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Anomalous proximity effect of a spin-singlet superconductor with a spin-orbit interaction
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The anomalous proximity effect of a spin-triplet p-wave superconductor has been known as a part of Majorana
physics, and is explained by the penetration of zero-energy states from a surface of a superconductor to a dirty
normal metal. We demonstrate that a spin-singlet d-wave superconductor without any surface zero-energy states
exhibits the anomalous proximity effect in the presence of a specific spin-orbit interaction. The results show the
quantization of the zero-bias conductance in a dirty normal-metal/superconductor junction. We also discuss a
relation between our findings and results in an experiment on a CoSi2/TiSi2 junction.
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I. INTRODUCTION

When a superconductor (SC) is attached to a normal
metal, Cooper pairs penetrate from the SC into the normal
metal and modify its electromagnetic and thermal prop-
erties. This phenomenon, known as the proximity effect,
exhibits distinct behavior depending on the symmetry of the
pair potential. Specifically, the proximity effect of a spin-
triplet p-wave SC indicates remarkable transport phenomena
such as the quantization of zero-bias conductance in a dirty
normal-metal/superconductor (DN/SC) junction [1,2] and the
fractional current-phase relationship of a Josephson currents
in a SC/DN/SC junction [3,4]. These unusual phenomena are
referred to as the anomalous proximity effect (APE).

The APE is a result of the interplay between two inter-
ference effects: the proximity effect in a DN attached to a
SC and the formation of Andreev bound states at the surface
of a SC. The presence or absence of the proximity in a DN
depends sensitively on the symmetry of the pair potential
[5]. To host Andreev bound states at the surface of a SC, it
is necessary for the pair potential to change its sign on the
Fermi surface [6–9]. Symmetry analysis in the early stages of
study suggested that the APE is a phenomenon unique to spin-
triplet SCs [4]. In addition to the conductance quantization
in a DN/SC junction, the APE causes the zero-bias anomaly
of the conductance spectra in a T-shaped junction [10], and
unusual surface impedance [11]. Unfortunately, it would be
very difficult to observe the APEs in experiments because
spin-triplet SCs are very rare. A topological material based
compound, CuxBi2Se3, and several uranium compounds such
as UPt3, UBe13, UGe2, and UTe2 are candidates of the spin-
triplet SC [12–18]. However, spin-triplet superconductivity in
these materials is still under debate.

The fabrication of artificial spin-triplet SCs is an important
issue these days to realize quantum computation by applying
non-Abelian statistics of Majorana fermions [19–24]. The
APE is a part of Majorana physics because Majorana zero
modes are a special case of the Andreev bound states at the
surface of a spin-triplet SC [23]. These theoretical studies
have suggested that spin-orbit interactions (SOIs) enable the

realization of spin-triplet superconductivity in a spin-singlet
SC. Moreover, a theory shows that a nonzero integer num-
ber NZES, mathematically known as an Atiyah-Singer index,
represents exactly the quantized value of the zero-bias con-
ductance in a DN/SC junction [25,26]. According to their
argument, NZES represents the number of zero-energy states
that penetrate from a surface of SC into a DN and form
the resonant transmission channels. This conclusion leads
us to infer that spin-triplet superconductivity is only a suf-
ficient condition for NZES �= 0. Two of authors looked for
necessary conditions for the Bogoliubov–de Gennes (BdG)
Hamiltonian that provide a nonzero NZES [27]. We found
that several Hamiltonians breaking time-reversal symmetry
lead to a nonzero index, and they describe the artificial SCs
hosting Majorana zero modes [27–29]. In addition, we also
found that a Hamiltonian for a spin-singlet dxy-wave SC with
a specialized SOI gives a nonzero index [30,31]. It has been
well established that a dxy-wave SC without SOIs hosts highly
degenerate zero-energy states at its clean surface parallel to
the y direction [6–9]. But in the absence of SOIs, NZES = 0
holds true, which means that zero-energy states are fragile
under impurity scatterings. A SOI transforms such fragile
zero-energy states to robust zero-energy states [30,31].

In 2021, an experiment observed a clear signal of APE
[32]. The conductance spectra in a T-shaped junction con-
necting to CoSi2 grown on a Si substrate show the zero-bias
anomaly, which is a typical phenomenon of the APE [10].
Their transport measurement indicates strong SOIs near the
interface between a thin CoSi2 single crystal and a Si substrate
[33,34]. However, spin-singlet s-wave superconductivity has
been well established in bulk CoSi2 [35,36]. Unlike a dxy-
wave SC, the zero-energy states are absent at the junction
interface. At present, it is not clear if SOIs can cause the
APE in a junction that consists a spin-singlet SC without any
surface Andreev bound states. We discuss this issue in the
present paper.

In this paper, we theoretically study the differential con-
ductance in a DN/SC junction as shown in Fig. 1. We assume
the spin-singlet s-wave and spin-singlet dx2−y2 -wave pair
potentials in a SC. In the absence of SOIs, the Andreev bound

2469-9950/2025/111(17)/174516(9) 174516-1 ©2025 American Physical Society

https://orcid.org/0009-0007-3834-6241
https://orcid.org/0000-0002-9099-1009
https://orcid.org/0000-0002-1320-7356
https://ror.org/02e16g702
https://ror.org/04chrp450
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.111.174516&domain=pdf&date_stamp=2025-05-13
https://doi.org/10.1103/PhysRevB.111.174516


LEE, IKEGAYA, AND ASANO PHYSICAL REVIEW B 111, 174516 (2025)

FIG. 1. Schematic figure of a two-dimensional dirty normal-
metal/SC junction. We consider spin-singlet pair potentials (s wave
or dx2−y2 wave) and three types of spin-orbit interactions in a SC. We
also introduce nonmagnetic random impurities in a normal metal.

states are absent at a junction interface. We introduce three
types of SOIs in a SC and the nonmagnetic random impurity
potential in a DN. The conductance is calculated based on the
Blonder-Tinkham-Klapwijk formula and the transport coeffi-
cients are obtained by using the recursive Green’s function
method. A dx2−y2 -wave SC with a persistent spin-helix type
SOI causes the APE. Unfortunately, an s-wave SC does not
exhibit the APE with any types of SOIs.

This paper is organized as follows. We explain our theoreti-
cal model in Sec. II. The results of the differential conductance
are presented in Sec. III. We explain why a persistent spin-
helix type SOI is necessary for the APE and why an s-wave SC
does not indicate APE in Sec. IV. The discussion of our results
is presented in Sec. V. The conclusion is given in Sec. VI.

II. MODEL

We describe a DN/SC junction on a two-dimensional tight-
binding lattice as shown in Fig. 1, where L is the length of a
DN, W is the width of a junction, x (y) is the unit vector in the
x (y) direction, and a vector r = jx + my indicates a lattice
site. The Hamiltonian consists of four terms,

H = Hkin + Himp + HSOI + H�. (1)

The kinetic energy of an electron is represented by

Hkin = −t
∑
r,r′

∑
α=↑,↓

(c†
r,αcr′,α + c†

r′,αcr,α )

+ (4t − μ)
∑
r,α

c†
r,αcr,α, (2)

where t is the nearest-neighbor hopping integral, μ is the
chemical potential, and c†

r,α (cr,α ) is the creation (annihilation)
operator of an electron with spin α at r. The second term
represents the random impurity potential in a normal metal,

Himp =
L∑

j=1

W∑
m=1

∑
α

Vrc
†
r,αcr,α, (3)

where Vr is potential given randomly in the range of
−Vimp/2 � Vr � Vimp/2 by using random numbers with uni-
form distribution. All the conductances shown below are
obtained by averaging the conductance over a number of
different samples. The ensemble average of the conductance
is insensitive to the types of the random numbers. Thus, we
would reach the same conclusions even if we used a random
number with Gaussian distribution. The superconducting seg-
ment j � L + 1 is free from potential disorder. We consider
the SOI in a SC as

HSOI = i

2

∑
r,α,α′

[λx(c†
r,αcr+x,α′ − c†

r+x,αcr,α′ )(σy)α,α′

− λy(c†
r,αcr+y,α′ − c†

r+y,αcr,α′ )(σx )α,α′ ], (4)

where λx(y) represents the strength of SOI coupled to a mo-
mentum kx (ky), and σi for i = x, y, and z represents the Pauli
matrix in spin space. In this paper, we mainly consider the
three types SOI

(λx, λy) = (λ, 0), x type, (5a)

(λx, λy) = (0, λ), y type, (5b)

(λx, λy) = (λ, λ), Rashba. (5c)

Here x-type and y-type SOIs are a source of the persistent
spin helix [37–39]. The last one is the Rashba spin-orbit inter-
action. The pair potential for a spin-singlet dx2−y2 symmetry
class is described by

H� = �

2

∞∑
j=L+1

W∑
m=1

(c†
r+x,↑c†

r,↓ + c†
r,↑c†

r+x,↓

− c†
r+y,↑c†

r,↓ − c†
r,↑c†

r+y,↓ + H.c.), (6)

where � is the amplitude of the pair potential. For a spin-
singlet s-wave SC, we choose

H� = �

∞∑
j=L+1

W∑
m=1

[c†
r,↑c†

r,↓ + H.c.]. (7)

The differential conductance of a DN/SC junction is calcu-
lated based on the Blonder-Tinkham-Klapwijk formula [40],

GNS(eV )= e2

h

∑
l,l ′,α,α′

[
δl,l ′δα,α′ − ∣∣ree

l,α;l ′,α′
∣∣2+∣∣rhe

l,α;l ′,α′
∣∣2]

E=eV ,

(8)

where ree
l,α;l ′,α′ is the normal reflection coefficient from the

l ′th propagating channel with spin α′ in the electron branch
to the lth propagating channel with spin α in the electron
branch, whereas rhe

l,α;l ′,α′ is the Andreev reflection coefficient
from the l ′th propagating channel with spin α′ in the electron
branch to the lth propagating channel with spin α in the hole
branch. These reflection coefficients are calculated by using
the recursive Green’s function method [41,42]. The normal
state conductance of a DN is calculated based on the Landauer
formula

GN = e2

h

∑
l,l ′,α,α′

|tl,α;l ′,α′ |2, (9)
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FIG. 2. (a) The results for a dx2−y2 -wave junction. The zero-bias
differential conductance is plotted as a function of the normal state
resistance RN in a normal metal. The results for x-type SOI decrease
to 4G0 at RN → ∞. The results for y-type SOI, those for Rashba
SOI, and those without SOI almost overlap with one another. They
decrease to zero at RN → ∞. (b) The differential conductance is
plotted as a function of the bias voltage at RN = 4.5(h/e2 ).

where tl,α;l ′,α′ is the normal transmission coefficient from the
l ′th propagating channel with spin α′ to the lth propagating
channel with spin α through a DN.

In this paper, the energy is measured in units of t . We fix
several parameters: μ = 2t , � = 0.1t , L = 50, and W = 25.
The pair potential is not determined self-consistently because
the gap equation always has a stable solution even in the pres-
ence of SOIs. We use typically 100–500 different samples for
the ensemble averaging over random impurity configurations.

III. RESULTS

A. d wave

We first study the conductance in a junction consisting
of a dx2−y2 wave SC. In Fig. 2(a), the zero-bias conductance
GNS(0) is plotted as a function of the normal state resistance
of a DN, RN = G−1

N , for λ = 0.5t , where the vertical axis is
normalized to G0 = 2e2/h. The conductance is averaged over
100 samples with different random configurations. The results
are separated into two groups: x-type SOI and other cases. The
results for the y-type SOI, those for Rashba SOI, and those
without SOI almost overlap with one another. They decrease
with increasing RN and vanish for large RN. The effects of
the SOI on the zero-bias conductance are negligible for y-type
SOI and Rashba SOI. These behaviors can be explained by
the classical expression of the total resistance of the resistors
in series. Because the resistance in a SC is zero, the total
resistance of the junction would be given by

RNS = RB + R̃N = G−1
NS, (10)

where RB is the normal resistance due to the potential barrier
at the DN/SC interface. In the present results the Sharvin re-
sistance replaces RB because we do not introduce the potential
barrier at the interface. The usual proximity effect decreases

N
S

eV

FIG. 3. The zero-bias conductance of a dx2−y2 -wave junction for
x-type SOI is plotted as a function of the strength of SOI λ at
RN = 4.5G−1

0 .

the resistance in a DN only slightly to R̃N � RN. As a result,
the relation GNS → 0 is expected in the limit of RN → ∞.
On the other hand, the conductance for x-type SOI deviates
from such a relationship and saturates at a finite value of
4G0 for large RN. Such unusual behavior is an aspect of the
APE [26]. The resonant states at zero energy form the perfect
transmission channels in a DN. In Fig. 2(a), the number of
such zero-energy states is 4. In Fig. 2(b), the differential
conductance GNS at RN = 4.5(h/e2) is plotted as a function
of the bias voltage eV . The conductance for the x-type SOI
decreases rapidly with increasing eV because the perfect reso-
nant transmission occurs only at zero bias. As a consequence,
the results for the x-type SOI exhibit a sharp peak at zero
bias. For comparison, we plot the results for Rashba SOI in
Fig. 2(b) with a broken line. The conductance exhibits no
distinct peak structures around zero bias.

The zero-bias conductance in the limit of RN → ∞ de-
pends on the amplitude of the x-type SOI λ as shown in Fig. 3,
where GNS(0) is plotted as a function of λ. The conductance
remains zero for λ < 0.175t and jumps to a finite value of
4G0 at λ = 0.175t . Such steplike behavior is observed also at
λ = 0.85t and λ = 1.35t . The conductance is quantized at the
steps 4G0, 8G0, and 12G0. As we will discuss in Sec. IV, the
minimum value of the conductance is given by G0NZES, where
NZES is the number of zero-energy states that form the perfect
transmission channels in a DN. The results indicate that NZES

changes discontinuously at factors of 4.

B. s wave

Second, we discuss the absence of the APE in a DN/SC
junction for an s-wave symmetry. In Fig. 4(a), we plot the
zero-bias conductance as a function of RN for an s-wave
superconductor including x-type SOI, y-type SOI, and Rashba
SOI with λ = 0.5t . We also plot the results without SOI λ = 0
in the figure. All of the results overlap with one another,
which indicates that the effects of SOI on the conductance
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FIG. 4. (a) The results for an s-wave DN/SC junction. The zero-
bias differential conductance is plotted as a function of normal state
resistance RN in a normal metal. Although we consider x and y type
SOIs, Rashba SOI, and absence of SOI, all the results almost overlap
with one another. (b) The differential conductance is plotted as a
function of the bias voltage at RN = 4.5(h/e2 ).

are negligible in an s-wave junction. In all cases, the zero-bias
conductance decreases to zero with increasing RN. In the inset,
Fig. 4(b), we also plot the differential conductance GNS at
RN = 4.5 G−1

0 as a function of the bias voltage. The results
show that the conductance is insensitive to the bias voltage.
The results in Fig. 4 suggest that s-wave superconductor junc-
tions do not indicate the APE regardless of the type of SOI.
We will discuss the reasons in Sec. IV.

IV. MODIFIED PAIR POTENTIAL AND INDEX

There are two conditions for a superconductor that indi-
cates the APE: the presence of the usual proximity effect in
a DN and the existence of the Andreev bound states at its
surfaces parallel to the y direction [3]. We first consider a
spin-singlet even-parity SC without SOIs. The BdG Hamil-
tonian is such a SC can be block diagonalized into two 2×2
Hamiltonian. When the pair potential in one spin sector is
�(k), that in the other is −�(k). A SC causes the usual
proximity effect when its pair potential satisfies [5]

�(kx,−ky ) �= −�(kx, ky), (11)

where kx and ky are the wave numbers on the Fermi surface.
The pair potentials considered in this paper are described by

�(k) =
{
�

(
k2

x − k2
y

)
/k2

F , dx2−y2 wave,
�, s wave,

(12)

where kF is the Fermi wave number on the isotropic Fermi
surface. Both the dx2−y2 -wave pair potential and the s-wave
pair potential satisfy Eq. (11). In the junction geometry in
Fig. 1, the wave number in the y direction, ky, indicates a
transport channel. Meanwhile, the presence of the surface
Andreev bound states is ensured when the pair potential
satisfies [8,9]

�(kx, ky)�(−kx, ky) < 0. (13)

Either the dx2−y2 -wave pair potential or the s-wave pair poten-
tial does not satisfy the condition in the absence of SOIs [3].
Thus spin-singlet SCs do not indicate the APE in the absence
of SOIs.

Second, we discuss how SOI modifies the pair potential
on the Fermi surface of a dx2−y2 -wave SC. The Hamiltonian
considered in this paper is represented in continuous space,

HBdG(k) = (ξk − λxkxσ̂y)τ̂z + λykyσ̂x − �(k)σ̂y τ̂y, (14)

which enables us to derive the analytical expression of the
quantized value of the conductance minimum. We first apply a
unitary transformation to HBdG to diagonalize the normal state
Hamiltonian. For x-type SOI with Eq. (5a), we find

HBdG(k)

= Ǔ

⎡
⎢⎢⎣

ξk + λkx 0 0 �(k)
0 ξk − λkx −�(k) 0
0 −�(k) −ξk + λkx 0

�(k) 0 0 −ξk − λkx

⎤
⎥⎥⎦

×Ǔ †, (15)

Ǔ = 1√
2
(1 + iσ̂x τ̂z ). (16)

The Hamiltonian is separated into the two 2×2 Hamiltonian
in this representation. The x-type SOI divides the Fermi sur-
face into two: one moves toward the +kx direction and the
other moves toward the −kx direction. The Fermi surface
derived from the dispersion ξk + λkx (ξk − λkx) is illustrated
as an open circle labeled by the left (right) Fermi surface in
Figs. 5(a) and 5(d), where a black dot indicates the 	 point
in the Brillouin zone (i.e., k = 0). The pair potentials for
dx2−y2 -wave symmetry are shown on the two Fermi surfaces
in Fig. 5(a). In Fig. 5(a), Eq. (13) is satisfied at the shaded do-
mains between the two dotted lines, where ky in such domains
satisfies Eq. (B4). The one-dimensional winding number at
fixed ky is defined by [43]

W (ky) ≡ − 1

4π i

∫ ∞

−∞
dkx I (ky), (17)

I (ky) =Tr
[
τ̂x H−1

BdG ∂kx HBdG
]
, (18)

{HBdG, τ̂x}+ = 0. (19)

The one-dimensional winding number is calculated as

W (ky) = W (−ky) = 2, (20)

for all ky in the shaded domains in Fig. 5(a). As a result,

NZES =
∑

ky

W (ky) (21)

remains a finite value. This index represents the number of
zero-energy states which form the resonant transmission chan-
nels in a DN [26]. The conductance for large enough RN is
quantized at

GNS = G0×|NZES|. (22)
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FIG. 5. The pair potentials of a dx2−y2 -wave SC on the Fermi
surface with (a) x-type SOI, (b) y-type SOI, and (c) Rashba SOI.
The black dot in the figure indicates the 	 point (k = 0). In
the domains between the two dotted lines in (a), the condition
�(kx, ky )�(−kx, ky ) < 0 is satisfied. In (d), the pair potentials of an
s-wave SC are illustrated for x-type SOI.

Thus |NZES| increases by 4 with increasing λ as shown in
Fig. 3. The index is approximately calculated as

NZES ≈
[

2Nc
λkF

μ

]
G

, (23)

where [· · · ]G means the integer part of the argument, and Nc is
the number of propagating channels on the Fermi surface per
spin. The expression is valid for λkF � μ. In Appendix B, we

supply details of the derivation of Eq. (23) and explain why
we choose τ̂x as a chiral operator in Eq. (19). Thus the quan-
tized value of the conductance increases monotonically with
increasing λ. In Fig. 3, the conductance jumps discontinuously
because the number of propagating channels are limited for
W = 25 in the numerical simulation. Thus, GNS will become
a smoother function of λ for a wider junction with Nc � 1. In
Fig. 5(d), we also illustrate the pair potential for an s-wave SC
with the x-type SOI. Although the SOI splits the Fermi surface
into two and modifies the amplitudes of the pair potentials,
it does not change the sign of the pair potentials. Therefore,
the APE is absent in s-wave junctions. The SOIs generate
spin-triplet odd-parity Cooper pairs as a subdominant pairing
correlation from the spin-singlet pair potentials. This happens
in both a d-wave SC and an s-wave SC. The induced spin-
triplet Cooper pairs are expected to modify the properties of a
spin-singlet SC to those in spin-triplet SC. The APE is a spin-
triplet specific phenomenon. However, the appearance of the
spin-triplet pairing correlation is only a necessary condition
for the APE. Our results show that the APE requires the sign
change in the pair potential.

Third, we discuss the effects of y-type SOI with Eq. (5b)
and those of Rashba SOI with Eq. (5c) on the pair potentials
for dx2−y2 -wave symmetry. The y-type SOI shifts the Fermi
surface in the +ky (−ky) direction and forms the upper (lower)
Fermi surface as shown in Fig. 5(b). The condition (13) is not
satisfied because the pair potentials are always even functions
of kx. In the presence of Rashba SOI, the Fermi surface de-
rived from the dispersion ξk + λ|k| (ξk − λ|k|) forms the outer
(inner) Fermi surface as illustrated in Fig. 5(c). The condition
Eq. (13) is not satisfied for the Rashba SOI because the pair
potentials are always even functions of kx. Therefore, the APE
is absent in these cases.

At the end of this section, we briefly discuss the effects
of the misorientation of the dx2−y2 -wave pair potential on the
APE. The pair potential in Eq. (12) is expressed as � cos 2θ

with kx = kF cos θ and ky = kF sin θ . When the pair potential
is oriented as � cos 2(θ − β ) with 0 � β < π/4, the index in
Eq. (23) is calculated as

NZES ≈
[

2Nc
λkF

μ
cos 2β

]
G

. (24)

Therefore, the APE is robust to small misorientations of the
pair potential.

V. DISCUSSION

Finally, we discuss a relation between the conclusions
of this paper and the experimental results in a T-shaped
CoSi2/TiO2 junction on a Si substrate [32]. In the experiment,
a clear zero-bias peak is observed in the conductance spectra,
which means that a spin-triplet odd-parity (such as p-wave
and f -wave) Cooper pair is definitely present in the thin
film of CoSi2. The spin-triplet odd-parity pairing correlation
makes the SC topologically nontrivial, which accommodates
zero-energy quasiparticles at its surface. Majorana zero modes
are a special case of such zero-energy states. The penetration
of the zero-energy states into a dirty normal metal causes the
APE. The zero-bias conductance peak in a T-shaped junction
reflects the enhancement of the density of states at zero energy
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due to the penetration [10]. The index NZES represents the
degree of the degeneracy of such zero energy states in a
dirty normal metal. We note, however, that spin-singlet s-wave
superconductivity has been well established in bulk CoSi2.
Therefore, theories are necessary that explain why spin-triplet
Cooper pairs are present in CoSi2. The experiment also re-
ported strong SOIs at the interface between CoSi2 and the Si
substrate [33,34].

To explain the experimental results, we are are compelled
to consider symmetries other than s-wave symmetries for the
pair potentials in CoSi2 thin films on Si substrates, as listed
below.

(i) The pair potential belongs to the spin-triplet odd-parity
class.

(ii) Two pair potentials coexist. One belongs to the spin-
triplet odd-parity class. The other belongs to the spin-singlet
even-parity class.

(iii) Although the pair potential belongs to the spin-singlet
class, SOIs generate spin-triplet Cooper pairs.

If (i) is correct, our previous theory [10] explains well the
zero-bias peak in the experiment. The authors of Refs. [44,45]
consider (ii) and assume the effective attractive interactions at
a p-wave channel under the strong SOIs. The zero-bias peak
in a T-shaped junction is explained only when the amplitude
of the spin-triplet pair potential is larger than that of the spin-
singlet pair potential. However, both (i) and (ii) require the
spin-triplet p-wave pair potential. At present, we do not know
of any p-wave attractive interactions between two electrons
in CoSi2. In this paper, we considered a different scenario of
(iii) where the SC has only a spin-singlet pair potential. We
have shown in this paper that an s-wave SC does not indicate
the APE with any types of SOIs. The spin-singlet d-wave
pair potential with a specific SOI is necessary to explain the
experiment. The realization of a spin-singlet d-wave order
parameter might be easier than that of spin-triplet p-wave one.
However, we are not sure what mediates d-wave attractive
interactions and if x-type SOI is realized in CoSi2. Therefore,
the puzzle has not been solved yet.

VI. CONCLUSION

We theoretically studied the effects of the spin-orbit
interaction (SOI) in a spin-singlet superconductor on
the low-energy transport properties in a dirty normal-
metal/superconductor junction as shown in Fig. 1. The
differential conductance is calculated based on the Blonder-
Tinkham-Klapwijk formula and the transport coefficients are
calculated numerically by using the recursive Green’s func-
tion method. We consider two types of pair potentials, s- and
d-wave symmetry, and three types of SOI, x type, y type, and
Rashba type. Our results demonstrate that a d-wave SC with
x-type SOI exhibits the anomalous proximity effect (APE),
whereas a d-wave SC with y-type SOI and that with Rashba
SOI do not indicate the APE. The numerical results also show
that an s-wave SC with any type of SOI does not show the
APE. We explain the numerical results by analyzing how SOIs
change the sign of the pair potentials on the Fermi surface.
Our findings provide an experimental setup for realizing an
artificial spin-triplet SC.

N

FIG. 6. The conductance is plotted as a function of the normal
state resistance in a normal metal, RN, in Figs. 2 and 4.
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APPENDIX A: RESISTANCE IN NORMAL STATE

The conductance is plotted as a function of the normal
state resistance in a normal metal, RN, in Figs. 2 and 4. Here,
we explain how to obtain RN in the numerical simulation.
We calculate the normal conductance GN in Eq. (9) for a
disordered normal metal for μ = 2t , L = 50, and W = 25.
After repeating the calculation at a fixed Vimp over a number
of different samples with different random potential configu-
rations, RN is defined by the inverse of the ensemble average
of GN. In Fig. 6, we plot RN as a function of Vimp.

RN increases with increasing Vimp. In Figs. 2 and 4, we
calculate the ensemble average of GNS as a function of Vimp

and plot the results as a function of RN.

APPENDIX B: ATIYAH-SINGER INDEX

We briefly summarize the relation between the quantized
value of the zero-bias conductance and an index NZES. Let us
begin with a BdG Hamiltonian for a spin-singlet SC with the
x-type SOI in Eq. (14). The wave number on the Fermi surface
is determined by

ξk + s λ kx = 0, s = ±1, (B1)

where s = 1 (−1) corresponds to the Fermi surface shifted
to the left (right) in Fig. 5(a). The wave numbers in the two
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directions satisfy

(kx + sλ̃kF )2 + k2
y = (1+λ̃2)k2

F , (B2)

λ̃ ≡ λkF

2μ
� 1. (B3)

The x-type SOI shifts the center of the Fermi surface to ±λ̃kF

on the kx axis. The pair potential of a dx2−y2 -wave SC on the
Fermi surface has nodes at kx = ±ky. As a result, Eq. (13) is
satisfied at the channels

kF

2

(√
λ̃2 + 2 − λ̃

)
� |ky| � kF

2

(√
λ̃2 + 2 + λ̃

)
, (B4)

for both the left and right Fermi surfaces. A schematic
figure of the pair potentials is shown in Fig. 5(a). The pair po-
tential indicated by shaded area in Fig. 5(a) satisfies Eq. (13),
indicating the appearance of surface Andreev bound state at
each propagating channel. The number of such ZESs for the
two spin sectors is estimated as

N = [4Ncλ̃]G, (B5)

where Nc = W kF /π is the number of propagating channels
for each spin sector, W is the width of the SC in the y direction,
and [· · · ]G means the Gauss symbol providing the integer part
of a number. As a result, the number of Andreev bound states
at zero-energy is N at a clean surface of a dx2−y2 -wave SC with
the x-type SOI. In other words, N represents the degree of the
degeneracy of zero-energy states at a surface of a SC. Such a
high degeneracy is a result of translational symmetry in the y
direction of a clean SC. In a clean normal-metal/SC junction,
the zero-energy states penetrate into the clean normal metal
and form the perfect transmission channels.

To discuss effects of random potentials in a normal metal
attached to a SC, the analysis of chiral property of zero-
energy states is necessary [25,26]. The BdG Hamiltonian in
Eq. (14) preserves chiral symmetry in Eq. (19). Since τ̂ 2

x = 1,
the eigenvalues of τ̂x are either 1 (positive chirality) or −1
(negative chirality). It is known that a zero-energy state of
HBdG is the eigenstate of τ̂x. Therefore, such a zero-energy
state has either positive chirality or negative chirality. The
wave functions of the zero-energy states are calculated as

ψ1 =

⎛
⎜⎜⎝

i
1
−i
−1

⎞
⎟⎟⎠Aeikyy f (x), ψ2 =

⎛
⎜⎜⎝

1
i

−1
−i

⎞
⎟⎟⎠Aeikyy f (x), (B6)

where A is a normalization constant and f (x) is a function
localizing at a surface of a SC. It is easy to confirm that all
of the zero-energy states belong to the negative chirality, as
it satisfies τ̂x ψ j = −ψ j for j = 1 and 2. The Atiyah-Singer
index is defined by

NZES = N+ − N−, (B7)

where N+ (N−) is the number of zero-energy states belonging
to positive (negative) chirality. Therefore, the index is calcu-
lated as

|NZES| = [4Ncλ̃]G. (B8)

The index NZES is an invariant in the presence of chiral sym-
metry of the Hamiltonian. Here we calculate the index in a

clean SC by assuming translational symmetry in the y direc-
tion. The index remains unchanged even when the random
impurity potential

Himp = V (r) τz (B9)

enters the Hamiltonian in Eq. (14). This is because the random
potential preserves chiral symmetry. In physics, |NZES| repre-
sents the number of zero-energy states that penetrate into a
dirty normal metal while retaining their high degeneracy and
form the perfect transmission channels. The electric current
through such perfect transmission channels is independent of
RN, whereas the electric current through usual transmission
channels decreases with increasing RN. As a result, the min-
imum value of the conductance at zero bias is described by
Eq. (22) [25,26].

Finally, we explain why we choose τ̂x as a chiral operator
in Eq. (19). A spin-singlet superconductor with spin-orbit
interactions preserves time-reversal symmetry,

T HBdG(k) T −1 = HBdG(k), T = iσ̂y K, (B10)

where K means taking complex conjugation and k → −k.
The Hamiltonian preserves particle-hole symmetry
simultaneously,

P HBdG(k)P−1 = −HBdG(k), P = τ̂x K. (B11)

As a result of combining these symmetries, the BdG
Hamiltonian anticommutes to τx σy:

	 HBdG(k) 	 = −HBdG(k), 	 = τ̂x σ̂y. (B12)

It is possible to calculate the one-dimensional winding
number W ′(ky) for each ky according to the definition in
Eqs. (17)–(19), replacing τ̂x by τ̂x σ̂y. However, two of au-
thors have shown that the index NZES in Eq. (21) calculated
from such winding numbers is always zero [27] because of
the relation W ′(ky) = −W ′(−ky). This conclusion is derived
only from the symmetry relationships of the BdG Hamiltonian
belonging to class DIII. The anomalous proximity effect is a
characteristic phenomenon of a superconductor whose Hamil-
tonian belongs to class BDI. At λy = 0, the BdG Hamiltonian
preserves spin-rotation symmetry around the y axis

σ̂y HBdG(k) σ̂y = HBdG(k). (B13)

By combining such spin-rotation symmetry and time-reversal
symmetry, we define a time-reversal like operator and a chiral
operator as

T+ = σ̂y σ̂y K = K, T 2
+ = 1, (B14)

	BDI = T+ P = τ̂x. (B15)

We find that the BdG Hamiltonian at λy = 0 anticommutes to
τ̂x. At λx = 0, combining spin-rotation symmetry around the
x axis,

τ̂z σ̂x HBdG(k)σ̂x τ̂z = HBdG(k), (B16)

and time-reversal symmetry, we define another time-reversal-
like operator and a chiral operator:

T+ =σ̂x τ̂z σ̂y K, T 2
+ = 1, (B17)

	BDI =T+ P = τ̂y σ̂z. (B18)
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As a result, we reach the anticommutation relation

τ̂yσ̂z HBdG(k) σ̂z τ̂y = −HBdG(k). (B19)

The winding number by using such a chiral operator is zero for
all propagating channels because the pair potential at λx = 0
in Fig. 5(b) is always an even function of kx.

APPENDIX C: x-TYPE SOI TO RASHBA SOI

We briefly discuss the effects of the y-type SOI introduced
in addition to the x-type SOI. The BdG Hamiltonian in con-
tinuous space is given in Eq. (14) with λz �= 0 and λy �= 0. It is
easy to confirm that the BdG Hamiltonian does not preserve
chiral symmetry in Eq. (19). Therefore, the index NZES can
no longer be defined and the conductance deviates from its
quantized value. In Fig. 7, the conductance is plotted as a
function of the bias voltage for several choices of RN. We
choose (λx, λy) = (0.5t, 0) in (a) and (λx, λy) = (0.5t, 0.05t )
in (b). The minimum value of the zero-bias conductance is
quantized as Eq. (22) in Fig. 7(a) irrespective of RN. When

(b)(a)

eV eV

N
S

N
S

FIG. 7. The conductance of a dx2−y2 -wave junction is plotted as a
function of the bias voltage for several RN. The results for the x-type
SOI at λx = 0.5t are shown in (a). In (b), we choose λx = 0.5t and
λy = 0.05t .

we add the y-type SOI, the zero-bias conductance decreases
gradually with increasing RN as shown in Fig. 7(b). When λy

is increased to λx, the results for Rashba SOI in Fig. 2 do not
exhibit any indication of the APE. Thus, the APE is fragile
under perturbations that break chiral symmetry.
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