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We discuss the excitation spectra around the Dirac node on a surface of a three-dimensional topological insulator. By
using the diagrammatic expansion, we show that the coupling of an electron with the gauge field in the presence of
impurity scatterings opens a gap around the Dirac node. The results are consistent with a recent experimental finding
by Sato et al. [Nat. Phys. 7 (2011) 840]. We also discuss the consistency between the present results and the bulk-
boundary correspondence of the topological insulator in the presence of time reversal symmetry. The conclusion can be

applied to any two-dimensional massless fermions.
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1. Introduction

Properties of metallic states at the surface of topologically
non-trivial materials are a hot issue in the condensed matter
physics. A three-dimensional (3D) topological insulator (TT)
hosts a metallic state with linear dispersion at its surface as a
result of the topologically non-trivial nature of the wave
function in bulk insulating region.'™ Reflecting the shape of
the dispersion, such metallic state is called Dirac cone. A
point in the momentum space at which the upper cone and
the lower one touch with each other is called Dirac node.
The bulk-boundary correspondence suggests the presence
of a single Dirac node at the surface, which reflects a
topological number Z, = 1 in the bulk insulating region.

The presence of the single Dirac node is considered to
be very robust against any perturbations preserving time
reversal symmetry (TRS). To make clear the robustness of
the Dirac node on the surface of 3DTI, we briefly mention
the Dirac nodes on graphene for comparison. The graphene
hosts the two distinct Dirac cones in the Brillouin zone. The
Dirac nodes on graphene are protected by the sublattice and
the chiral symmetries. Thus perturbations breaking these
symmetries remove the Dirac nodes from graphene.>® The
sublattice symmetry enables the expression of the two-
diemnsional Dirac Hamiltonian H = v(pysy + pys,) in which
the momenta are coupled with so called pseudospin s; with
i = x,y, and z. Breaking the sublattice symmetry generates a
mass term like ms, which removes the Dirac nodes.””'" Due
to the chiral symmetry, two Dirac cones have the opposite
chirality to each other. The electron—electron interactions,
for instance, mix the two Dirac cones and give rise to so
called Dirac mass. As a consequence, graphene undergoes
the metal—insulator phase transition.®!>~7)

The Dirac node on the strong 3DTI, on the other hand, is
protected only by TRS. Therefore possible mechanisms for
the mass generation are very limited.'® Since the momenta
are coupled with real spin o; with i = x,y, and z, magnetic
perturbations give a mass term like m. o, which is realized
by magnetic moments'®" and magnetic impurities.?>>>
However such magnetic perturbations break TRS. According
to the Nielssen—Ninomiya’s theorem,?® the strong 3DTT also
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hosts two Dirac cones with opposite chirality. However they
are spatially separated each other when the sample of 3DTI
is sufficiently thick. Namely when one Dirac cone stays at
one surface, the other Dirac cone stays at the other surface.
These Dirac cones can interact with each other only when
the films of TI are sufficiently thin.?’>> Therefore the Dirac
node on strong 3DTI is very robust against perturbations
which preserve TRS such as impurity scatterings and
instantaneous electron—electron interactions.

A recent experiment,*” however, has reported the gapped
excitation spectra in the single Dirac cone at the surface
of TIBiy(Se,S|_x)3. Starting with a topological insulator
TIBi,Ses, the gradual substitution of Selenium by Sulfur
enables to make a series of insulators ended with a
topologically trivial insulator T1Bi,S;. The insulators should
be topological and should have a gapless single Dirac cone
at their surface in the doping range of 0.5 <x < 1.0. The
experimental results of the angle resolved photo emission,
however, clearly shows the gapped excitation spectra in the
corresponding doping range. At present, we do not have any
reasonable argument which explains the discrepancy be-
tween the theoretical prediction and the experimental results.

Motivated by the experiment,*® we theoretically try to
make clear a mechanism which generates the gap around the
Dirac node in the presence of the TRS. We consider the
massless fermion in two-dimension which couples with the
gauge field in the presence of normal impurity scatterings.
The self-energy due to the impurity scatterings and the
coupling with the gauge field is calculated within the lowest
order of perturbation expansion. The results show that the
real part of the self-energy for the upper Dirac cone has the
opposite sign to that for the lower cone. As a result, two-
dimensional fermion has gapped energy spectra around the
Dirac node. We conclude that the interplay between the
impurity scatterings and the coupling with the gauge field
generates the gap. The results suggest the absence of gapless
surface state even in the presence of TRS. We will show that
our conclusion is not inconsistent with the bulk-boundary
correspondence of TI’s. We also conclude that the transla-
tional symmetry is necessary to preserve the gapless surface
state in real TIs.
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Fig. 1. The Feynman diagrams under consideration. (a) Fermion self-
energy coupled to the gauge boson. The wavy line denotes the propagator of
the gauge boson. (b) Dirac fermion propagator in the presence of impurity
scatterings within the Born approximation.

This paper is organized as follows. In Sect. 2, we explain
our theoretical model. The self-energy due to the coupling
with the gauge field in the presence of the impurity
scatterings is calculated in Sect. 3. We discuss a relation
between theoretical results and an experimental one in
Sect. 4. The conclusion is given in Sect. 5.

2. Theoretical Model

Let us consider the Lagrangian density which describes
the two-dimensional massless Dirac fermions coupling with
the gauge field,

L= 3 Y eApoh— 1 WP, ()
j=0,1,2 4

where o0 is the 2 x 2 unit matrix, o for j = 1-3 are the
Pauli matrices, ¢ and A are the field operators of a surface
massless fermion and a U(l) gauge boson. In Eq. (1),
Po = po represents energy measured from the Dirac node
and p; = p;/v for j = 1-2 represents the momenta multi-
plied by the speed of light ¢ where v = vg/c is a small
constant describing dimensionless velocity with vg being the
Fermi velocity. Throughout this paper, we use the units of
h = c = 1. The field tensor F*’ is defined by

F*Y = 9" A” — 9" AH, 2)
with 0" = 9/dx,,. We consider the Dirac propagator defined by
0
Poo” +p -0
G =, 3
o(p) P2 — vp? + ie 3)

where we take a short-hand notation p = (po,p).
Equation (3) represents the particle propagator for positive
energy po > 0 and the hole propagator for negative energy
po < 0. For the single gauge boson process as shown in
Fig. 1(a) or 2(a), a two-dimensional Dirac particle interacts
with a gauge boson having two-dimensional momentum.
This is a natural consequence of the energy-momentum
conservation law at each vertex according to the Feynman’s
rule. We employ the Feynman gauge in which the propa-
gator converges at the spacial infinity x; — oo with j = 1-2.
The propagator of the gauge field at energy ¢o and
momentum ¢ is given by
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Fig. 2. The Feynman diagrams we consider in the text. (a) Fermion
self-energy consisting of the gauge boson and the impurity scatterings.
(b) Vertex function including the impurity scatterings.

- %=

where © and v are 0, 1, and 2. As shown in Eq. (1), the
vertex of the coupling between the electron and the gauge
field is described by —eo* in Heaviside unit. We assume that
the impurity potential is spin-independent and is represented
by the delta-function,

Uir) = > ud"sr —r;), (6)
J

where r; is the position of an impurity and u is the strength
of a single impurity potential. We assume a constant density
of impurities n;.

3. Self-Energy

At first, we estimate the self-energy by the impurity
scatterings alone. The impurity potential mixes the states
with different momenta. It, however, does not mix the states
with different energies. Therefore impurity scatterings itself
cannot open the gap at the Dirac node. The self-energy
within the Born approximation is represented by

20 = —iypyo”, @)

where y = mu’n;/v? > 0 is the dimensionless expansion
parameter smaller than unity (see also Appendix A). The
result has the general form of the massless Dirac fermion.*>

Secondly, we calculate the self-energy of a Dirac fermion
coupled with the gauge field which is given by

@)= (—ed")Go(p — g)(—ea")Dyu(q).  (8)
q

The details of calculation are shown in Appendix B, where
we estimate the self-energy in Fig. 1(a). Namely we
calculate ©®(p) in Eq. (8) with using the full Green
function G(p — ¢) in Eq. (B-1) instead of the bare Go(p — ¢q)
in Eq. (3). In the limit of small momenta, the real part of the
self-energy has an asymptotic form as

poo” _p-a)
Vpor  Vp?

We note that the result does not contain y. Therefore the
impurity scatterings add only negligible corrections to

Eq. (9) as shown in Appendix B. From pole of the scalar
denominator [Go(p)~' — Z®@(p)], this self energy cannot

Re[Z®¥(p)] = ne2< ©

—8u open gap for massless Dirac fermion,
D,(g) = S T ) 2 5
q0° — g +1e po = £(vlp| 4 me’) — me? sgn(po)
guv = diag{l, -1, -1}, ©) = +ulp|. (10)
064704-2 ©2013 The Physical Society of Japan
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The two terms stemming from the self-energy cancel
each other out, which reflects the covariance of the gauge
field. As a consequence, the coupling with the gauge field
does not change the energy spectra of massless Dirac
fermion.

Neither the coupling with gauge field alone nor the
impurity scatterings alone open the gap at the Dirac node.
The former changes the energy of a fermion but preserves
the translational symmetry. The latter breaks the transla-
tional symmetry but preserves the energy of fermion. To
have a gap at the Dirac node, we need scattering proc-
esses which change the momenta due to breaking the
translational symmetry and the energy of a fermion at the
same time.

Finally, we consider a self-energy which represents the
interplay between the coupling with the gauge field and the
impurity scatterings. The scattering processes are diagram-
matically described in Fig. 2(a). Such self-energy is given
by

2Py =Y TP 9G(p — g)N(—ea")Dy(g), (1)

PtV

M(po,q) = v Y G(p)—ea™)G(p — q), (12)
2

where I',(po, q) is the vertex function shown in Fig. 2(b).

The vertex function can be derived from the Ward—

Takahashi’s identity>**” with the self-energy of impurity

scatterings in Eq. (7),

(p/ _P)M(Gu + FM(P’P/))

=p' =20 — (p — =9p)). (13)
The vertex function results in
I(p,p)) = —ieys™, (14)

where 6" is the Kronecker’s delta. The correction at another
vertex of gauge field [Fig. 2(a)] give the same contribution.
Thus the self-energy in Eq. (11) becomes
1
S(p)=2iye’ ) Gp—q) 5——5——. (19
Zq: g —q* +ie

The summation of g can be done using the method for
deriving Eq. (8). By introducing a parameter xo = v’p>/po°,
we obtain the expression of the self-energy in the limit of
xo — 0 as

lim = (po.p) = 27’y (sgn(po)o” +p - o). (16)
) g

where p is the unit vector in the direction of p. This is the
central result of this paper. The result does not depend on
either the magnitude of the energy or that of the momentum.
From the pole of the scalar denominator of [Go(p)~' —
%(p)], we obtain the energy dispersion of perturbed
fermions at |[p| — 0 as

po = £(v|p| + 2me’y?) + 2me*y* sgn(po)
= +(v|p| + 4me’y?). a7
The result shows the gapped energy spectra around the Dirac
node. We note that both the impurity scatterings and the
coupling to the gauge field preserve the TRS.
4. Discussion

According to the features of the spectra in Eq. (17), the
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magnitude of the gap should be independent of temperature.
Our results are consistent with the gapped spectra found in
the experiment by Sato et al.>* Another experiment®® has
reported the gapless spectra in the similar situation. The
energy resolution of experiment in Ref. 34 seems to be
better than that in Ref. 38.

We discuss effects of electron—electron interactions via
the gauge field on the excitation spectra around the Dirac
node. Because of the dynamics of the gauge field, the
interaction potential depends on frequency. As a result, the
interplay between the impurity scatterings and the interac-
tion via the gauge field opens the gap at the Dirac node. On
the other hand, in condensed matter physics, the electron—
electron interactions are usually taken into account within
the static approximation. Namely, the Coulomb interaction
acts two fermions at an equal time. Therefore such static
interactions do not depend on the frequency. The two
different types of interactions in the presence of impurity
scatterings may affect the excitation spectra in two different
ways. In one-dimension, sufficiently strong static interac-
tions cause the gap.39) In two-dimension, however, the
excitation spectra have been believed to remain gapless even
in the strong static interactions. On the other hand, we show
that the electron—electron interactions via the dynamical
boson field lead to qualitatively different results of the
gapped spectra in two-dimension. In fact, the results in
Eq. (17) are obtained within the lowest order of v =
vp/c < 1. This argument is also important when we
consider topological protection of the gapless surface state
by the bulk-boundary correspondence, which we discuss
next.

Finally, it is necessary to discuss a relationship between
our results and the bulk-boundary correspondence of three-
dimensional TI in the presence of the TRS. The Z; invariant
is well defined in (1 4 3) dimensional fermion space of TLD
The bulk-boundary correspondence works well to under-
stand the existence of the two-dimensional gapless state on
its surface. In this paper, however, we consider a situation
in which the fermion on TI naturally couples with the
electromagnetic field. In such situation, the whole physical
space consists of the fermion space and the gauge boson one.
Namely, the (1 + 3) dimensional fermion space is no longer
closed independent physical space. At present, it is unclear if
it is possible to apply the topological classification defined
solely in the fermion space to the integrated physical space
of the fermion and the gauge boson. Even in the integrated
space, it may be still possible to consider the topological
characterization in the fermion space only. In such case,
the theory would be possible to define some topological
invariants in a similar way as the weak topological
invariants.*” Therefore the predictions by the topological
theory'>*42 in (1 4 3) dimensional fermion space are not
always valid. This makes the background of the gapped
energy spectra appearing at the topologically protected
surface state. The coupling of fermion with another degree
of freedom sometimes changes a topologically non-trivial
phase to a topologically trivial one. Our result demonstrates
an example of the story.

5. Conclusion
In conclusion, we have studied effects of the gauge field

©?2013 The Physical Society of Japan
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and the impurity scatterings on the energy spectra of
massless Dirac fermion at the surface of a three-dimensional
topological insulator. By using the perturbation expansion,
we have calculated the self-energy around the Dirac node.
The interplay between the impurity scatterings and the
coupling with the gauge field leads to the gapped energy
dispersion around the Dirac node.
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Appendix A: Self-Energy due to Impurity Scatterings

We derive the self-energy of impurity scattering alone.
Within the Born approximation, the self-energy is given
by,

0 ,
50 — uzn,-/dsz (A-1)

po? — v2p? +ie’
The term proportional to momentum p vanishes after
integrating of p. The self-energy is calculated as

S®(p) =Y (—ed")G(p — g)(—e0,) D,u(q)
q

v

O — 120 dzP POUO
") (V2r)? p? — vp? +ie
= uznipoao

d? * o , ,
P / ——explia(po® — v’p* +ie)]
0

] e )y G
= —iypoo”, (A2)
y = muln; /vt (A-3)

The resulting self-energy is pure imaginary and gives the
inverse of the life time in agreement with a previous
result.® We introduce a dimensionless constant y which
contains material parameters.

Appendix B: Self-Energy due to Coupling with Gauge
Field

Let us calculate the self-energy due to coupling with the
gauge field represented by Fig. 1(a). The propagator for a
Dirac fermion in the presence of impurity scattering is
represented by

(I +ip)pec’+p -0
(1 +iy)’po® — v%p?
By using this propagator, the self-energy in Fig. 1(a) is given by

G(p) (B-1)

q0.9 KV

The self-energy is expressed in the parametric integral representation*” as,

> dqo d’q

T®(p) = ,,lim/
(p) gll. 150 = (\/E):S

(B-2)
_ 0 +ip@ =g tvp—g o, —gu _
=22 (e iy o —af — P —aF i (B-3)
foo /00 doy day(—eoc™) % (000y, — 0 - 3,)(—ec”) exp(iS), (B-4)
0 0
S = a1((1 +iy)*(po — q0)* — vi*(p — @)* + ie) + aa(qo” — ¢* +1ie) + xo(1 +1y)(po — go) —vx - (p — q),  (B-5)

where x,, and o; are dummy variables. The integral with respect to the momenta can be done by the Fresnel integral. The results

become

dOll dOlg

2@ (p) = —¢? lim /OO /OO
=0Jo Joo (a1 + a)Vile (1 +ip)? +aa)

aon(l +iy)po®

1
~ (0", +0-3y)

aioop®  an(l +iy)poxo

X exp[i{i(al + ap)e +

ar(I+iy) +

vx -
+—— P ”
oV 4+ oy

v +ar o (1+iy)? + an

Next we introduce a integration variable p = «; + «, and change the integration variables as «; — p«;. In this way, we obtain

dory dan

3 — o — )

1 1
=®(p) = —¢? / f
o Jo @¥’ + @ fi(1+iy)? +a)

ajn(l +ip?

( (1 +iy) oo’ — — 2 vp~a)
o (1 +1ip)* + an 0 a v +ay

X /00 ﬂ6:xp|:—,0(8 +
o ie

Po- — b U2P2>]
il (1 +iy)* + o) (v + ay) ’

(B-6)

By applying the condition v?> < 1 and introducing a variable xy = v?p?/p,>, the self-energy becomes

da

2

~

2 /1 ( 1 +iy
0 Va((1+iy)?po*(1 — @) — (1 + Qiy + yPayv?p? \1 + 2iye
y(2i+y)

poc® — 2 "’) (B-7)
1l -«

1
(1—iy) / o (
N/ ), Va0 =% —o

n l—« 1+iy g W0
X o — .
21 +iy)* 1 —a—xo 0 1—|—2i)/ap0 l -«

(B-8)

We neglect terms proportional to xo because we focus on the limit of xo 2~ 0 in the followings. The results are

E(g)(p) ~ _

2

62 1 da 1—xo ) ) 0 vp .o
e (/1_ Waa - —x) )y Jaa-xp= a)) (1 iy = 2ivepue’ ~ F=0)

da

- (B-9)

- _a- iy)(—i(l + iy)poc’log2a — (1 — xo) + 2y el — (1 — x))]1_,,

\/Po2
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—2a+(1 —xo)]"‘O

l—X() 0

— (1 4+iy)po® |:arcsin
/o — (1 — — !
- ZVPOGO[\/Q(‘X — (T —x0) — (1 — x0) log H . ﬁ }
1—xp

1—x0
— 2iypoo’ [\/ot((l — x0) — ) — (1 — xo) arcsin /%]
0

wp-o |:10g (20 — (1 = x0))( — 1) + 2x9 — 2/xpa( — (1 —Jfo))Jl
1—xo

+i

/X0 a—1
1—x
wp o (=1 —x0)(1 —a) + 2x 0
_w |:arcsm ( o) ) 0 . (B-10)
/X0 (1 = x0)(1 — o) 0
We reach the self-energy as
2
e . . . 14 x4+ 2./x0
2@ (p) ~ — N (1- 1)/)(—1(1 +1iy)poc’ log — mpoc’ — 2ypec’ /Xo
Po -
— X0 up - o wp - o
+ 2ypoc’(1 — xo) log — + iTypoooxe — 1 log(1 + x9) — 7 ) (B-11)
14+ /x /X0 /X0
Using xo = v’p?/py? < 1, it becomes
0
X0 o
2@(p) = —(1 —iy)( 7 2y PO a1 — oy log (L) B
\/— \/— \/— 1+ ﬁg Jro?
0 0
. . o 1+x0+2/% . Iea ) .o
—i(1 +1y) po B log 1 + imyxo Po B —ilog(1 —i—xo)p—2 . (B-12)
VPo — X0 VPo VP
Finally by putting y — 0, it is possible to obtain the self-energy due to the gauge field alone.
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