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We theoretically study subgap states appearing at the interface between two three-dimensional topological
insulators which have different configurations in the spin-orbit interactions from each other. The coupling of
spin ¢ with momenta p is configured by a material dependent 3 x 3 matrix A as o/ A}, p,. The spectra of the
interface subgap states depend on the relative choices of A’s in the two topological insulators where the two
A are connected by the unitary transformation including the inversion and the rotation in momentum space.
The gapless states appear at the interface when the transformation includes the inversion. The two topological
insulators can be distinguished by using the topological numbers defined in the two- or one-dimensional partial
Brillouin zone, which explains the presence of the gapless interface states. We also discuss the robustness of such

gapless states under perturbations breaking the time-reversal symmetry or the band-inversion symmetry.
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I. INTRODUCTION

Topological insulators (TIs) are new class of condensed
matter.'™ A topological number Z, defined in terms of the
global property of wave function for the occupied states below
the gap distinguishes the topological insulating phase Z, = 1
from the conventional one Z, = 0. The strong spin-orbit
interaction locks the direction of momenta and that of spin, and
is responsible for the nontrivial Z, topological number. The
bulk-edge correspondence guarantees the presence of gapless
states at the surface of TIs.!*>® On the surface of three-
dimensional TIs, the excitation spectra of the gapless state
are described by the so-called Dirac cone (i.e., E = £uv|p|).

When we focus on the surface state of a single T1, the spectra
of the surface state are independent of the configurations in
the momentum-spin locking. On the other hand, when we
focus on the interface states between two different topological
materials, the spectra of the interface state depend on the
relative configuration of the spin-orbit coupling in the two
TIs”# and superconductors.””!! These studies focus on the
discrete degree of freedom such as the helicity, the chirality,
and the mirror symmetry'>!® to characterize the relative
configuration of the spin-orbit coupling. However, the spin-
orbit coupling allows more complex relative configuration
which is represented by a material dependent 3 x 3 matrix
A configuring the coupling of spin o# with momenta p, as
oA, py. In junctions, generally speaking, A in one TI
and Ay in the other are connected by the transformation
(i.e., Agqy = A2A(2) not only by the discrete inversion in
momentum space but also by the continuous rotation there.
The properties of the interface subgap states would depend on
A 1> which represents the relative choice of A in the two TIs.

In this paper, we discuss the properties of the two-
dimensional states appearing at the interface of two three-
dimensional TIs characterized by the two different A. The
matrix A, includes the two transformations: (i) the inversion
in momentum space and (ii) the continuous rotation of the
momentum-spin locking angle (¢). The stability of the gapless
interface state depends on the structure of the transformation
represented by A ;. The different topological numbers char-
acterize the gapless interface states depending on whether or
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not the inversion includes the momentum perpendicular to the
interface.

The inversion in momentum space is categorized into two
cases in terms of the determinant of A,. Namely det[A ;] =
—1(+1) distinguish the transformation including the inversion
in odd number of momenta axes (even number of momenta
axes). When A, includes the inversion in two momenta
parallel to the junction plane (det[A ;] = 1), the zero-energy
interface states appear. But such zero-energy states are fragile
under the rotation of momenta within the interface plane.
We conclude that the gapless interface states between two
TIs are characterized by the relative Chern number, which
has the robustness of the gapless interface states under the
Zeeman field for all spin directions. When A, includes the
inversion along the axis perpendicular to the junction plane,
we find the gapless interface state characterized by the Sato’s
winding number.'*!7 It has been already known that the
surface state of a single TI is sensitive to the direction of
Zeeman field.'®>! We also find that the interface states at the
zero energy are also sensitive to the direction of Zeeman field.
We conclude that such magnetic anisotropy stems from the
mirror symmetry. Unfortunately, all of the gapless interface
states are fragile under the perturbations which break the
band-inversion symmetry of two TIs in a different way.

This paper is organized as follows. In Sec. II, we explain
the theoretical model considered in this paper. In Sec. III,
we show the two topological numbers which guarantee the
gapless interface state in the junction. In Sec. IV, we confirm
the topological analysis and the robustness of the zero-energy
interface states by the numerical simulation on the tight-
binding model. The conclusion is given in Sec. V.

II. MODEL

The most simple Hamiltonian of three-dimensional topo-
logical insulator is given by

m — bp*o?
HTI=<( o)
aoc - p

ao - p
s ppn) O

where a, b, and m are positive constants, oVis2x2 identity
matrix, and 0 = (6¥,07,0%) are Pauli matrices in spin space.

©2013 American Physical Society


http://dx.doi.org/10.1103/PhysRevB.88.155442

TETSURO HABE AND YASUHIRO ASANO

The eigenvalues of the Hamiltonian are +FE, with E, =

VM2 +a2|p|? and M = (m — bp?*). For convenience, we
utilize the short notation as

Hn:aa“pu—i-Mﬂ, n=x,y,2, (2)

where M is regarded as the Dirac mass and we use 4 x 4 Dirac
matrices,

0 ot o 0
nwo_ _
=g 5) r=(T )

Equation (2) is called Dirac Hamiltonian and describes
electronic states of topological materials such as topological
superconductors and the superfluid *He-B phase.?>>* In real
TIs, the coupling between spin and orbital parts has a more
general form,

Hy = aa" A} p, + MB, 3)

where the configuration matrix A}, defines the angle which

locks spins and momenta, and describes the rotation or the

mirror operation in momentum space. In such case, A}

. . . e N
is the real symmetric matrix satisfying A, Aj, =§;. The

configuration of the spin-orbit interaction is determined by the
lattice structure of the topological materials. Experimentally, it
is possible to confirm the structure of A}, by the angle-resolved
photoemission spectroscopy in the presence of the Zeeman
field. As shown in Appendix A, the shift of the Dirac point in
the Zeeman field tells us details of Aj},.

When we focus only on an isolated topological insulator, the
physics of Eq. (3) is the same as that of the simple Hamiltonian
in Eq. (2), because the Hamiltonian of Eq. (3) can be connected
with Eq. (2) by a unitary transformation.>> However, when we
consider a junction of two different topological insulators,
physics happening near the junction interface depends on the
choice of A, in the two topological insulators. This is because
there is no unitary transformation which transforms the two
different A, into the Hamiltonian in Eq. (2) at the same time.
In the following, we study the properties of subgap states at
the junction interface of two different topological insulators.
In the junction of the topological insulators, it is impossible
to distinguish the two topological insulators in terms of Z,
number even if they have the different A} . This is because the
Z, topological number is defined by all occupied states in the
whole Brillouin zone of the TIs and does not depend on
the choice of the basis. Therefore, it is necessary to define
another topological number in the partial Brillouin zone to
distinguish the two TIs.

III. TOPOLOGICAL NUMBERS DEFINED
IN THE PARTIAL BRILLOUIN ZONE

To distinguish the two TIs, we need topological numbers
defined in the partial Brillouin zone such as a two-dimensional
plane at p, = 0 and a one-dimensional line at p, = p, = 0.
The topological numbers defined in the partial Brillouin zone
have a general property: the summation of such a topological
number over the whole Brillouin zone is zero. To topologically
distinguish the two TIs, therefore, we need to compare their
topological numbers defined in the common partial Brillouin
zone. The topological numbers remain unchanged as far as
perturbations do not mix the states in one partial Brillouin
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zone and those belonging to another partial Brillouin zone.
In the presence of potential disorder, strictly speaking, it
would be difficult to define such independent partial Brillouin
zones. In this paper, we consider the clean enough TIs to
define the partial Brillouin zone. The configuration of the
spin-orbit interactions in the two TIs is represented by A ;) for
i =1,2. We fix A at diag(1,1,1) without loss of generality
because the relative configuration of momentum-spin locking
is responsible for physics happening at the interface. In such a
case, A(y) is identical to Aj,.

A. Relative Chern number
When A () is described as

cos¢p —sing O
Aqy=| sing cos¢p O], (@]
0 0 1

we consider the Chern number in the two-dimensional Bril-
louin zone with p, = 0. When the angle ¢ satisfies ¢ = , the
Hamiltonian can be represented by

H Mc° A/—(+) 5
12) = A, Mo ) )
M =m—b(p; + p?). 6)
A;: =a(p.o* % pygy) (7

in either side of the junction. The discussion in the following
can be applied to any two-dimensional partial Brillouin
zones defined by ¢, p; 4+ c¢,p, =0 with real constants c,.
Equation (3) restricted by cypx + ¢, py =0 is transformed
into Eq. (5) by changing the basis in spin space. Especially
for the angle ¢ = m, the Hamiltonians of the two TIs can be
unitary transformed into a block-diagonal form at the same
time by use of U W with

RY(m /2 0
U— (m/2) 1 7 @)
0 RY (7 /2)
0 0
R™(0) = cos 500 —isin 50”, 9)
and
1 0 0 O
W — 0 0 0 1 (10)
“lo 010
01 0 0
The resultant Hamiltonians are
Mo*+A_, 0
Hip = 11
12) < 0 Mo+ A ) 1D
As = a(p,o” % pyo”). (12)

Each blocked sector is equivalent to the quantum Hall
Hamiltonian introduced by X.-L. Qi et al.?® The term £Mo*
plays arole of “fictitious magnetic field.” The amplitude of the
magnetic field is common in the two blocked sectors. But the
magnetic field in one sector points in the opposite direction
to that in the other sector in Eq. (11) as a consequence of the
time-reversal symmetry of the original Hamiltonian in Eq. (3).
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When the 2 x 2 Hamiltonian is given by
h=sMo*+ A, (13)

with s = &1 and v = %1, the Chern number is calculated
to be C =1 x sgn(sv). When the Chern number of one
blocked sector is C = 1, that in the other is C = —1. In
the following, we represent a group of the quantum Hall
Hamiltonian characterized by the first Chern number C as
h(C). Equation (11) can be represented by the double quantum
Hall systems without any interactions with each other as

M-I 0
wee (MO Gn) 0
Mo®+ A, € h(l), (15)

because unitary transformation of
R*(m) (Mo* + A_(1))R (1) = —Mo* + Ay, (16)

does not change the Chern number C. Thus, the two blocked
sectors have the opposite chiral edge modes to each other
reflecting the opposite sign of the topological number. In
addition, when we focus one blocked sector, the Chern
numbers in the two topological insulators have the opposite
sign to each other. Therefore we conclude that there are four
chiral edge modes at the interface of the two TIs.

The argument to explain the appearance of the gapless states
here is essentially the same as that in the previous work.” Our
explanation, however, does not need the presence of the mirror
and the time-reversal symmetry. Thus the interface gapless
state should be robust under the perturbation breaking the
mirror symmetry. For instance, the Zeeman field H, = B, o*
applied to the junction breaks the time-reversal symmetry
and the mirror symmetry as shown in Appendix B. We will
numerically confirm the argument above in Sec. I'V.

Although they are fragile under deviating the rotation angle
¢ from 7, for ¢ # m, it is impossible to transform the original
Hamiltonian for the two TIs on both sides of junction into
blocked Hamiltonian in Eq. (11) at the same time. The two TIs
are not topologically distinct from each other. As a result,
the interface gapless states disappear for ¢ # m. We also
numerically confirm this property in Sec. IV.

B. Sato’s winding number

Next, we consider Sato’s winging number which is de-
fined in the one-dimensional partial Brillouin zone with
px = py =0, when we choose Ay as

cn c2 O
Apy=1|ca cn 0], (17
0 0 =

where the parameter c¢;; is chosen for A(;) to be the real
symmetric matrix. The Hamiltonian in Eq. (3) is block
diagonal in each spin space for p, = p, = 0 irrespective of
c;j. Namely

He — M, asp; H - M, —asp; (18)
T asp, —M,)’ v —asp, ’

_MZ
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with M, =m — bpzz. For instance, eigenvalues of Hj are €,
and eigenvectors are represented by

cos(f,./2) —sin(6,,/2)
(sin(6p7/2)> and (cos(Qp:/Z) ) (19)

for €, and —e¢,_, respectively. Here we define

€p. =/ M2+ (ap.)?, (20)

M.
cosf, = —, sinf, = —L% 1)

€p: €p.

z

In the presence of the time-reversal symmetry, the eigenvectors
can be represented only by real quantities. In the presence of
the band-inversion symmetry, Sato’s winding number can be
defined at p, = p, =0 as

b

1
W, s) = E/ dp;0,.6,.. 22)

-
To estimate the topological number, we use tight-binding
representation of the Hamiltonian,

M, = m — bp? — m — 2t(1 — cos p,), (23)

ap, — aopt sin p,, 24)

with + >0, m —4f <0, and |ayg| K 1 is a dimensionless
constant. We find that

W(1,s) = sgn(s),

Therefore, when the two TIs in the junction have opposite sign
of s, the topological gapless interface states are guaranteed by
the difference of Sato’s winding number in two spin space.

In the absence of the time-reversal symmetry under the
Zeeman field, it is also possible to discuss the robustness of
the gapless states by using another topological number.!” To
apply their argument, we first transform Eq. (3) under the
Zeeman field as

W, s) = —sgn(s). (25)

Mo+ h-o ac" A py Ul
™ ac’ A}, py ~Mo®+h-o ) ™
—Mc®+h-0 actA¥pic?
= w - H 2
(—ia«vao“A;pv Moo—h~0'*) Her  (20)
Urg = 0 ! 27
M=\ —ioc¥ o)

The right-hand side of Eq. (26) is the Hamiltonian of the
3He-B phase under the Zeeman field k. Under the condition
in Eq. (17) with p, = p, =0 and k = (h,,h,,0), the Hamil-
tonian satisfies the relation as

{THy.}p =0, I'=CTII, (28)
0 K ioc’IC 0
C:(IC 0>, ’T:( 0 ia~"IC)’ 29)
io? 0

where K means the complex conjugation, IT represents the
7 rotation in the xy plane in spin space, 7 means the time-
reversal operation, and C represents the band inversion plus the
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complex conjugation. The Hamiltonian Hy, is transformed as

q q o  —io*
s UF = . 0 .
0 2\ —io* o

. (0
UrHu Ut = (

(€2Y)

A topological number is defined by

1
W(s) = e f dk.Te[T Hy o Hpe]. (32)
; v
1

= —Im/dkzak,ln(detq). (33)

2 ¢

We find W(s) = 2s for |h| < m. When A(j) in Eq. (17) repre-
sents the inversion of p, axis (i.e., s = —1), two topological
insulators are topologically distinct from each other even in the
presence of the Zeeman field parallel to the plane. Four subgap
states appear at zero emergy and at p, = p, = 0 because
of |W(1) — W(—1)| = 4. Still unclear are the effects of the
Zeeman field perpendicular to the junction plane /, and those
of the perturbation breaking the band-inversion symmetry on
the interface gapless states. We will numerically check these
issues in Sec. I'V.

Finally, we discuss the stability of the gapless states
characterized by Sato’s number. The gapless interface states
are insensitive to choice of ¢;; in Eq. (17) because Sato’s
number is defined in one-dimensional Brillouin zone at p, =
py = 0. Therefore, the experimental realization of the gapless
states characterized by Sato’s number is much easier than that
of of the gapless states characterized by the Chern number in
Sec. IIT A.

IV. NUMERICAL SIMULATION
ON TIGHT-BINDING MODEL

To confirm the conclusions in the topological analysis and
to check the robustness of the interface gapless states under
perturbations, we also perform the numerical calculation on
the tight-binding model. We describe the topological insulator
by using the two-band model as

Mo?® hgo
H Y — 4
o(ks j.J") ( he —Ma())’ (34)
M = {m + 2bs[cos(k,co) + cos(k,cp) — 2]}8;
=2b18j j +b1(8j j+1 + 85 -1), (35)
hso - aZGV[A\)i Sin(kXCO) + A\)) Sin(k}'CO)]8j~j’
—l'alo’vA‘Z}((Sj’ju,_l —(Sj,j’_l), (36)

where k = (k,,k,) is the two-dimensional momentum parallel
to the surface and j represents the position in the z direction.
We apply the periodic boundary condition in the xy plane and
the hard wall boundary condition in the z axis. We choose
a; =17.86m/cy, ay = 14.6m/cy, by = 3.57 x 10m/c(2), by, =
2.02 x 10%m /c} with the lattice constant ¢, being 5 A in both
sides taking into account the band structures of Bi,Ses.”” In
the simulation, the length of each topological insulator in the
z direction is 400 c¢g.

We also study the spin polarization of the interface gapless
states and calculate the spin expectation value by use of the
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two spin operators as

S = <Uu 0 ) (37)

0 ot

eou_ (0 o
St = <a P ), (38)
where S* is the ordinary spin operator and S* is derived from
the basis of the wave function in the topological insulator.?
We utilize the two operators depending on the basis of the
interface states. In the following, we calculate S* according to
the spin of the ordinary surface state on TIs in Eq. (2) when

the energy dispersion is shown along k.

To check the robustness of the interface zero-energy
states, we also consider two types of perturbations breaking

the band-inversion and time-reversal symmetries in addition
to Eq. (D1),

Hgi(j,J")
_ 14 A { ,bL(l)(Sj,j/ + b(l)((gj’jur] + 81',1",1) for ] < O,
x M(Z)(Sj,j’ + b(Z)(gj,j’Jrl + 81',1",1) for ] > O,
(39)
h-o 0
Hr = . 40
T ( o n 0) (40)

Equation (39) represents the shift of the chemical potential
and the modification of the bandwidth introduced differently
in the two TIs. Such a perturbation breaks the band-inversion
symmetry. The choice of (1) = ) and b(jy = by also breaks
the band-inversion symmetry. Such a perturbation, however,
does not affect the difference of the topological numbers in
the two TIs because they are represented as the global energy
shift proportional to 14x4. Therefore, such a perturbation
does not affect the difference of topological numbers in the
two topological insulators. Thus we choose (1) # @) and
by # by in the numerical simulation. It is impossible to
describe such a perturbation as a common energy shift in
the two TIs. Equation (40) represents the uniform Zeeman
potential which breaks the time-reversal symmetry. Although
the Zeeman potential is band-inversion asymmetric, we can
extract the effect of the time-reversal breaking perturbation.
In the simulation, we introduce Eq. (40) commonly in the two
TIs. In such a case, effects of band-inversion asymmetry on
the difference of the topological numbers in the two TIs can
be eliminated. Therefore, it is possible to study the effects
of the breakdown of the band-inversion symmetry and those
of the time-reversal symmetry independently by introducing
Egs. (39) and (40), respectively.

In what follows, we show the numerical results of the energy
dispersion and spin polarization in the junction of two TIs
with two different A. Some of the spectra of the interface
states are also analytically calculated within the quasiclassical
approximation as shown in Appendix C. We also discuss
effects of disorder on the interface states. In the presence
of disorder, the partial Brillouin zone specified by a wave
number is not well defined. We will show that the interface
gapless states are fragile under the disordered potential
in Appendix D.
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FIG. 1. (Color online) The energy dispersions (left figures) and
the spin configurations (right figures) of the interface states along
k. are shown for Eq. (41). The dispersions are plotted on the k,
only because the dispersions have the rotational symmetry in two-
dimensional momentum (k,,k,). We choose ¢ =0, w/2, and 7 in
(a), (b), and (c), respectively, in Eq. (41). Only for ¢ = =, the gapless
interface state appears in the gap of the bulk state.

A. Rotation within the xy plane

When we choose

cos¢p —sing O
Aqy= | sing cos¢ O], 41)
0 0 1

the spin-orbit interaction in Eq. (41) describes only the
continuous rotation of spin-momenta locking angle ¢ within
the xy plane. The spin-momenta locking in the z axis is
common in the two topological insulators. In this case, the
interface gapless state is predicted only at ¢ = 7w from the
analysis of the relative Chern number in Sec. III A. In Fig. 1,
we show numerical results of the dispersion relations for
several choices of ¢. The junction under consideration has
the two surfaces of topological insulators which host the
gapless surface states. We delete the contribution from such
surface states. In the numerical results, we plot the energy
eigenvalues of the states in bulk and those localized at the
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junction interface. The dispersions are plotted as a function
of k, only because the numerical results are isotropic in
momentum space. It is evident that the interface subgap state
is absent at ¢ = 0 because the resulting relation Ap) = A
means the junction of two identical topological insulators. The

kg[m/col

FIG. 2. (Color online) The energy dispersions of interface states
along k, in the presence of the Zeeman field are shown for Eq. (41)
with ¢ = 7. Panels (a) and (b) are calculated along k, and k, axes
respectively in the presence of the Zeeman field of 4, = 0.5m which
is parallel to the interface. Panel (a) is shown with k, = 0 along k.. In
(b), the dispersion is drawn along k, with k, on the point at which the
upper and lower surface bands are touching in the positive k,. Panel
(c) is calculated in the presence of the Zeeman field of i, = 0.5m
which is perpendicular to the interface.
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gap of the interface state decreases with increasing ¢ to w as
shown in Figs. 1(a) and 1(b). The momenta at the minima
in the upper band and the maxima in the lower band have
a ring shape in two-dimensional Brillouin zone. At ¢ = 7,
such minima and maxima touch each other as shown in
Fig. 1(c). The interface states become gapless and form the
ring-shaped Fermi surface. The subgap spectra obtained within
the quasiclassical approximation a?> <« mb in Appendix C
show the property consistent with the numerical results,

E = ay/pr® — k|2 sin2($/2), 42)

where pr = /m/b is a real value satisfying pr > |k| with
k = (ky,ky). The zero-energy state is possible only at k| =
pr and ¢ = m. The spin polarization of the interface state
is calculated by use of S* in Eq. (37) and shown with the
dispersion. The results suggest the Kramers degeneracy in the
subgap states in the presence of the time-reversal symmetry.
The dispersion along radial momentum represents a linear
dispersion from the ring-shaped zeros.

The topological argument in Sec. III A, the numerical
results, and the analytical expression within the quasiclassical
approximation suggest that the gapless states appear only at
¢ = m. Therefore the delicate material tuning is necessary
for having the ring-shaped zero-energy state in experiment. A
small perturbation modifying the locking angle ¢ opens the
gap.

Next we check the robustness of the gapless interface state
at ¢ = m by introducing the Zeeman field in Eq. (40) which
breaks time-reversal symmetry. In Fig. 2, we consider the
Zeeman field parallel to the interface plane with h, = 0.5m
and 1, = h; = 01in (a) and (b), and that perpendicular to the
interface plane with 4, = 0.5m and h, = h, =0 in (c). The
interface gapless state shows the robustness in the presence
of the Zeeman field reflecting the absence of mirror and
time-reversal symmetries in the definition of the relative Chern
number in Sec. IIT A. The robustness is attributed to the fact that
the relative Chern number is insensitive to the Zeeman field.
The previous paper’ has concluded that the mirror symmetry
protects the gapless states. However, our numerical calculation

FIG. 3. (Color online) The energy dispersion of interface states
along k, is shown for Eq. (41) with ¢ = m. The dispersion is calcu-
lated in the presence of the band asymmetry as ) = — ) = 0.1m
and b(l) = Olbl
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shows that the gapless states are robust to the Zeeman field
breaking mirror symmetry as discussed in Appendix B.

In Fig. 3(a), we calculate the energy dispersion at ¢ = 7 in
the presence of the band asymmetrical perturbation in Eq. (39),
where we introduce the difference of the band asymmetric term
K1y = —H@) = O.Im, b(]) = O.Ibl, and b(z) =0in Eq. (39)
It is clear from Fig. 3(a) that the band asymmetry removes the
gapless interface state.

B. Inversion of the z axis

Next we choose

cos¢p —sing O
Agy= | sing cos¢p 0 |. (43)
0 0 -1

The spin-orbit interaction in Eq. (43) describes the inversion
in the z axis plus the continuous rotation of spin-momenta
locking angle ¢ within the xy plane. The inversion in the

z axis leads to the difference of Sato’s winding number
14-16

in each spin sector as discussed in Sec. III B. Because

ke[ /co]

E [m]

FIG. 4. (Color online) The energy dispersions and the spin
configurations of interface states along k, are shown for Eq. (43).
We choose ¢ = 0, 7/2, and 7 in (a), (b), and (c), respectively. The
gapless interface state appears for all ¢, which shows the robustness
of the gapless state under changing the rotation angle ¢.

155442-6



ROBUSTNESS OF GAPLESS INTERFACE STATESIN A ...

Sato’s winding number can be defined in the one-dimensional
Brillouin zone, it is independent of terms vanishing in the limit
of k = (ky,ky) =0.

The topological numbers are calculated as

Wi =-1 Wa, =1 (44)

forz < 0 and

Waor =1,

Way,, = —1 (45)

FIG. 5. (Color online) The energy dispersions of interface states
along k, in the Zeeman field are shown for Eq. (43) at ¢ = 0. The
Zeeman field is parallel to the xy plane 4, = 0.5m in (a) and (b), and
is perpendicular to the xy plane 4, = 0.5m in (c).
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for z > 0. The bulk-boundary correspondence suggests that
the number of zero-energy states for spin-up space is equal
to [Way,r — W4l =2 and that for the spin-down one
is Wuy,, —We),;| = 2. As a consequence, four states are
degenerate at zero energy and at k = 0.

The numerical results in Fig. 4(a) show the doubly degen-
erate Dirac cones at the interface according to the topological
analysis. The degeneracy at k = 0 is stable under the rotation
of ¢ as shown in Figs. 4(b) and 4(c). The result of the
quasiclassical calculation for Eq. (43) in Appendix C shows
similar spectra. For ¢ = m, a pair of dispersion branches
show the linear dispersion, whereas the other pair have the
cubic dispersion. The spin polarization on the right panel of
Fig. 4(c) suggests the cubic dispersion, where the Kramers
pairs are always degenerate in the presence of the time-reversal
symmetry. The spin polarization calculated by use of §* in
Eq. (38) shows the helical spin configuration. We note that the
choice of ¢ = 7 corresponds to the inversion for the three axes.

‘We check the robustness of the zero-energy states under the
perturbations breaking the time-reversal symmetry in Eq. (40).
In Figs. 5(a) and 5(b), we show the dispersion of the interface
states in the presence of the Zeeman fields parallel to the
interface with h, =0.5m, hy =0, and A, =0 in (a) and
(b), and the Zeeman field perpendicular to the interface with
hy =hy, =0andh, = 0.5m in (c). The dispersion is plotted as
afunction of k. in (a) and k, in (b). The results in Fig. 5(a) show
that the two Dirac nodes stay at zero energy and at k = 0 even
in the in-plane Zeeman field. When we apply the Zeeman field
along the z axis, on the other hand, the interface zero-energy
states vanish as shown in Fig. 5(c). Therefore the robustness of
the zero-energy states depends on the direction of the Zeeman
field. The zero-energy states are fragile (robust) against the
Zeeman field the perpendicular (parallel) to the interface.
The magnetic anisotropy is consistent with that found in the
topological gapless states at the surface of *He-B phase?®—°
as discussed in Sec. III B.

In Fig. 6, we discuss effects of the band asymmetric
perturbation in Eq. (39) with Hay = —H@) = —0.2m, b(l) =
0.25b1, and b(y) = 0. The two Dirac cones are lifted off from
each other and the gap opens in the presence of the band
asymmetric perturbation.

FIG. 6. (Color online) The energy dispersion of interface states
along k, is shown for Eq. (43) at ¢ = 0. The dispersion is calculated
in the presence of chemical potentials of () = —u@) = 0.2m and
the band asymmetry by = 0.25b; and b,y = 0.
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FIG. 7. (Color online) The energy dispersions of interface states
in Eq. (46) with s = 1 and ¢ = 7 are shown along k, and k, in (a)
and (b), respectively.
C. Remaining configurations

Finally we choose

s 0 0
Apy=10 cos¢ —sing |, (46)
0 sing cos¢

with s = £1. For s = 1, the transformation represents only
the continuous rotation within the yz plane. The gapless states
appear only at ¢ = m. The dispersion becomes anisotropic
in the two-dimensional Brillouin zone as shown in Figs. 7(a)
and 7(b) because x and y axes are no longer equivalent to each
other. The energy dispersions along k, and k,, axes are the same
as the dispersion with ¢ = 0 and that with ¢ = 7 in Eq. (43),
respectively. Sato’s winding number well characterizes the
interface gapless states in Fig. 8 as well as those in Fig. 4.
The gapless states in Fig. 8 guaranteed by Sato’s winding
number also have the robustness of the Zeeman field parallel
to the interface and are fragile against that perpendicular to
the interface similar to Fig. 5. On the other hand, the relative
Chern numbers of the two TIs become the same with each
other at each subsector of the blocked Hamiltonian in Eq. (15)
because signs of k, in the two TIs are opposite each other.
When we choose s = —1, Eq. (46) represents the inversion
in the x axis. The choice of ¢ = 7 in Eq. (46) is identical
to Eq. (43) with ¢ = w whose results are shown in Fig. 4(c).
Therefore we seek gapless states for ¢ % m. The gapless states
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0.1 0.2 -0.. -0.1 0 0.1 0.2

ky[m/co]

kg [m/co)

FIG. 8. (Color online) The energy dispersions of interface states
along (a) k. and (b) k, are shown at ¢ =0 and s = —1. In (b), we
set k, at the Dirac point kp, = 0.094r. Panel (c) is energy dispersion
along k, at¢p = /2 and s = 1.

are expected at k, = 0 because the relative Chern number
well distinguishes the two TIs there. The results for ¢ =0
are shown in Figs. 8(a) and 8(b). We plot the dispersion as
a function of k, at k, =0 in Fig. 8(a). The results suggest
that there are the two Dirac cones but their nodes stay at
finite value of k.. Correspondingly, there is gapless state in the
dispersion along the k, at the Dirac pointof k, = kp = 0.0947
in Fig. 8(b). The spin polarization calculated with S, is also
shown in Fig. 8(c). At s = —1, two Dirac cones appear with
their nodes staying on the k, axis with all ¢ as shown in
Fig. 8(c) for ¢ = m/2 and these cones come close to k = 0 with
increasing of ¢ to & in Fig. 4(c). The analysis of the relative
Chern number suggests the robustness against the Zeeman
field as discussed in Sec. IIT A in Fig. 9.

For another configurations matrix, the rotation in the xz
plane is equivalent to that in the yz plane under interchanging
k. and k,. Thus the Dirac nodes stay on the k, axis when
we consider the inversion in the y direction. Together with
the results in Fig. 4(c), we conclude that the gapless states
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FIG. 9. (Color online) The energy dispersions of interface states
along k, with the Zeeman field directing x axis (a), y axis (b), and z
axis (c) are shownat¢p =0 and s = —1.

appear when the relative configuration matrix A(;y includes
the inversion. Unfortunately, these gapless states are also
fragile under the perturbation which breaks the band-inversion
symmetry.

V. CONCLUSION

We have studied the interface state between two topological
insulators with different configurations of spin-orbit interac-
tions. The two topological insulators touch at z = 0 and its
interface is flat within the xy plane. The coupling of spin o
with momenta p is configured by a material dependent 3 x 3

PHYSICAL REVIEW B 88, 155442 (2013)

matrix A as 6* A} p,. The spectra of subgap states depends

on relative configuration matrix A, = A(l)A&}, where A
for [ = 1 and 2 characterize the spin-orbit coupling in the two
topological insulators. The configuration matrix A, consists
of two operations: the inversion of some axes and the rotation
of the angle for the spin-momentum locking. The gapless
interface state appears only when the configuration matrix
contains the inversion. To make clear reasons for the appearing
gapless interface states, we introduce two topological numbers
defined in the partial Brillouin zone.

The relative Chern number distinguishes the two topologi-
cal insulators when A, does not include the inversion along
the z axis and explains the appearance of the interface gapless
state under the inversion within the xy plane. On the basis of
the numerical calculation, we conclude that such gapless states
are robust under the Zeeman field for all spin directions.

Sato’s winding number distinguishes the two topological
insulators when A 1, includes the inversion along the z axis and
explains the robustness of the gapless state under the rotation
within the xy plane. In this case, the four degenerate Dirac
points appear at the I' point in the Brillouin zone according to
the definition of Sato’s winding number. From the numerical
calculation, we conclude the robustness of the Zeeman field
within the xy plane. We also conclude that the gapless states
are fragile under the Zeeman field in the z direction.

The gapless interface states with the inversions of two axes
are fragile under the rotation within the plane including the two
axes. To realize such gapless interface states in experiments,
we need the delicate material tuning to fix the angle ¢.
Therefore, the gapless state with inversion of a single axis
is most robust in the gapless interface states at the junction of
two TIs. Especially, the gapless state with inversion of a single
axis parallel to the interface is also robust against the Zeeman
field with all directions as shown in Fig. 9.

We have confirmed all the conclusions of the topological
analysis in Sec. III and the robustness of the gapless interface
state protected topologically by the numerical simulation on
the tight-binding model in Sec. IV. The numerical simulation
shows that all the gapless states are fragile in the presence of the
band-inversion symmetry-breaking perturbations introduced
in a different way in the two topological insulators. The last
property implies the difficulty of finding the gapless states in
real materials within the combination of existing topological
insulators. However, our results predict an unusual gapless
state appearing at the interface of two different topological
superconductors and that of two different superfluid phases.
This is because the Bogoliubov—de Gennes Hamiltonian
similar to Eq. (3) always satisfies the particle-hole symmetry
(band-inversion symmetry in this paper) in Ref. 24.

Note added in proof. Recently, De Beule and Partoens have
studied the interface states in a different point of view.?! They
show the absence of the tachyonic excitation at the interface
between two topological insulators.
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APPENDIX A: THE SHIFT OF THE DIRAC POINT

The effective two-dimensional Hamiltonian of the surface
state perpendicular to the 7 axis is represented by

H; = vp(k x 0') - e, (AD)

where vp is the Fermi velocity, k is a two-dimensional
momentum, and e, is a unit vector along the 1 axis. The spin
is represented by

= (A} AL AL)o",

w

(A2)

where A is the configuration matrix. The index which appears
twice in a single term means the summation for u = x,y,z.
When we consider the surface perpendicular to the z axis under
the Zeeman field, for example, the Hamiltonian for the surface
states reads

H = vp(keA), — kyAY)o" + Byot, (A3)

where B, is a magnetic field component for the p axis within
the plane perpendicular to the z axis. It is easy to confirm that
the Zeeman field shifts the Dirac point from the I" point to the
point in the two-dimensional Brillouin zone satisfying

vr(ke A —kyAY) + B, = 0. (A4)

It is basically possible to observe the shift of the Dirac point
by angle-resolved photoemission spectroscopy. Therefore, the
configuration matrix A}, can be determined by repeating the
measurement for all surfaces.

APPENDIX B: MIRROR OPERATION

We explain the mirror operation about a single plane and
two planes normal to each other. The mirror operation M,
about the plane perpendicular to a single axis of y transforms
the momentum p, and spin o” as

o —Dv (V = :u'),
M“pv B {pl) (V 5& M)5 (Bl)
L et w=mw,
Myo™ = {—o” (v # ), (B2)

where the transformation of the spin ¢V is the same as the
angular momentum of the v axis. The mirror operation for
arbitrary operator O can be represented by a unitary matrix
U as UOU'. The mirror operation M,, for two planes
perpendicular to the p and v axes transforms the momentum
pp and spin ¢ ” as
—pp (p=porv),
Muvpp = { (B3)
PP e, (0 # mand v),
—of (p=porv),

o’ (other cases). (B4

Mo’ = {
The relations are derived from M, = M, M,,. In a junction,
the mirror operation is more complicated because it contains
the two sides of the junction. In the numerical model, the
mirror operations M, and M, exchange the Hamiltonians
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at the two sides of the junction when the mirror operations
contain that of the z axis under the mirror operation M,

MZHl(pllvo-v) = HZ(MZP;L’MZO-V)V
MZHZ(PWUV) = Hl(szuaMzUV)-

The Zeeman field along the w axis breaks the mirror symmetry
of M, where the v axis is perpendicular to the u axis.

APPENDIX C: SPECTRA OF INTERFACIAL

BOUND STATES

We begin with the Hamiltonian in Eq. (3) which is
represented as

H — Mo®
= \ao’Atp,
The Hamiltonian in Eq. (C1) preserves the band-inversion
symmetry,

ao"Aﬁp,\>

—Mo?" b

DH(pD™' = ~H*(~p), (€2)
0 —o’
D= (ay 0 ) . (C3)

The wave function can be given by

07 . —v,'7 .
W) = [“ ]e"’", WE,‘)(r):[u”go}e””,
P

vpl"
(C4)

VAA
- Tlm’ E, = VM2 +a|p|. (C5)

/ / 1 — E_ (Co)

where W) and lI/( ) are the wave functions belonging to E,
and —E ,, respectively. It is evident that £, is independent of
AR

When two topological insulators touch each other at z = 0,
the wave function for E = E, > 0 is represented by

0 0
w0y = [( 27 Yerwed g (1) Jenep e,
ul'y) vl

€N

forz < 0 and

0 0
uo - A vo . N .
vA(r) = [( = )e”‘fzc + ( - )e”‘?ZD}e"‘"’,
o @

(C8)

for z > 0 with

1
Tl = ma”(Aa))ﬁ(pi)k, pe=(k, £k), (C9)

! 1+Q ! 1 2 (C10)
= —_ —_ R V= — —_—— s
“=y2 E 2 E
Q
kf=ky [1+ —, Cl1
s =t F e D

Q= /E?-EZ,

155442-10



ROBUSTNESS OF GAPLESS INTERFACE STATESIN A ...

p = (k.k), k=(ke.ky), p=(xy), (Cl2)
2
_/m_a — 02 k2
L Tk ko =/ pF — lk|*, (C13)
2
m a

where / = 1 and 2 indicate the two topological insulators.
The 2 x 1 coefficient matrices A, B, C , and D represent
the amplitude of outgoing waves from the interface. At a
surface of a topological insulator, it is easy to confirm that
the spectra of the surface state become E = a|k| from the
boundary condition ¥ (r)|.—y = 0.

At the interface of the two topological insulators, the
boundary conditions at z = 0,

w(p,0) = w?(p,0), (C15)
9, W D (p,2)]:=0 = 3. WP(p,2)].0, (C16)

give a condition
det[(k} —k;)Y’u®v?AB — 4k}k; ACA™'D] =0, (C17)

where A, B, C, and D are represented by

—rt -
A= F(2) - Ij(l)’

B =T —Tf),
C = uzfé) — UZF(J{),
21— 21—

D =u"T; —vT,.
In the quasiclassical approximation, we use a relation
a® < mb, which allows |k — k;|* < kJk; ~ kj. Thus we
find

det[u’T', — v’ Ty det[u’ Tl — v’ T 1=0.  (CI8)

From the condition, we obtain the energy of interface subgap
states

(C19)

_17*
£ 11>+ (p)" [A A ' ] (P
— 20pP '

The results indicate the spectra of subgap interface states
depend on relative choice of Ay and A(). Within Eq. (C1),
the spectra obtained from Eq. (C18) shown in Eq. (C19)
always doubly degenerate.

When we fix A at diag(1,1,1) and Ay in Eq. (41), we
obtain

E = +a\/pr? — |k| sin2(¢/2). (C20)
When we choose Ay as shown in Eq. (43), we find
E = talk|| cos(¢/2)]|, (C21)

for ¢ # m. The expression is not valid at ¢ = 7w because
Eq. (C18) is always satisfied due to the quasiclassical ap-
proximation. Thus we need to solve Eq. (C17) to obtain the
spectra. By considering the first-order correction proportional
to a®/mb, we obtain the spectra of the linear dispersion at

¢o=m,
2
a
E =4,/ —alk|.
4mba||

(C22)
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To obtain the spectra with the cubic dispersion, we need to
consider higher-order corrections.

APPENDIX D: EFFECTS OF DISORDER

We have introduced the topological numbers to distinguish
two topological insulators. These topological numbers are
defined in the partial Brillouin zone specified by a wave
number. In the presence of disordered potential, such partial
Brillouin zones are not well defined. Therefore the topological
distinction may not work well. To confirm the instability of the
interface states under the disordered potential, we numerically
calculate the energy spectra of the Hamiltonian in the presence
of disorder. Here we show a result of numerical calculation.
To avoid the finite-size effect, we introduce the quasirandom
potential which is random within the yz plane but uniform in
the x axis. In this model, &, is still a good quantum number but
ky and k, are no longer good quantum numbers. We consider
the tight-binding model in the two-dimensional real space in
the yz plane j = (i, j») with the one-dimensional momentum

Na)

e
109 0.05 0 0.05 0.1

><

-0.1
-0.01 0 0.01

195~ = —————— N}

kax[m/co]

FIG. 10. (Color online) We compare the energy spectra of the
interface states in the absence of disorder (a) with those in the presence
of disorder (b). Strictly speaking, there is a very small gap in the
subgap spectra even in (a) due to to the finite-size effect. However, in
(b), the gap in the presence of the disorders becomes larger than that
in the absence of the disorder.
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kX’

Mo?® hgo
, (DD

ok (1,21 13) = ( A
M = {m + 2b[cos(kco) — 21}8;
2018 +D1(8j jve. 8 j-e.)

- 2b2(rj+8j,j’+ey +7;8jj-e) (D2)

hso = azo"[Aﬁ sin(ky,co) + A;‘j Sin(kyc())](sj,j’

—dar " A v — 8 s
iaxo" A8 te, 3j j'—e,)

—ia10" A8 jve. = 8j.j—e.)s (D3)

with
(D4

o = .
rj = e, =146
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where e, is the unit vector along the p axis. The perturbation
on the hopping € is given randomly in the range of [—A,A] at
each lattice site j. The lattice sizes are Ny = 40 and N, = 20,
where N, is the number of lattice points in the p axis. We
employ the periodic boundary condition along the y and z axes.
We consider Ay in Eq. (43) with ¢ = Oin Sec. Il B, where the
definition of Sato’s number requires the partial Brillouin zone
specified by (k.,ky) = (0,0). The energy spectra of interface
states for A = Oand A = 0.5 are shown in Figs. 10(a) and 10(b)
respectively. Itis clear that the disordered potential induces the
gap in the spectra of the interface states. We have also confirm
that the gap also appears in the interface energy spectra for the
case of topological states with the relative Chern number in
Sec. III A. Therefore the topological distinction in terms of the
topological number defined in the partial Brillouin zone does
not work well in the presence of disorder.
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