introduce the potential barrier described by V0δðxÞ. The
boundary conditions for wave function become

Ψ Lð0; yÞ ¼ ΨRð0; yÞ; ð9Þ

−
ℏ2

2m
d
dx

ΨRðx; yÞx-0þ−
d
dx

Ψ Lðx; yÞx-0−

�
þ V0ΨRð0; yÞ ¼ 0:

�
ð10Þ

When we calculate the energy of the interfacial ABS, we put
a¼ b¼ 0. Since we seek the ABSs for jEjo jΔjj, Ψ Lðx; yÞ (ΨRðx; yÞ)
decays at x-−∞ð∞Þ. The decay length is approximately given by
the coherence length ξ0 ¼ ℏvF=ðπΔÞ with vF being the fermi
velocity. By using the boundary conditions in Eqs. (9) and (10),
we obtain the relation among A, B, C, and D as

̌
Y ½A;B;C;D�t ¼ 0,

where ½⋯�t is the transpose of ½⋯� and
̌
Y is a 4�4 matrix

x=0x

yz
LJ

γ

Superconductor Superconductor

Fig. 1. A schematic picture of the Josephson junction.

Table 1
The correspondence between pairing symmetry and the Sato number W. The
summary of the Sato number can be defined only in the presence of the time-
reversal symmetry for each direction of wave vector on the Fermi surface γ and for
each Nambu space. The Sato number of s wave case is always zero (i.e., Ws¼0)
because s-wave superconductor is topologically trivial. For spin-singlet dxy sym-
metry, the Sato number Wdxy depends also on the Nambu space indicated by N1
and N2. The Sato number for spin-triplet px wave case Wpx is always unity for all γ
and the two Nambu space. Here the superconducting phase is taken to be zero.

Angle Ws Wdxy Wpx

N1 0oγoπ=2 0 1 1
−π=2oγo0 0 −1 1

N2 0oγoπ=2 0 −1 1
−π=2oγo0 0 1 1
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calculated from the boundary conditions. We define that ΞðEÞ is
the determinant of

̌
Y . It is expressed by

ΞðEÞ≡ðu2
L−v

2
L sLþs

n

L−Þðu2
R−v

2
Rs

n

RþsR−Þ
þjtnj2fu2

L v
2
Rs

n

RþsR− þ v2L sLþs
n

L−u
2
R

−νeiφuLvLsLþuRvRsnRþ−νe
−iφuLvLsnL−uRvRsR−g; ð11Þ

where φ¼ φL−φR (−πoφ≤π) is the phase difference across the
junction and tn ¼ cos γ=ðcos γ þ iz0Þ is the normal transmission
coefficient of junction with z0 ¼ V0=ℏvF . The energy of the ABS is
calculated from the condition of ΞðEÞ ¼ 0.

When we discuss the Josephson current, we first calculate the
reflection coefficients of the junction. By eliminating C and D using
the boundary conditions in Eqs. (9) and (10), we obtain a relation
between (a,b) and (A,B) as

A

B

� �
¼

ree reh
rhe rhh

 !
a

b

� �
; ð12Þ

where rhe and reh are the Andreev reflection coefficients and ree
and rhh are the normal reflection coefficients. The Josephson
current is calculated based on a formula [50]

J ¼ e
2ℏ

T∑
ωn

∑
γ
∑
ν

ν

ΩL
½ΔLþrhe−Δn

L−reh�E-iωn
; ð13Þ

rhe ¼
1
Ξ
½ tnj2feiφu2

L uRvRsnRþ þ e−iφv2L s
n

Lþs
n

L−uRvRsR−
��

−νuLvLsnLþv
2
Rs

n

RþsR−−νuLvLsnL−u
2
Rg

þνuLvLfsnL−−snLþgfu2
R−v

2
Rs

n

RþsR−g�; ð14Þ

reh ¼
1
Ξ
½ tnj2feiφu2

L uRvRsR− þ e−iφv2L sL−sLþuRvRsnRþ
��

−νuLvLsL−v2Rs
n

RþsR−−νuLvLsLþu2
Rg

þνuLvLfsLþ−sL−gfu2
R−v

2
Rs

n

RþsR−g�; ð15Þ

where ωn ¼ ð2nþ 1ÞπT is the Matsubara frequency. Here we
explain the definition of ν appearing in Eqs. (11)–(15). When the
two superconductors are in the spin-singlet symmetry, ν become
1 for the two Nambu space N 1 and N2. This is also true when the
two superconductors are in the spin-triplet symmetry. In these
cases, the energies of ABS obtained from Eq. (11) are degenerate in
the two Nambu space. As a result, the∑ν gives rise a factor 2 in the
Josephson current in Eq. (13). When one superconductor is in the
spin-singlet symmetry and the other is in the spin-triplet one, we
take ν¼ 1 in N 1 and ν¼ −1 in N2.

The Josephson current can be decomposed into a series of

J ¼ ∑
∞

n ¼ 1
Jn sinðnφÞ þ In cosðnφÞ: ð16Þ

When two superconductors preserve the TRS, the coefficients In
are usually zero. The normal transmission probability is defined by

TN ¼ 1
2

Z π=2

−π=2
dγ cos γ tnj2:

�� ð17Þ

The coefficients Jn are, roughly speaking, proportional to ðTNÞn for s
wave Josephson junction. The lowest coupling J1 is sensitive to the
pairing symmetries of two superconductors. For instance,
J1 vanishes when one superconductor is spin-singlet and the other
is spin-triplet.

3. Sato number

When the two superconductors are in the swave symmetry, we
obtain the well known results of the energy of Andreev bound

states EABS ¼ 7ϵs=s and the Josephson current Js=s

ϵs=s ¼ Δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−jtnj2 sin2ðφ=2Þ

q
; ð18Þ

Js=s ¼ J0
Δ

Δ0

1
2TN

Z π=2

−π=2
dγ tnj2 cos γ sin φAðϵs=sÞ;
�� ð19Þ

AðϵÞ ¼ Δ

ϵ
tanh

ϵ

2T

h i
; ð20Þ

J0 ¼
πΔ0

2eRN
;

1
RN

¼ 2e2

h
TNNc; Nc ¼

WkF
π

ð21Þ

where Δ0 is the amplitude of pair potential at T¼0 and Nc is the
number of propagating channels at the fermi level. The amplitude
of the critical current at T¼0 is J0 in the s wave junctions [53].
There is no zero-energy ABS in the s=s junctions for jtnjo1
because the s wave superconductor is always topologically trivial.

When s wave superconductor is on the left and dxy wave one is
on the right, the equation for the energy of the Andreev bound
states is obtained as

2E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2−E2

p
−Δ2jtnj2jθdjsin φ¼ 0: ð22Þ

Here we approximately changes
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2θ2d−E

2
q

to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2−E2

p
with

θd ¼ sinð2γÞ. This approximation is possible because the presence
or absence of the zero-energy ABS is sensitive only to the sign
changing of pair potential on the fermi surface [28]. The energy of
the ABS in N1 and that in N 2 are identical to each other. We find
that EABS ¼ ϵss=dxy and ϵcs=dxy with

ϵss=dxy ¼Δsin
αs=dxy
2

� 	
; ð23Þ

ϵcs=dxy ¼Δcos
αs=dxy
2

� 	
sgn sin

αs=dxy
2

� 	h i
; ð24Þ

sinðαs=dxy Þ ¼ jtnj2θd sin φ: ð25Þ

Since −π=2≤αs=dxy ≤π=2, ϵcs=dxy does not become zero. At jtnj-0, the
two superconductors are separated from each other and ϵss=dxy ¼ 0
for all γ. Such zero-energy ABSs correspond to the surface bound
states of dxy wave superconductor. Namely there is one zero-
energy surface state for each Nambu space for each γ, which is a
result of the bulk-boundary correspondence of isolated super-
conductors. At jtnj≠0, a zero-energy state appears for each γ and
each Nambu space only when φ¼ 0 or π. In Fig. 2(a), we show ϵss=dxy
as a function of γ for several choices of φ at z0 ¼ 3. The number of
the zero-energy ABSs at φ¼ 0 is equal to jWsðγÞ−Wdxy ðγÞj ¼ 1 for
each Nambu space. The zero-energy ABSs disappear for φ≠0
because the Sato number is not well defined in the absence of
the TRS.

-1

0

1

 J
 / 

J 0

-1 0 1

 T/T C
=10-

4

 0.1

 T/TC=0.1

0.04

0.02

0.00

-0.02

εs 
s/

d x
y /

Δ 

-0.5 0.0 0.5
γ / π

0.2

0 or 1

z0=3

ϕ / π =0.4 

ϕ / π

z0=3

Fig. 2. The results for s=dxy junctions. The energy of the Andreev bound state ϵss=dxy
is plotted as a function of γ at z0 ¼ 3 in (a). The current-phase relationship is shown
in (b).
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In fact, the Josephson current flows through the junction
interface for φ≠0 as

Js=dxy ¼ J0
Δ

Δ0

1
2TN

Z π=2

−π=2
dγ

cos γjtnj4θ2d sinð2φÞ
4 cosðαs=dxy Þ

�½Aðϵcs=dxy Þ−Aðϵss=dxy Þ�: ð26Þ

The current-phase relationship (CPR) for T≲Tc becomes

Js=dxy ¼−sinð2φÞ

�J0
Δ

Δ0

Δ

T

� �3 1
2TN

Z π=2

−π=2
dγ

cos γjtnj4θ2d
96

: ð27Þ

The lowest order coupling is absent (i.e., J1 ¼ 0) because s and dxy
wave pairing function are orthogonal to each other. At T¼0, the
Josephson current becomes

Js=dxy ¼−cosðφÞ sgn½sinðφÞ�

�J0
1

2TN

Z π=2

−π=2
dγ

cos γjtnj2jθdjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jtnj2jθd sinðφÞj

q : ð28Þ

The resonant transmission through the zero-energy ABSs mainly
contributes to the Josephson current at T¼0. In fact, the Josephson
current becomes large at φ¼ 0 and π, and jumps as shown in Fig. 2
(b), where we plot the Josephson current as a function of φ. We fix
z0 at 3, which leads to the normal transmission probability
TN≈0:07. At T¼0, the amplitude of the Josephson current is
roughly proportional to TN as shown in Eq. (28), which is a result
of the resonant transmission through the ABS at the zero-energy.

The similar conclusion is obtained when we replace the spin-
singlet dxy wave superconductor by the spin-triplet px wave one.
The energy of ABS is obtained as EABS ¼ ϵss=px and ϵcs=px . These
energies are given by

ϵss=px ¼Δsin
αs=px
2

� 	
; ð29Þ

ϵcs=px ¼Δcos
αs=px
2

� 	
sgn sin

αs=px
2

� 	h i
; ð30Þ

sinðαs=px Þ ¼ νjtnj2θp sin φ; ð31Þ

with θp ¼ cos γ. We note that there are four dispersion branches in
the ABS because of the contributions from two Nambu space. The
zero-energy ABS appears only when φ¼ 0 or π. The Josephson
current in this junction is given by Eq. (26) with θd-θp.

As shown in Table 1, dxy wave and px wave symmetries are
classified into the same Sato number for 0oγoπ=2 in N1 and
−π=2oγo0 in N2. In these cases, ABSs may not appear at the
zero-energy. On the other hand, two zero-energy ABSs are
expected for 0oγoπ=2 in N2 and −π=2oγo0 in N 1 because
of jWdxy−Wpx j ¼ 2. These prediction can be confirmed by consider-
ing the equation for energy of the ABS

E2−
jtnj2
2

E2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2θ2d−E

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ2θ2p−E
2

q�

þνΔ2θpθd cosðφÞ

¼ 0; ð32Þ

where ν¼ 1 for N 1 and ν¼ −1 for N 2. By substituting E¼0, we
find jθdj þ νθd cos φ¼ 0. Therefore, at φ¼ 0, the zero-energy ABS
appear for 0oγoπ=2 in N2, and for −π=2oγo0 in N 1. To have

expressions of EABS, we estimate the term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2θ2d−E

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ2θ2p−E
2

q
oΔ2jθpθdj−E2. Mathematically this approximation is justified for
γ≈π=6. The sign changing of the pair potential is responsible for
the formation of ABS, which has already been taken into account
in Eq. (32). Although the approximation slightly modifies the γ
dependence of the energy of ABS, it is not essential in the

following argument. As a result, we obtain EABS ¼ 7ϵcdxy=px and

7ϵsdxy=px with

ϵcdxy=px ¼ Δjtnj
ffiffiffiffiffiffiffiffiffiffiffiffi
jθpθdj

p
cosðφ=2ÞΘðνθdÞ; ð33Þ

ϵsdxy=px ¼ Δjtnj
ffiffiffiffiffiffiffiffiffiffiffiffi
jθpθdj

p
sinðφ=2ÞΘð−νθdÞ; ð34Þ

where ΘðxÞ is the step function: Θ¼ 1 for 0ox and Θ¼ 0
otherwise. In Fig. 3(a), we show 7ϵsdxy=px at z0 ¼ 3 and φ¼ 0:4π.

When we consider φ-0, there are doubly degenerate ABSs at the
zero-energy for −π=2oγo0 in N1 and for 0oγoπ=2 in N 2. The
doubly degenerate dispersionless ABSs at the zero-energy drasti-
cally affect the Josephson current which is calculated to be

Jdxy=px ¼ J0
Δ

Δ0
∑
ν

1
2TN

Z π=2

−π=2
dγ

cos γjtnj2jθdθpj sin φ

2

�½Aðϵcdxy=px Þ−Aðϵ
s
dxy=px

Þ�: ð35Þ

The expression of the Josephson current is given by

Jdxy=px ¼−sinð2φÞ

�J0
Δ

Δ0

Δ

T

� �3 1
2TN

Z π=2

−π=2
dγ

cos γjtnj4θ2dθ2p
96

; ð36Þ

for T≲Tc . The lowest coupling vanishes because one superconduc-
tor is spin-singlet and the other is spin-triplet (i.e., J1 ¼ 0 in
Eq. (16)). At T¼0, we find

Jdxy=px ¼ ½sinðφ=2Þ−cosðφ=2Þ sgnðφÞ�

�J0
1

2TN

Z π=2

−π=2
dγ cos γ tn

ffiffiffiffiffiffiffiffiffiffiffiffi
jθdθpj

p
:

���� ð37Þ

In Fig. 3(b), we plot the Josephson current as a function of φ at
z0 ¼ 3. At very low temperature, the Josephson current shows
unusual current-phase relationship and has large amplitude pro-
portional to

ffiffiffiffiffiffi
TN

p
around φ¼ 0. At φ¼ π, 7ϵcdxy=px describes the
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Fig. 3. The results for dxy=px junctions at z0 ¼ 3. The energy of the Andreev bound
state 7ϵsdxy=px is plotted as a function of γ in (a). The current-phase relationship of
the Josephson current is shown in (b), where results for T ¼ 0:1Tc are amplified
by 10.
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Fig. 4. The maximum value of the Josephson current is plotted as a function of
temperature. Here we choose z0 ¼ 3.
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doubly degenerate dispersionless ABSs at the zero-energy which
also contribute to the large Josephson current as shown in Fig. 3
(b). Tuning of φ at π is equivalent to the changing the sign of Wdxy

in Table 1. In Fig. 4, we show the critical Josephson current as a
function of temperature for 0≤T ≤0:2Tc with z0 ¼ 3. In this
temperature range, the maximum value of Js=s is saturates at J0.
The results for Js=dxy and Jdxy=px are much smaller than J0 for
T40:1Tc . They increase rapidly with decreasing temperature for
To0:1Tc . Such effect is known as the low-temperature anomaly of
the Josephson current [29,33].

4. TKNN number

In this section, we consider a junction which consists of two
chiral superconductors, where the TKNN number in the left
superconductor is n and that in the right one is m. We can
calculate the energy of ABS and the Josephson current without
any further approximations because the amplitude of the pair
potential jΔðγÞj is independent of γ and TKNN numbers. We first
show the results of the energy of ABS and the Josephson current.
Secondly we count the number of zero-energy ABSs of the
junction. Then we discuss properties of the Josephson current.

We show the results for a junction which consists of two spin-
singlet chiral superconductors. In this case, the two TKNN numbers
(n in the left superconductors and m in the right one) are even
integer numbers. The energy of ABSs is obtained as EABS ¼ ϵee7 with

ϵee7 ¼ 7Δsgn½sinðXee
7 Þ� cosðXee

7 Þ; ð38Þ

Xee
7 ¼ αee7ðn−mÞγ

2
; ð39Þ

cos αee ¼ ð1−jtnj2Þ cosfðnþmÞγg þ jtnj2 cos φ; ð40Þ
where 0≤αee ≤π. The Josephson current Jee is also expressed in
terms of the energy of ABS

Jee ¼ J0
Δ

Δ0

1
2TN

Z π=2

−π=2
dγ

cosðγÞjtnj2 sin φ

2 sin αee

�½sinð2Xee
þ ÞAðϵeeþ Þ þ sinð2Xee

− ÞAðϵee− Þ�: ð41Þ

Next we show the results for a junction where the two super-
conductors belong to the spin-triplet chiral states. The two TKNN
numbers (n in the left superconductors and m in the right one) are
odd integer numbers. We find the energy of ABS as EABS ¼ ϵoo7 with

ϵoo7 ¼ ∓Δsgn½cosðXoo
7 Þ� sinðXoo

7 Þ; ð42Þ

Xoo
7 ¼ αoo7 ðn−mÞγ

2
; ð43Þ

cos αoo ¼ ð1−jtnj2Þ cosfðnþmÞγg−jtnj2 cos φ: ð44Þ
The Josephson current is calculated as

Joo ¼ J0
Δ

Δ0

1
2TN

Z π=2

−π=2
dγ

cosðγÞjtnj2 sin φ

2 sin αoo

�½sinð2Xoo
þ ÞAðϵooþ Þ þ sinð2Xoo

− ÞAðϵoo− Þ�: ð45Þ

Finally we show the results for a junction where the spin-singlet
chiral superconductor occupies the left hand side of the junction
and the spin-triplet chiral superconductor occupies the right hand
side. The TKNN numbers in the left superconductor n is an even
integer and that in the right one m is an odd integer number. We
find the energy of ABS is EABS ¼ ϵeo7 with

ϵeo7 ¼ ∓Δsgn½cosðXeo
7 Þ� sinðXeo

7 Þ; ð46Þ

Xeo
7 ¼ αeoν 7fðn−mÞγ−π=2g

2
; ð47Þ

cos αeoν ¼ ð1−jtnj2Þ sinfðnþmÞγg þ jtnj2ν sin φ: ð48Þ
The Josephson current becomes

Jeo ¼ J0
Δ

Δ0
∑

ν ¼ 71

1
2TN

Z π=2

−π=2
dγ

cosðγÞjtnj2ν cos φ
4 sin αeoν

�½sinð2Xeo
þ ÞAðϵeoþ Þ þ sinð2Xeo

− ÞAðϵeo− Þ�; ð49Þ
where ν¼ 71 indicates two Nambu space.

From the expression of the bound state energy, it is easy to
count the number of ABSs at the zero-energy. For example, we
consider the junction with both n and m being odd integers here.
At jtnj ¼ 0, the energies of the bound state become

ϵooþ ¼ −Δsgnðcos nγÞ sin nγ; ð50Þ

ϵoo− ¼ΔsgnðcosmγÞ sin mγ; ð51Þ
because of αoo ¼ ðnþmÞγ. They represent the dispersion of the
surface bound states when the two superconductors are separated
from each other. It is easy to confirm that the number of the zero-
energy surface states of ϵooþ is jnj and that of ϵoo− is jmj, which is a
result of the bulk-boundary correspondence for an isolated super-
conductor. At finite jtnj, the solutions of ϵoo7 ¼ 0 in Eq. (42) require
the relation

tan
ðn−mÞγ

2

� �
¼ 7tan

αoo
2

� 	
: ð52Þ

The left hand side of Eq. (52) goes positive infinity jn−mj=2 times
and goes negative infinity jn−mj=2 times within the interval of
−π=2≤γ≤π=2. Since 0≤αoo ≤π, the right hand side of Eq. (52)
tanðαoo=2Þ remains positive value for all γ. Thus the number of the
solutions of Eq. (52) is jn−mj which corresponds to the difference
in the TKNN numbers between the two superconductors. In Fig. 5,
we plot the left hand side of Eq. (52) with a solid line as a function
of γ and the right hand side with two broken lines. In Fig. 5(a), we
choose n¼1, m¼−3, z0¼0.5, and φ¼ 0:2π. The solid lines and two
broken lines cross four times, which means four the zero-energy

n=1 m= −3 n=1 m= 3 

-4.0

-2.0

0.0

2.0

4.0

-0.5 0.0 0.5
 γ / π

z0= 0.5 

n= 1 
m= − 3 

-4.0

-2.0

0.0

2.0

4.0

-0.5 0.0 0.5

 γ / π

z0= 3 

x

y

ϕ =0.2 π ϕ=1.3 π

n= 1 
m= − 3 

Fig. 5. The left- and the right-hand side of Eq. (52) are plotted with a solid line and
two broken lines, respectively. We choose n¼1, m¼−3, z0¼0.5, and φ¼ 0:2π in (a).
The parameters in (b) are n¼1, m¼3, z0 ¼ 3, and φ¼ 1:3π.
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ABSs (i.e., 4¼ j1−ð−3Þj). The number of the solutions independent
of junction parameters such as z0 and φ. In the lower panel in Fig. 5
(a), we illustrate the schematic picture of the chiral edge states at
jtnj ¼ 0. The arrows indicate the direction of the chiral current. In
Fig. 5(b), we choose n¼1, m¼3, z0 ¼ 3, and φ¼ 1:3π. The results
show that there are only two solutions (i.e., 2¼ j1−3j). In the lower
panel, there are four chiral edges at jtnj ¼ 0. The chiral current in
the left superconductor flows the opposite direction to that in the
right superconductor in this case. For finite jtnj, two chiral edge
currents opposite directions are cancel each other out and two ABS
remain at the zero-energy. Therefore we confirmed that the
number of the ABS at the zero-energy is jn−mj for each Nambu
space when the TKNN number of two superconductors are n and
m. The similar argument can be applied to Eqs. (38) and (46). The
presence of jn−mj zeros has been suggested by the index theorem
[51,52]. Here we count the number of ZES by solving Eq. (11)
explicitly.

The Josephson current in Eqs. (41) and (45) has a common
expression near Tc

J ¼ J0
Δ

Δ0

Δ

T
sin φ

1
4TN

Iðn−mÞðz0Þ; ð53Þ

In−mðz0Þ ¼
Z π=2

−π=2
dγ cosðγÞjtnj2 cosfðn−mÞγg ð54Þ

where n and m are both even integer numbers or both odd ones.
The junction is stable at π phase difference in the case of In−mo0.
At z0 ¼ 0, the integral for highly transparent junctions becomes

In−mðz0 ¼ 0Þ ¼ 2
1−ðn−mÞ2

ð−1Þðn−mÞ=2: ð55Þ

On the other hand in the tunneling limit z0⪢1, we find

In−mðz0⪢1Þ ¼
4
z20

ð−1Þðn−mÞ=2

fðn−mÞ2−1gfðn−mÞ2−9g
: ð56Þ

In Table 2, we indicate the stable state of the Josephson junctions
near Tc. At n−m¼ 4, π�state is stable in the highly transparent
limit and 0-state is stable in the tunneling limit. Therefore the
junction undergoes the transition from π�state to 0-state when
we decrease the transparency of the junction. Such junction can be
realized with chiral-d wave superconductor.

In contrast to Section 3, the ABSs at the zero-energy do not
directly affect the Josephson current at low temperature. At T¼0,
Eq. (41) becomes

Jee ¼ J0
sin φ

2TN

Z π=2

−π=2
dγ

cosðγÞjtnj2
2 sin αee

� sinð2Xee
þ Þ

jcosðXee
þ Þj þ

sinð2Xee
− Þ

jcosðXee
− jÞ

" #
: ð57Þ

Mathematically speaking, the zeros in the jcosðXee
7 Þj are cancelled

by the numerator. Instead of the zeros of EABS, minima of sin αee in
the denominator determine the amplitude of Josephson current at
low temperature. This property may come from the fact that the
ABSs have the dispersion as a function of γ. The Josephson current
shows the logarithmic dependence of temperature at intermediate

temperature region between T¼0 and T ¼ Tc [36,38]. This argu-
ment can be applied also to the Josephson current in Eq. (45).

When n is an even integer and m is an odd integer, the
Josephson current in Eq. (49) near Tc becomes

Jeo ¼−sinð2φÞJ0
Δ

Δ0

Δ

T

� �3

� 1
2TN

Z π=2

−π=2
dγ

cosðγÞjtnj4 cosf2ðn−mÞγg
96

: ð58Þ

The coefficient proportional to −sinð2φÞ is positive in the limit of
both z0 ¼ 0 and z0⪢1.

In Fig. 6, we show the maximum value of the Josephson current
Jc for n¼2 and z0 ¼ 5, where m is the TKNN number on the right
superconductor. The two superconductors belong to spin-singlet
symmetry. The results for m¼ −4, −2, 0, and 2 in Fig. 6
(a) monotonically increase with decreasing temperature. On the
other hand, the results for m¼4, 6, and 8 in Fig. 6(b) show the
nonmonotonic temperature dependence. In particular, the results
for m¼6 indicate the transition from 0 state to π state with the
decrease of temperature around T ¼ 0:25Tc . We also note that the
π state is stable for m¼ −4 and 8 all temperature range. The
nonmonotonic behavior of Jc indicates the instability of the
junction between 0 and π states. For m¼2, the Josephson current
takes its maximum at φ¼ 0:55π at T¼0. In another cases, CPR is
almost sinusoidal. The amplitudes of Jc become smaller for larger
jn−mj because the integrand of Eq. (57) oscillates more frequently
as a function of γ for larger jn−mj.

In Fig. 7, we show the maximum value of the Josephson current
Jc for n¼1 and z0 ¼ 5, where m is the TKNN number on the right
superconductor. The results for m¼ −3, −1, 1, and 3 in
(a) monotonically increase with decreasing temperature. However,

Table 2
The stable states of the Josephson junction near Tc are indicated by ‘0’ or ‘π’. Here n
and m are both even integer numbers or both odd integer numbers. As a
consequence, n−m becomes an even integer.

n−m 0 2 4 6 8 10

z0 ¼ 0 0 0 π 0 π 0
z0⪢1 0 0 0 π 0 π

2

1

0

 J
c/

 J
0 

1.00.50.0
T / Tc

 m = - 4
 - 2
  0
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 n=2, z0=5
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 8

 J
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 J
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Fig. 6. The Josephson critical current is plotted as a function of temperature for
z0 ¼ 5. We fix TKNN number at n¼2 in the left superconductor. The TKNN number
in the right superconductor is m.
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Fig. 7. The Josephson critical current is plotted as a function of temperature for
z0 ¼ 5. We fix TKNN number at n¼1 in the left superconductor. The TKNN number
in the right superconductor is m.
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the results for m¼7 show the nonmonotonic dependence on
temperature because of the 0–π transition around T ¼ 0:2Tc .
Consistently with Table 2, the 0 state is stable at m≠7 and z0⪢1
all temperature range.

5. Conclusion

We have studied the properties of the Andreev bound states
(ABSs) appearing at the junction interface between two unconven-
tional superconductors. We consider superconductors character-
ized by two types of topological numbers: the Sato number in
Section 3 and the TKNN number in Section 4. We confirmed that
the number of the ABSs at the zero-energy is identical to the
difference of topological numbers in the two superconductors. We
also discuss the effects of the ABSs at the zero-energy on the
Josephson current. The zero-energy ABSs directly contribute to the
low-temperature anomaly of the Josephson current when the two
superconductors characterized by the Sato number. On the other
hand, ABSs at the zero-energy do not directly affect the Josephson
current when the two superconductors characterized by the TKNN
number. In the latter case, we also found the 0–π transition as a
function of the transparency of the junction and temperature.
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