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Singlet/triplet Josephson junction on a substrate
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We discuss the Josephson effect in a spin-singlet superconductor/spin-triplet superconductor junction fabri-
cated on a substrate. Due to inversion symmetry breaking on top of the substrate, Rashba spin-orbit interaction
works on electrons in the superconductors. As a result, spin-triplet (spin-singlet) Cooper pairs are induced in a
spin-singlet (spin-triplet) superconductor. The presence of such induced Cooper pairs enables the lowest-order
Josephson coupling between the two superconductors. Based on the theoretical results and recent experimental
findings [X. Xu et al., Phys. Rev. Lett. 132, 056001 (2024)], we analyze the pair potential of β-Bi2Pd.
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I. INTRODUCTION

Symmetries of the pair potentials in superconductors are
usually classified into either spin-singlet even-parity class
or spin-triplet odd-parity class. Although spin-singlet super-
conductivity has been observed in various materials such as
monoelement metals and high-Tc cuprates, spin-triplet su-
perconductors (SCs) are very rare. The topological-material-
based compound CuxBi2Se3 and several uranium compounds,
such as UPt3, UBe13, UGe2, and UTe2, are candidates for
spin-triplet SCs [1–7]. At present, however, spin-triplet super-
conductivity in these materials is still under debate. The search
for spin-triplet SCs has been an important issue recently
in order to realize quantum computation using non-Abelian
statistics of Majorana fermions. In this situation, theoreti-
cal studies have proposed recipes for artificial spin-triplet
SCs [8–11].

When a new candidate material is synthesized, several
experiments are performed to confirm spin-triplet supercon-
ductivity. Critical magnetic fields beyond the Pauli limit
and unchanged spin susceptibility across Tc are typical
signatures of a spin-triplet SC. Experiments on normal-
metal/superconductor (NS) proximity structures also tell us
the signs for spin-triplet superconductivity, such as a zero-bias
anomaly in the conductance spectra at a T-shaped junction
[12,13] and unusual surface impedance in an NS bilayer
[14]. These characteristic properties of a spin-triplet SC origi-
nate from a d vector (the order parameter of the spin-triplet
superconductivity). In the 3He B phase, for example, d ∝
kxex + kyey + kzez is isotropic in both momentum and spin
spaces, where e j , with j = x, y, and z, are the unit vector
in spin space in the j direction. As a result, the spin sus-
ceptibility becomes isotropic in real space [15]. A d vector
proportional to (kx + iky) breaks time-reversal symmetry and
generates the intrinsic angular momentum in the 3He A phase.
Superconductivity in the heavy fermion compound UTe2 may
be described by a multicomponent d vector breaking time-
reversal symmetry [16]. Thus, analyzing d in a spin-triplet
SC is the most important issue in experimental research. In
particular, the observation of the π -phase shift in a supercon-
ducting quantum interference device (SQUID) proposed by

Geshkenbein, Larkin, and Barone (GLB) convincingly sug-
gests spin-triplet superconductivity [17]. Indeed, based on the
observed π -phase shift, a recent experiment [18] indicated
spin-triplet superconductivity in a topologically nontrivial SC
β-Bi2Pd [19–21].

In a spin-singlet superconductor/spin-triplet superconduc-
tor junction (referred to as a singlet/triplet junction below),
the lowest-order coupling is absent due to the mismatch of
the pair potentials in spin space. Namely, spin-dependent
potentials are necessary to have the lowest-order Josephson
coupling in a singlet/triplet junction. Unfortunately, GLB did
not discuss how symmetry mismatches are resolved in re-
alistic junctions. Spin-orbit interaction (SOI) at the junction
interface [22] is a possible source that enables the lowest-
order coupling in a singlet/triplet junction. However, as we
will show in Sec. V, the interface SOI does not explain the
π -phase shift in a SQUID.

In this paper, we study the effects of the Rashba SOI on the
Josephson current in a singlet/triplet junction fabricated on
a substrate. The Rashba SOI generates a spin-triplet pairing
correlation in a spin-singlet superconductor and spin-singlet
pairing correlations in a spin-triplet superconductor. Such in-
duced pairing correlations cause the lowest-order coupling
in a singlet/triplet junction. In addition, the π -phase shift
observed in a SQUID can be explained consistently by the
selection rules derived from the Rashba SOI. We discuss the
symmetry of the pair potential in β-Bi2Pd while taking the
selection rules into account.

This paper is organized as follows. We explain our the-
oretical model in Sec. II. The analytical expression for the
Josephson current is presented in Sec. III. The selection rules
for the Josephson coupling are discussed in Sec. IV. We
analyze the pairing symmetry in β-Bi2Pd in Sec. V. The con-
clusion is given in Sec. VI. We use units of kB = h̄ = c = 1,
where kB is the Boltzmann constant and c is the speed of light.

II. MODEL

Let us consider a singlet/triplet Josephson junction, as
shown in Fig. 1. Two superconducting thin films are fabri-
cated on a substrate and form a Josephson junction at x = 0.
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FIG. 1. Schematic picture of a spin-singlet superconductor/spin-
triplet superconductor junction, referred to as a singlet/triplet
junction in this paper. The current flows in the x direction, and the
junction interface is at x = 0. The cross section of the junction is S.

The normal state Hamiltonian in a uniform superconductor is
given by

ĤN( j, k) = ξ j,k − αk · σ̂, (1)

αk = (−λky, λkx, 0), (2)

ξ j,k = k2

2mj
+ ε j − μ, (3)

where μ is the chemical potential and σ̂i (i = x, y, and z) is the
Paul matrices in spin space. The effective mass of an electron
and the energy shift are the material parameters. They are
given by mj = ms and ε j = εs in a singlet SC and mj = mt

and ε j = εt in a triplet SC. As inversion symmetry is broken
along the z direction, Rashba SOI acts on electrons in thin
SCs on a substrate. The pair potential in a spin-singlet SC is
described as

�̂(s, k) = �k iσ̂y eiϕs , �−k = �k, (4)

where ϕs is the phase of the superconducting condensate. The
pair potential in a spin-triplet SC is given by

�̂(t, k) = idk · σ̂ σ̂y eiϕt , d−k = −dk, (5)

where ϕt is the phase and the three-component vector dk de-
scribes spin-triplet superconductivity. Throughout this paper,
we consider unitary states (i.e., dk × d∗

k = 0).
The Hamiltonian in each superconductor is described by

H j =
∑

k



†
j (k) Hj (k) 
 j (k), (6)

Hj (k) =
⎡
⎣ ĤN( j, k) �̂( j, k)

−�̂
˜

( j, k) −Ĥ
˜

N( j, k)

⎤
⎦, (7)


 j (k) = [c j,k,↑, c j,k,↓, c†
j,−k,↑, c†

j,−k,↓]T (8)

for j = s and t , where c j,k,σ is the annihilation operator of an
electron with a wave number k and spin σ in a SC labeled
by j. Particle-hole conjugation is denoted by X

˜
(k, ωn) ≡

X ∗(−k, ωn). The Green’s function in each SC is calculated
as a solution of the Gor’kov equation,

[iωn − Hj (k)]

[
Ĝ j (k, ωn) F̂j (k, ωn)
−F̂

˜
j (k, ωn) −Ĝ

˜
j (k, ωn)

]
= 14×4, (9)

where ωn = (2n + 1)πT is the fermionic Matsubara fre-
quency, with T being a temperature. The coupling between
the two SCs is described phenomenologically by a tunnel

Hamiltonian,

HT =
∑
k,p,σ

[−tk,p c†
t,k,σ

cs,p,σ − tk,p c†
s,p,σ ct,k,σ ]. (10)

Within the linear response, the Josephson current between the
two SCs is calculated as [23]

J = − 2e T
∑
ωn

∑
k,p

Im Tr[tk,p F̂s(p) t−k,−p F̂t
˜

(k)]. (11)

III. CURRENT

The anomalous Green’s function is calculated as

F̂s(k, ωn) = −
(
ω2

n + ξ 2
s,k + |�k|2 + α2

k

) + 2ξs,kαk · σ̂

Zs

× �k iσ̂y eiϕs , (12)

Zs = (
ω2

n + ξ 2
s,k + |�k|2 + α2

k

)2 − 4ξ 2
s,k α2

k, (13)

in a spin-singlet SC. The first four terms in the numerator
of Eq. (12) represent a spin-singlet pairing correlation that is
linked to the pair potential through the gap equation in the
presence of an attractive interaction between two electrons.
The last term describes a spin-triplet odd-parity pairing corre-
lation induced by the SOI. The results in a spin-triplet SC are
given by

F̂t (k, ωn) = − 1

Zt

[(
ω2

n + ξ 2
s,k + |dk|2 − α2

k

)
dk · σ̂

+ 2(αk · dk)αk · σ̂ + 2ωn(αk × dk) · σ̂

− 2ξt,k αk · dk
]

i σ̂y eiϕt , (14)

Zt = (
ω2

n + ξ 2
t,k + |dk|2 + α2

k

)2 − 4ξ 2
t,k α2

k

− 4|αk × dk|2. (15)

The first line of Eq. (14) represents a spin-triplet pairing cor-
relation linked to the pair potential. The SOI generates three
extra pairing correlations. The first term in the second line
describes such a spin-triplet odd-parity pairing correlation.
The pairing correlation in the second term in the second line
belongs to the odd-frequency spin-triplet even-parity symme-
try class. The last term describes a spin-singlet even-parity
pairing correlation. The spin-singlet and spin-triplet mixed
states are realized in the two SCs, which enables the lowest-
order Josephson coupling between them.

At low temperatures, the tunnel Hamiltonian (10) works
only on electrons at the Fermi level. The wave number in the
current direction is limited to

p2
x + p2

‖
2ms

+ εs − μ = 0,
k2

x + k2
‖

2mt
+ εt − μ = 0, (16)

where p‖(k‖) is the wave number in the yz plane on the Fermi
surface at a singlet (triplet) SC. The Fermi wave number is
defined as kF, j = √

2mj (μ − ε j ) for j = s and t . As a result
of translational symmetry in the yz plane, the wave number in
the directions parallel to the plane is preserved in the tunnel
process,

p‖ = k‖. (17)
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Namely, the tunneling event happens between the states on
the Fermi surface at (±px, k‖) in a spin-singlet SC and those
at (±kx, k‖) in a spin-triplet SC. In what follows, we assume
that the tunneling amplitude is a constant independent of
wave number, (i.e., tk,p = t δk‖,p‖ ). The summation over the
wave number is expressed as∑

k

F (ξk, �̂k) →
∫

dξ jN (ξ j )〈F (ξ j, �̂k)〉k̄‖ , (18)

〈F (ξ j, �̂k)〉k̄‖ = 1

π

∫ π

0
dθ sin2 θ

∫ π/2

−π/2
dφ cos φ

× F (ξ j, �̂kx,k‖ ), (19)

where N (ξ j ) is the density of states per spin. The wave number
on the Fermi surface is parameterized as kx = kF, j sin θ cos φ,
ky = kF, j sin θ sin φ, and kz = kF, j cos θ . 〈· · · 〉 in Eq. (19)
means summation over the propagating channels on the Fermi
surface with kx > 0, where k‖ = kyȳ + kz z̄, k̄‖ = k‖/kF, j , and
ȳ (z̄) is the unit vector in the y (z) direction.

The Josephson current is expressed as

J = π

eRN
T

∑
ωn

Im

〈
eiϕ δk‖,p‖ (Xt − Xs)�p√
ω2

n + |�p|2
√

ω2
n + |dk|2

αk · d∗
k

|αk|

〉
k̄‖

,

(20)

with

R−1
N = 4πe2t2 Ns(0) Nt (0), ϕ = ϕs − ϕt , (21)

Xj = |αk|
Nj (0)

dNj (ξ j )

dξ j

∣∣∣∣
ξ j=0

≈ λkF, j

μ − ε j
� 1 (22)

for j = s and t , where RN is the resistance of the junction in
the normal state. In Appendix A, we discuss how to derive
Eq. (20). Equation (20) represents the Josephson current due
to the coupling between the pair potential and the pairing cor-
relations induced by Rashba SOI. As the induced spin-triplet
component in Eq. (12) is proportional to ξs, the Josephson
current due to such coupling is proportional to Xs in Eq. (20).
The energy derivative of the density of states determines the
amplitude of the Josephson current. In a similar way, the
coupling between the induced spin-singlet correlation in a
spin-triplet SC and the spin-singlet pair potential �p carries
a Josephson current proportional to Xt in Eq. (20). The ampli-
tude of the Josephson current at zero temperature is roughly
estimated as XjJ0, where J0 in Eq. (A8) is the amplitude of the
critical current in the Ambegaokar-Baratoff formula [24].

The results in Eq. (20) also tell us the current-phase re-
lationship (CPR). When both �k and dk are real numbers,
the CPR is sinusoidal because J ∝ sin ϕ. For chiral states
such as the chiral d-wave �k ∝ (kx + iky)kz and the chiral p-
wave dk ∝ kx + iky, the CPR may deviate from the sinusoidal
function.

IV. SELECTION RULES

A singlet/triplet junction is usually used as a symmetry
tester for a spin-triplet SC. Therefore, conventional supercon-
ductors such as Nb, Al, and Pb are adopted at a spin-singlet

TABLE I. The selection rules for dk are summarized for the
lowest-order Josephson coupling. For the Rashba SOI, the Josephson
current flows when dk has a component of dx ∝ ky, as indicated
in the first row, and/or dy ∝ kx , as indicated in the second row.
In the first row, the presence of dx ∝ ky gives the interference pat-
tern in Fig. 2(a), as shown by circles (◦). But it does not explain
the interference pattern in Fig. 2(b), as shown by crosses (×). In
the second row, the presence of dy ∝ kx successfully explains both
interference patterns in Fig. 2. The Rashba SOI does not couple
to the z component of dk. The selection rules due to the interface
SOI in Eq. (24) [22] are also shown. The interface SOI cannot give
the Josephson coupling that reproduces the interference pattern in
Fig. 2(b).

Pair potential Fig. 2(a) Fig. 2(b)

Rashba SOI
dx (k) ∝ ky ◦ ×
dy(k) ∝ kx ◦ ◦
dz(k) no coupling × ×

Interface SOI j ‖ x
dx (k) no coupling ×
dy(k) ∝ kz ×
dz(k) ∝ ky ×

Interface SOI j ‖ y
dx (k) ∝ kz ◦
dy(k) no coupling ×
dz(k) ∝ kx ◦

segment. The Josephson current in such a junction becomes

J = J0
2�

�0
T

∑
ωn

Im eiϕ Xt − Xs√
ω2

n + �2

×
〈

1√
ω2

n + |dk|2
ky d∗

x (k) − kx d∗
y (k)√

k2
x + k2

y

〉
k̄‖

. (23)

The results imply the selection rules for two parts of dk:
the spin part and the orbital part. The Rashba SOI does not
couple to the z component of dk that represents a spin-triplet
Cooper pair with its spin polarizing in the xy plane. The
selection rules for the orbital part are derived from the average
over k‖ = kyȳ + kz z̄. The x component of dk must be an odd
function of ky for the average in Eq. (23) to be a nonzero
value. In the same manner, dy must be an even function of
k‖ for a finite Josephson coupling under the odd-parity condi-
tion dk = − d−k. The selection rules due to Rashba SOI are
summarized in the first column in Table I.

For comparison, we briefly derive the selection rules due
to SOI at the junction interface proposed by Millis et al. [22].
The SOI originates from breaking inversion symmetry in the x
direction at the junction interface. Therefore, electronic struc-
tures in the two SCs must be different from each other [25]
(i.e., ms �= mt and/or εs �= εt ). The interface SOI is described
by

HI = λI (∇V (r)) × σ̂ · k, (24)

where V (r) is the potential barrier at the interface. For the
current flowing in the x direction, the Josephson current with
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FIG. 2. Schematic picture of two SQUIDs and expected inter-
ference patterns. We consider a conventional s-wave pair potential
in a spin-singlet superconductor. The interference pattern in (b) is
observed only when dk has a component proportional to kx and the
component forms the Josephson coupling. The images of the pair
potentials are also illustrated on a two-dimensional Fermi surface.

∇V (r) ‖ x and k‖ = kyȳ + kz z̄ is represented as

J (x)
I ∝ 〈kz d∗

y (k) − ky d∗
z (k)〉k̄‖ . (25)

To have a nonzero Josephson coupling, dy must be propor-
tional to kz, and/or dz must be proportional to ky. The x
component of dk does not contribute to the Josephson current.
The results are summarized for the interface SOI j ‖ x in
Table I.

The selection rules for the interface SOI depends on the
current direction. For the current in the y direction the Joseph-
son current with ∇V (r) ‖ y and k‖ = kxx̄ + kz z̄ is calculated
as

J (y)
I ∝ 〈kz d∗

x (k) − kx d∗
z (k)〉k̄‖ . (26)

The y component of dk does not contribute to the Josephson
current. The relations dx ∝ kz and/or dz ∝ kx are necessary for
the lowest-order Josephson coupling. Equation (24) indicates
that the Josephson current due to the interface SOI for the
current in the l direction can be described as

J (l ) ∝ 〈εl,m,n dm kn〉k̄‖ , k‖ = knn̄ + kmm̄, (27)

where εl,m,n are the antisymmetric tensors. Therefore, dk pro-
portional to kl do not contribute to the Josephson coupling.

V. EXPERIMENT IN TWO SQUIDS

A previous paper [17] proposed a phase-sensitive ex-
periment to identify a spin-triplet odd-parity SC using two
SQUIDs as shown in Fig. 2, where � is the magnetic flux
through the hole and �0 = π/e. When superconducting states
are uniform, the two singlet/triplet junctions in Fig. 2(a) are
identical to each other irrespective of symmetries in the pair
potential. The maximum value of the Josephson current |Jmax|

takes its maximum at � = 0, as shown in the bottom panel of
Fig. 2(a). Details of the derivation are given in Appendix B,
where we assume that the two junctions are zero junctions at
� = 0 and the CPR is sinusoidal, J = JST sin ϕ. In the SQUID
in Fig. 2(b), the two singlet/triplet junctions are not identical
to each other when dk has an odd-parity component propor-
tional to kx. When one junction is a zero junction, the other
becomes a π junction. As a result, |Jmax| takes its minimum
at � = 0, as shown in the bottom panel of Fig. 2(b). Thus,
the difference between the two interference patterns in Fig. 2
could be direct evidence of spin-triplet odd-parity supercon-
ductivity. In particular, the interference pattern in Fig. 2(b)
is an essential property of spin-triplet SCs. In this section,
we refine these phenomenological arguments by taking into
account the selection rules in Table I.

We first discuss the selection rules for the interface SOIs.
For the SQUID in Fig. 2(a) with the current in the y direction,
the interference pattern in Fig. 2(a) can be explained when
dk has components of dx ∝ kz and/or dz ∝ kx. In the second
column in Table I, a circle means that the presence of such
components reproduces the interference pattern in Fig. 2(a).
Generally speaking, any lowest-order singlet/triplet couplings
result in the interference pattern in Fig. 2(a). On the other
hand, to explain the interference pattern in Fig. 2(b), the SOI
is necessary to couple to a component of dk proportional to
kx. The selection rules for the interface SOI with j ‖ x are
presented in Table I. In the last column, a cross means that
the Josephson coupling due to the interface SOI cannot give
the interference pattern in Fig. 2(b). This conclusion is inde-
pendent of the details of dk. Therefore, the phenomenological
theory by GLB [17] requires mechanisms of the singlet/triplet
coupling other than the interface SOI.

Second, we examine the possibility of the Rashba SOI.
The selection rules discussed with Eq. (23) can be applied
to the SQUID in Fig. 2(b) because the current flows in the
x direction. The Rashba SOI couples to two components:
dx ∝ ky and dy ∝ kx. In the former case, both singlet/triplet
junctions in Fig. 2(b) become zero junctions or π junctions
simultaneously because dx ∝ ky is an even function of kx.
Thus, such coupling cannot explain the interference pattern
in Fig. 2(b), as indicated by a cross in the last column in
Table I. On the other hand, the latter case, dy ∝ kx, is an
odd function of kx. As a result, one singlet/triplet junction in
Fig. 2(b) becomes a π junction, and the other becomes a zero
junction, which explains the interference pattern in Fig. 2(b),
as indicated by circles in Table I. The results for the SQUID in
Fig. 2(a) are derived by considering k‖ = kxx̄ + kz z̄ because
the current flows in the y direction. It is easy to confirm
that the first column in Table I remains unchanged and both
dx ∝ ky and dy ∝ kx give the interference pattern in Fig. 2(a).
Thus, the Rashba SOI generates the single/triplet Josephson
coupling necessary for the SQUID in Fig. 2(b) to function
as a symmetry testing device [17]. The experimental findings
[18] strongly suggest that dk in β-Bi2Pd must have a com-
ponent of dy ∝ kx. As briefly mentioned in the Introduction,
the characteristic properties of a spin-triplet SC originate from
its d vector. The component of dy ∝ kx can be confirmed by
an another junction experiment, in which a spin-singlet SC is
replaced by a normal metal in Fig. 1. The conclusion, dy ∝ kx,
suggests that the anomalous proximity effect is expected in
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TABLE II. Symmetry classification of the pair potentials for
multiband/orbital superconductors.

Spin Momentum parity Band parity

Singlet Even Even
Triplet Odd Even
Singlet Odd Odd
Triplet Even Odd

the normal metal and that this effect can be confirmed by the
conductance spectroscopy in a T-shaped junction [12,13].

Third, we briefly discuss the effects of SOIs in a bulk
spin-triplet SC derived from lattice structures such as Rashba
SOI in noncentrosymmetric SCs and Dresselhaus SOI. These
SOIs can be a source of anisotropy in the magnetic suscepti-
bility in both normal and superconducting states. The current
expression in Eq. (20) can be applied to any triplet SCs dk

and to any SOIs αk. As displayed in Eq. (14), 〈αk · dk〉k̄‖ �= 0
is a necessary condition for the lowest-order Josephson cou-
pling in Fig. 2(b). Therefore, the product αk · dk must be
nonzero and an even function of k‖. The anomalous Green’s
function in Eq. (14) has a pairing correlation belonging to
the odd-frequency symmetry class which is proportional to
αk × dk. It has been established that odd-frequency Cooper
pairs decrease the transition temperature and make the su-
perconducting state unstable [26,27]. Therefore, dk should be
determined self-consistently to minimize the amplitude of the
odd-frequency pairing correlation and, as a result, maximize
the product αk · dk. To reproduce the interference pattern in
Fig. 2(b), αk · dk must also be an odd function of kx. The
most stable state αk ‖ dk, however, does not indicate such an
interference pattern.

Finally, we consider the possibility of an exotic super-
conducting state in β-Bi2Pd. Because of the complicated
electronic structures at the Fermi level, β-Bi2Pd may be a
multiband/orbital SC [19]. The symmetry classification of
order parameters in the presence of such an extra internal
degree of freedom is shown in Table II [28].The momen-
tum parity represents widely accepted symmetry options such
as even-parity s wave and odd-parity p wave. When two
electrons in the same conduction band form a Cooper pair,
such a pair belongs to the even-band-parity class. The pair-

ing correlation function remains unchanged (is symmetric)
under the permutation of the band indices of two electrons.
Therefore, conventional symmetry classes are included in the
first two rows of Table II. When an electron in one band
and an another electron in a different band form a Cooper
pair, such a pair is called an interband pair. Interband Cooper
pairs are classified into two different classes: the even-band-
parity class and odd-band-parity class. The pairing correlation
function of the former (latter) class is symmetric (antisym-
metric) under the permutation of two band indices. The last
two rows in Table II correspond to the additional symmetry
classes of a multiband SC. Here we discuss how to interpret
the experimental findings [18] in the presence of multiband
degrees of freedom of an electron. The π -phase shift in the
experiment can be explained only by odd-momentum-parity
symmetry of the pair potential. The experimental results can
be explained if the pair potential in β-Bi2Pd belongs to
the spin-singlet odd-momentum-parity, odd-band-parity class.
At present, odd-band-parity superconductivity is only a toy
model in theories [27,29]. However, the experiment [18]
might indicate a signature of exotic superconductivity.

VI. CONCLUSION

We studied the effects of Rashba spin-orbit interaction on
the lowest-order Josephson coupling in a spin-singlet/spin-
triplet superconductor junction fabricated on a substrate. The
connection between the two superconductors is described by
the tunnel Hamiltonian, and the Josephson current is calcu-
lated using linear response theory. We derived selection rules
for the spin and orbital parts of the pair potential in a spin-
triplet SC. Based on the selection rules obtained theoretically
and the interference patterns observed experimentally in a
superconducting quantum interference device, we specified a
possible pair potential in β-Bi2Pd.
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APPENDIX A: SUMMATION OVER THE WAVE NUMBER

In this Appendix, we explain how to carry out the summa-
tion over the wave number.

Within the linear response, the Josephson current between the two SCs is calculated as [23]

J = − 2e t2 T
∑
ωn

∫
dξs Ns(ξs)

∫
dξt Nt (ξt ) Im Tr

[〈
F̂s(ξs,�p) F̂

˜
t (ξt , dk) δk‖,p‖

〉
k̄‖

]
. (A1)

In a spin-singlet SC, the integral over ξs is carried out as

∫
dξsNs(ξs)

ξ 2
s + α2

p + �2
s + 2ξsαp · σ̂(

ξ 2
s + α2

p + �2
s + 2ξs|αp|

)(
ξ 2

s + α2
p + �2

s − 2ξs|αp|
)

=
∫

dξs

[
Ns(ξs)

(ξs − |αp|)2 + �2
s

+ Ns(ξs)

(ξs + |αp|)2 + �2
s

+
(

Ns(ξs)

(ξs − |αp|)2 + �2
s

− Ns(ξs)

(ξs + |αp|)2 + �2
s

)
αp · σ̂

|αp|
]

= π

�s

[
Ns(|αp|) + Ns(−|αp|) + {Ns(|αp|) − Ns(−|αp|)}αp · σ̂

|αp|
]

≈ 2πNs(0)

�s

[
1 + Xs

αp · σ̂

|αp|
]
, (A2)
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with �s = √
ω2

n + |�p|2. As a result, we obtain∫
dξs Ns(ξs) F̂s(ξs,�p) = − πNs(0)√

ω2
n + |�p|2

(
1 + Xs

αp̂ · σ̂

|αp̂|
)

�p eiϕs iσ̂y. (A3)

In a spin-triplet SC, the integral over ξt is carried out as

∫
dξt Nt (ξt )

(
ξ 2

s − α2
k + �2

t

)
dk · σ̂ + 2(dk · αk)αk · σ̂ + 2ωn(αk × dk) · σ̂ − 2ξtαk · dk

ξ 4
t + 2ξ 2

t

(
�2

t − α2
k

) + (
�2

t + α2
k

)2 − 4|αk × dk|2
(A4)

≈πNt (0)

�t

[
�2

t dk · σ̂ + (dk · αk)αk · σ̂ + ωn(αk × dk) × σ̂

�2
t + α2

k

+ Xt
αk · dk

|αk|
]
, (A5)

with �t = √
ω2

n + |dk|2. Here we neglect |αk × dk|2 in the denominator of Eq. (A4) to obtain a simple expression for the
Josephson current. This approximation changes the Josephson current only quantitatively. As a result, we obtain∫

dξt Nt (ξt ) F̂
˜ t

(ξt , dk) = − πNt (0)

�t
iσ̂y e−iϕt

[
f t · σ̂ + Xt

αk · d∗
k

|αk|
]
, (A6)

f t = �2
t d∗

k + (d∗
k · αk)αk − ωn(αk × d∗

k )

�2
t + α2

k

. (A7)

By substituting Eqs. (A3) and (A6) into Eq. (A1), we obtain Eq. (20).
For a junction consisting of two identical spin-singlet s-wave superconductors, the Josephson current is calculated as

J = − 2et2T
∑
ωn

Im Tr eiϕ

[
πNs�iσ̂y√
ω2

n + �2

]2

= J0
�

�0
tanh

[
�

2T

]
, J0 ≡ π�0

2eRN
. (A8)

The results recover the Ambegaokar-Baratoff formula [24], where �0 is the amplitude of the pair potential at zero temperature.

APPENDIX B: CURRENT IN TWO SQUIDS

Here we summarize an argument in Ref. [17]. The total
current flowing in a SQUID in Fig. 2 is described by the
summation of the two currents flowing in the two arms J =
JL + JR. In Fig. 2(a), the two junctions are equivalent to each
other at � = 0. Thus, the currents are described as

JL = JST sin

(
ϕ + π

�

�0

)
, (B1)

JR = JST sin

(
ϕ − π

�

�0

)
, (B2)

�0 = π h̄c

e
, (B3)

where JST > 0 is the amplitude of the Josephson current in
each arm. Since J = 2JST sin ϕ cos(π�/�0), the maximum

Josephson current in the SQUID in Fig. 2(a) becomes

|J|max = 2JST

∣∣∣∣cos

(
π

�

�0

)∣∣∣∣, (B4)

which takes its maximum at � = 0.
On the other hand, for the SQUID in Fig. 2(b), the sign

change of the pair potential shifts the phase in the left junction
by π . Thus, the two currents are described as

JL = JST sin

(
ϕ + π + π

�

�0

)
, (B5)

JR = JST sin

(
ϕ − π

�

�0

)
. (B6)

The maximum Josephson current in the SQUID in Fig. 2(b)
results in

|J|max = 2JST

∣∣∣∣sin

(
π

�

�0

)∣∣∣∣, (B7)

which takes its minimum at � = 0. The difference between
the interference patterns in the two SQUIDs tells us the odd-
parity symmetry of the pair potential.
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