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Thermoelectric effect in a superconductor with Bogoliubov Fermi surfaces
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We study theoretically the thermoelectric effect in a superconducting state having the Bogoliubov-Fermi
surfaces which stays in a thin superconducting layer between a conventional superconductor and an insulator. The
thermoelectric coefficients calculated based on the linear response theory show the remarkable anisotropy in real
space, which are explained well by the anisotropic shape of the Bogoliubov-Fermi surface in momentum space.
Our results indicate a way to check the existence of the Bogoliubov-Fermi surfaces in a stable superconducting
state because the anisotropy is controlled by the direction of an applied magnetic field.
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I. INTRODUCTION

In a superconductor belonging to unconventional sym-
metry class such as d-wave and p-wave, a Bogoliubov
quasiparticle at zero energy (Fermi level) exists only at nodes
of the pair potential. This conclusion is valid when the su-
perconducting states are described effectively by the 2 × 2
Bogoliubov-de Gennes (BdG) Hamiltonian. When an electron
has internal degrees of freedom, such as spin and sublattice,
the size of the BdG Hamiltonian becomes as large as 4 × 4
or more. A Bogoliubov quasiparticle in such superconduct-
ing states can form Fermi surfaces called Bogoliubov-Fermi
surfaces (BFSs) [1–3]. Therefore, multiband superconductors,
j = 3/2 superconductors, and usual s = 1/2 superconductors
with spin-dependent potentials can have the BFSs in their
superconducting states [3–15].

The residual finite density of states (DOS) at zero energy
is a direct consequence of the BFSs, which can be observed
by using spectroscopies on a surface [16,17] and modifies
the bulk properties such as specific heat [11,18,19], mag-
netic properties, and transport properties [20–23]. However,
it is difficult to catch convincing evidences of the BFSs
because the residual density of states is derived also from
random impurities. Theoretical studies have suggested to
catch signatures of the BFSs through transport properties in a
normal-metal/superconductor junction [11,14,18,19,24–27].
It should be noted that superconducting states having BFSs are
thermodynamically unstable as pointed out by numerical sim-
ulations for j = 3/2 superconductors [9,28]. The instability
is partially derived from a fact that quasiparticles on the BFSs
coexist with odd-frequency Cooper pairs [29–31]. A possibil-
ity of an odd-frequency superconductivity has been discussed
as a result of Cooper pairing of two quasiparticles on the
BFSs [32]. In order to establish the physics of quasiparticles
on the BFSs, it is necessary to realize stable superconducting
states with BFSs and clarify their specific phenomena. In what
follows, we address these issues.

In this paper, we theoretically discuss the thermoelectric ef-
fect due to the quasiparticle on the BFSs. The electric current
j flows in the presence of the spatial gradient of a temperature
∇T . In the relation j = −α∇T , the thermoelectric coefficient
α represents the strength of the effect. The thermoelectric
coefficient in a uniform of superconductor αS has been formu-
lated in terms of the solutions of the transport equation [33,34]
and the quasiclassical Green’s functions [35]. The expression
at low temperatures αS ≈ αN exp(−�/T ) suggests that the
thermoelectric coefficient of a conventional superconductor is
exponentially smaller than that in the normal state αN. The
results can be explained well by the absence of the DOS
around zero energy due to the pair potential �. We discuss the
effects of a quasiparticle on the BFSs on the thermoelectric
effect in a stable superconducting state at a semiconductor
thin film as illustrated in Fig. 1. The BFSs appear at the
film in the presence of both spin-orbit interactions (SOI) and
strong magnetic fields [4,7,15]. The thermoelectric coeffi-
cient is calculated based on the linear response theory by
using the Keldysh Green’s function method. The calculated
results show that the thermoelectric effect is anisotropic in
real space, which reflects the anisotropic shape of the BFSs
in momentum space. Moreover, the thermoelectric coefficient
in the presence of the BFSs can be larger than its normal
state value. The enhancement in the thermoelectric effect is
explained by the shift of the gapped DOS due to a magnetic
field. We conclude that the existence of the BFSs can be
directly confirmed by the anisotropy of the thermoelectric
coefficient.

This paper is organized as follows. In Sec. II, we describe
the realization of BFSs in the semiconductor-superconductor
hybrid system. In Sec. III, we derive the thermoelectric co-
efficient within the linear response to the spatial gradient of
temperature. In Sec. IV, the calculated results of the DOS
and those of the thermoelectric coefficients are presented. We
discuss the meaning of the obtained results in Sec. V. The
conclusion is given in Sec. VI.
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FIG. 1. Schematics of a proximity structure considered in this
paper. We focus on two-dimensional electronic states at a thin semi-
conductor sandwiched between a superconductor and an insulator.
Because of inversion symmetry breaking in the z direction, Rashba
spin-orbit interaction works for electrons. In the presence of an exter-
nal magnetic field applied in the y direction and the proximity-effect
induced pair potential, a superconducting state with Bogoliubov-
Fermi surfaces can be realized in the thin film.

II. MODEL

We discuss the thermoelectric effect in two-dimensional
electronic states realized in a thin semiconductor sandwiched
by a spin-singlet s-wave superconductor and an insulator un-
der an in-plane magnetic field as illustrated in Fig. 1. The BdG
Hamiltonian in a thin semiconductor [7,15] reads

ȞBdG =
[

ĥN(k) �iσ̂y

−�iσ̂y −ĥ∗
N(−k)

]
, (1)

ĥN(k) = ξkσ̂0 − V · σ̂ − λ × k · σ̂, (2)

ξk =h̄2k2/(2m) − μ, V = (0,V, 0), (3)

with V = 1
2 gμBB, where μ is the chemical potential, B is the

amplitude of an external magnetic field in the y direction,
g is the g-factor, and μB is the Bohr magneton. The Pauli’s
matrices in spin space are denoted by σ̂ = (σ̂x, σ̂y, σ̂z ) and σ̂0

is the unit matrix in spin space. The pair potential at the thin
film is �. The vector λ is parallel to the z direction because
inversion symmetry is broken along the z direction in the
proximity structure. In such a situation, a Zeeman field in the
xy plane enables the Bogoliubov-Fermi surfaces [4,7,15,25].
The reasons why we need to consider such a junction are
explained below.

It is widely accepted that spin-singlet superconductivity
is fragile in strong Zeeman potential V . However, to re-
alize the BFSs in a conventional superconductor [4,7], the
amplitude of a Zeeman field must be larger than the Clogston-
Chandrasekhar limit [36,37]. Here, we assume that the pair
potential � is induced in a thin semiconductor due to the prox-
imity effect from a parent superconductor. In such a system,
induced pair potential would be smaller than that of the parent
superconductor �bulk. In addition, it would be possible to
choose a semiconductor with a large g-factor (g > 2) [38–42],
which enables a larger Zeeman potential in a semiconductor
V than that in the bulk of superconductor Vbulk. For example,
g ∼ 10 or larger was reported in a two dimensional Al-InAs
hybrid system [38–41]. A condition for the appearance of the
BFSs in a thin semiconductor

� < V = 1
2 gμBB, (4)

and that for the stable superconducting state in the bulk

�bulk � Vbulk ∼ μBB, (5)

can be satisfied simultaneously in the proximity structure in
Fig. 1. In what follows, we also assume that the transition
to the superconducting phase is always the second-order [31]
and that the dependence of � on temperatures is described by
BCS theory.

In a junction shown in Fig. 1, the thermoelectric cur-
rent flows only in the semiconducting segment. The electric
current is absent in an insulator. Furthermore, the ther-
moelectric coefficient in the parent superconductor αS ≈
αN exp(−�bulk/T ) � αN is almost zero at low tempera-
tures [34] with αN being the thermoelectric coefficient in the
normal state. Therefore, the electric current flowing through
the semiconducting film dominates the thermoelectric effect
of the whole structure in Fig. 1.

III. CURRENT FORMULA

The electric current in the weak coupling limit [35] is
represented by

j(R) = e

4

∫
dkdε

(2π )d+1
ivTr[ǦK (R, k, ε)], (6)

with v = h̄k/m and R being the velocity and the place in real
space, respectively. The Keldysh Green’s function ǦK is the
solution of the Gor’kov equation,[(

Ľ0 + Ľ1 0
0 Ľ0 + Ľ1

)
−

(
�̌R �̌K

0 �̌A

)]
(k,ε)

×
[

ǦR ǦK

0 ǦA

]
(R,k,ε)

=
[

1̌ 0
0 1̌

]
, (7)

where

Ľ0(k, ε) = ε − ξkτ̌3 − V̌ , (8)

Ľ1(k, ε) = i

2
h̄v · ∇Rτ̌3, (9)

�̌X = �̌ − �̌X
imp, (10)

with

�̌ =
[

0 �̂(k)
−�̂

˜
(k) 0

]
, (11)

V̌ =
[
V · σ̂ + λ × k · σ̂ 0

0 −V · σ̂∗ + λ × k · σ̂∗
]
. (12)

Here τ̌i(i = 1, 2, 3) are Pauli’s matrix in particle-hole space.
The relation Y

˜
(k, ε) ≡ Y ∗(−k,−ε) represents particle-hole

transformation of a function Y (k, ε). The self-energy due to
random impurity scatterings is denoted by �̌X

imp. The details
of the derivation are given in Appendix A.

The thermoelectric coefficient is calculated within the lin-
ear response to the thermal gradient which is considered
through the distribution function


(ε, R) = tanh

[
ε

2T (R)

]
. (13)

As discussed in Appendix A, the Green’s function ǦR,A re-
mains unchanged from its expression in equilibrium ǦR,A

0
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within the first order of ∇
. The Gor’kov equation for the
Keldysh component becomes[

Ľ0(k, ε) − �̌R(k, ε) + i

2
h̄v · ∇Rτ̌3

]
ǦK (R, k, ε)

− �̌K (k, ε)ǦA
0 (k, ε) = 0. (14)

We seek the solution of the Keldysh Green’s function of the
form ǦK = ǦK

0 + δǦK with Eqs. (A20) and (A21), where the
first term is the solution in equilibrium and the second term is
the deviation from it. In the limit of weak impurity scatterings,
the solution within the first order of ∇
 is given by

δǦK = − i

2
h̄v · ∇R
(ε, R)

× [
ǦR

0 (k, ε)τ̌3
{
ǦR

0 (k, ε) − ǦA
0 (k, ε)

}]
. (15)

The current density and the thermoelectric coefficient are cal-
culated as

jμ(R) = −αμ,ν∇ν
RT, (16)

where μ and ν represent the direction of the current and
the temperature gradient. Equation (A25) shows the general
expression of the coefficient. Since all the off-diagonal ele-
ments of the coefficients are zero in a superconductor under
consideration, we show only the diagonal elements as

αν = eh̄

32πT 2

∫ ∞

−∞
dε

ε

cosh2(ε/2T )

×
∫

d k̂
2π

(k̂ν )2
∫ ∞

−∞
dξN (ξ )v2(ξ )I (k, ε), (17)

I (k, ε) = Tr[Ĝ(Ĝ − Ĝ†) − Ĝ
˜

(Ĝ
˜

− Ĝ
˜

†
)

+ F̂ F̂ † − F̂
˜

F̂
˜

†
]R

(k,ε), (18)

with ν = x or y, where R in the superscript of Eq. (18) means
that all the Green’s functions belong to the retarded causality.
Hereafter we omit “0” from the subscript of the Green’s func-
tions because the coefficient is expressed only by the Green’s
functions in equilibrium. We have used a relation

1

Vvol

∑
k

→
∫

d k̂
2π

∫ ∞

−∞
dξ N (ξ ), (19)

with k̂ = (kx, ky)/|k|. The 2 × 2 retarded Green’s functions in
Eq. (18) are the solution of the Gor’kov equation,

[ε + iδ − ȞBdG]

[
Ĝ F̂

−F̂
˜

−Ĝ
˜

]R

(k,ε)

= 1̌. (20)

Here we introduce the lifetime τ = h̄/δ of superconducting
states. The Green’s functions for the BdG Hamiltonian in
Eq. (1) are calculated to be

Ĝ(k, ε) = 1

Z
[(ε − ξk) z

˜
N − (ε + ξk)�2

− V · σ̂(z
˜

N + �2) − αk · σ̂(z
˜

N − �2)], (21)

FIG. 2. The BFSs for V = 1.001�0, V = 1.01�0, V = 1.1�0,
and V = 1.5�0 are displayed in (a), (b), (c), and (d), respectively.
The strength of the Rashba SOI is fixed at λkF = 2�0.

F̂ (k, ε) = 1

Z

[(
ε2 − ξ 2

k − �2 − α2
k + V 2) − 2εV · σ̂

− 2ξkαk · σ̂ − 2iV × αk · σ̂
]
�iσ̂y, (22)

Z = (
ε2 − ξ 2

k − �2 − α2
k + V 2

)2 + 4(V × αk)2

− 4(ε V + ξkαk)2, (23)

z
˜
N = (ε + ξk)2 − (V − αk)2, αk = λ × k. (24)

The density of states per volume are calculated as

N (E ) =
∫

d k̂
2π

n(k̂, E ), (25)

n(k̂, E ) = −N0

8π i

∫ ∞

−∞
dξ Tr[Ĝ − Ĝ† − Ĝ

˜
+ Ĝ

˜
†
]R

(k,E ), (26)

where n(k̂, E ) is the angle-resolved density of states and N0

is the DOS per volume in the normal states at the Fermi
level.

For numerical simulation, we put δ = 10−4�0 and �0 =
0.02μ, where �0 is the amplitude of induced pair potential at
zero temperature.

IV. RESULTS

A. Density of states

In Fig. 2, we plot the BFSs (possible wave number for
zero-energy eigenvalue) for several choices of Zeeman poten-
tials V = 1

2 gμB B. The size of the BFSs increases with the
increase of V . For Zeeman potentials slightly larger than �0

in Figs. 2(a) and 2(b), the quasiparticle states at zero energy
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FIG. 3. Density of states calculated for several Zeeman poten-
tials at λkF = 2�0.

are present around k = (kx, ky ) = (±kF , 0) and absent around
k = (0,±kF ). The anisotropy of the BFSs is derived from the
anisotropy in the normal states described by Eq. (2). For V =
0 and λ = 0, the original Fermi surface given by k2

x + k2
y = k2

F
has a circular shape in momentum space. The isotropy of the
Fermi surface is preserved for V �= 0 and λ = 0 because the
direction of a Zeeman field does not couple to any directions
in the momentum space. A Zeeman field splits the doubly
degenerate Fermi surface into two. The isotropy is preserved
also for V = 0 and λ �= 0 because the Rashba SOI preserves
rotation symmetry along z axis. The Rashba SOI also splits
the doubly degenerate Fermi surface into two. In the presence
of the two interactions simultaneously V �= 0 and λ �= 0, the
SOI couples momentum space to spin space and a Zeeman
field specifies a special direction in momentum space. Thus,
the anisotropy in the Fermi surface in the normal state is a
result of the coexistence of the Rashba SOI and the Zeeman
field. The BFSs in Fig. 2 inherit such the anisotropy even
in the superconducting state. The BFSs always appear in the
directions perpendicular to a Zeeman field V . The results in
Fig. 2 show the BFSs around k = (kx, ky) ≈ (±kF , 0) because
a Zeeman field is applied in the y direction. The anisotropy of
the BFSs is a source of the anisotropy in the thermoelectric
effect.

In Fig. 2, the strength of the Rashba SOI is fixed at λkF =
2�0. Changing the amplitude of λ shifts the place of the BFSs
only slightly in momentum space. We choose λkF = 2�0

throughout this paper because the characteristic features of the
BFSs shown in Fig. 2 are insensitive to the choice of λ. A role
of SOI in the formation of BFSs are discussed in Appendix B.

In Fig. 3, we present the DOS in the presence of the
BFSs for several Zeeman potentials. The DOS at zero energy
remains a finite value for all the Zeeman potentials. At V = 0,
the DOS has two coherence peaks at E = ±�. Zeeman po-
tentials shift these peaks depending on spin of an electron,
which explains multiple peaks in E/�0 = 2 in Fig. 3. As
Zeeman potentials increase, the width of a plateau near zero
energy increases. This makes a superconducting phase with
the BFSs unstable thermodynamically. To gain the condensa-
tion energy, the gapped energy spectra in DOS are necessary.

FIG. 4. The thermoelectric coefficient versus temperature. The
coefficients in the two directions are shown with αx and αy. The
broken lines show the results in the absence of a Zeeman potential.

The two-dimensional superconducting states with the BFSs
are stabilized by the superconducting condensate in the parent
superconductor.

B. Thermoelectric effect

The calculated results of the thermoelectric coefficients in
the presence of the BFSs are plotted as a function of tem-
perature for several of Zeeman potentials in Fig. 4, where the
dependence of � on temperatures is described by BCS theory.
The vertical axis is normalized to the coefficient in the normal
state αN which is isotropic in real space. The results in the
absence of a Zeeman potential are shown with a broken line
for comparison and obey α ≈ αN exp(−�/T ) at low temper-
atures. Solid lines represent αx(y) in which the electric current
is perpendicular to magnetic field j ⊥ B(parallel to magnetic
field j ‖ B). The thermoelectric coefficients indicate two char-
acteristic features: the remarkable anisotropy in real space and
αx > αN. The anisotropy in the thermoelectric effect origi-
nates from the anisotropy of the BFSs in momentum space
shown in Fig. 2. The zero-energy states around k = (±kF , 0)
in Fig. 2 can carry the electric current in the x direction.
However, zero-energy states are absent around k = (0,±kF ),
which results in the monotonic decrease of αy with decreasing
temperatures in Fig. 4. Such anisotropy is absent in a d-wave
superconductor with the BFSs (see Appendix C for details).

To understand the unusual dependence of αx on tempera-
ture, we analyze the angle-resolved DOS displayed in Fig. 5,
where n(k̂, E ) along the kx axis is shown by fixing ky at 0.
The angle-resolved DOS has two peaks for E > 0 because
a Zeeman potential shifts the coherence peaks depending on
spins of a quasiparticle. For V ≈ � in Figs. 5(a) and 5(b), a
peak appears almost zero energy in the angle-resolved DOS.
A quasiparticle at such zero-energy states carries the thermo-
electric current in the x direction. The relation αx > αN is a
result of the shift of the coherence peak by a Zeeman potential.
The DOS along the ky axis calculated with putting kx = 0
is shown in Fig. 6. In contrast to Fig. 5, the angle resolved
DOS always has the gapped energy spectra at zero energy
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FIG. 5. The angle-resolved density of states n(k̂, E ) at ky = 0 are
shown for several Zeeman fields with λkF = 2�0.

as a result of the absence of the BFSs around k = (0,±kF )
in Fig. 2. This also explains the monotonic dependence of
αy on temperatures in Fig. 4. The BFSs spread in the ky

direction with increasing Zeeman potential as shown in Fig. 2.
A quasiparticle on the BFS for ky �= 0 has a finite velocity
in the y direction. Such quasiparticle states can carry the
thermoelectric current in the y direction. In Fig. 2, the number
of quasiparticle states for ky �= 0 increases with increasing V .
As a result, αy takes a finite value and increases even at zero
temperature with increasing V . We conclude that the thermo-
electric effect in a junction in Fig. 1 is remarkably anisotropic
in real space because of the anisotropy of the BFSs in mo-
mentum space. The thermoelectric coefficient for the current
perpendicular to a magnetic field can be larger than that in
the normal state because a Zeeman potential shifts the gapped
spectra in DOS depending on the spin of a quasiparticle.

FIG. 6. The angle-resolved density of states n(k̂, E ) at kx = 0 are
shown for several Zeeman fields with λkF = 2�0.

V. DISCUSSION

Two of the authors have shown that odd-frequency Cooper
pairs coexist with quasiparticles on the BFSs [29]. This can be
seen in the expression of the anomalous Green’s function in
Eq. (22). The first term represents a spin-singlet Cooper pairs
and is linked to the pair potential through the gap equation.
The other terms represent spin-triplet Cooper pairs generated
by a Zeepan potential and/or the SOI. To make discussion
simpler, we put V = αk = 0 at the denominator of the Green’s
function in Eq. (23). By applying the analytic continuation
ε + iδ → iωn in such a situation, the second term in Eq. (22)
is relating to odd-frequency Cooper pairs because it is an odd
function of the Matsubara frequency ωn. Before calculating
the thermoelectric coefficients, we had expected the contribu-
tions of odd-frequency Cooper pairs to the electric current.
Therefore, we formulate the thermoelectric coefficients in
terms of the Green’s functions of the Gor’kov equation.
In fact, the expression in Eq. (18) includes the anomalous
Green’s function F̂ and F̂

˜
. Unfortunately, however, we find

that Tr[F̂ F̂ † − F̂
˜

F̂
˜

†
] = 0 for any Zeeman fields and SOIs in a

spin-singlet s-wave superconductor. Only the normal Green’s
functions Ĝ and Ĝ

˜
contribute to the thermoelectric coefficient

in our model. As a result, the characteristic behavior of the
thermoelectric coefficients can be explained well by the resid-
ual DOS due to quasiparticles on the BFSs.

VI. CONCLUSION

We have studied the thermoelectric effect in a thin super-
conducting film between a conventional superconductor and
an insulator. In the presence of an external magnetic field
and the Rashba spin-orbit interactions, the superconducting
phase having the Bogoliubov-Fermi surfaces can be realized
at the thin film. The thermoelectric coefficient is calculated
based on the linear response theory in the presence of the
spatial gradient of a temperature. The calculated results of the
thermoelectric coefficients show the remarkable anisotropy at
low temperatures: the coefficient for the current perpendicular
to a magnetic field is larger than that for the current parallel
to a magnetic field. Moreover, the coefficient for the current
perpendicular to a magnetic field can be larger than its normal
state value. These characteristic features of thermoelectric
effect are explained well by the anisotropy of the Bogoliubov-
Fermi surfaces in momentum space. Our results indicate a
way of realizing the stable Bogoliubov-Fermi surfaces and
how to check the existence of the Bogoliubov-Fermi surfaces.
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APPENDIX A: FORMALISM

1. Gor’kov equation

We begin with the general expression of the electric current in terms of Keldysh Green’s function,

GK
α,β (x1, x2) = −i〈ψα (x1)ψ†

β (x2) − ψ
†
β (x2)ψα (x1)〉, (A1)

GK
α,β (x1, x2) = −i〈ψ†

α (x1)ψβ (x2) − ψβ (x2)ψ†
α (x1)〉, (A2)

where x = (r, t ) is the combined representation of coordinate and ψα (x) (ψ†
α (x)) is the annihilation(creation) operator of an

electron. By using the anticommutation relations and applying ∇r1 from the left, the current density is expressed in terms of the
Keldysh Green’s function

j(x1) = eh̄

4m
lim

x1→x2

∇r1 Tr[ǦK (x1, x2)], (A3)

where −e is the charge of an electron, Tr is the trace in spin space and particle-hole space

Tr[ǦK (x1, x2)] =
∑

α

(
GK

α,α + GK
α,α

)
. (A4)

The Green’s function is a solution of the Gor’kov equation which describes the superconducting states

∫
dx2

[
Ľ − �̌R −�̌K

0 Ľ − �̌A

]
(x1,x2 )

[
ǦR ǦK

0 ǦA

]
(x2,x3 )

=
[

1̌ 0
0 1̌

]
δ(x1 − x3), (A5)

Ľ(x1, x2) = iδ(r1 − r2)∂t2 − δ(t1 − t2)

{
− h̄2

2m
∇2

r2
− μ

}
τ̌3 − V̌ (x1, x2), (A6)

V̌ (x1, x2) = δ(x1 − x2)

[
V · σ̂ − iλ × ∇̂r2 · σ̂ 0

0 −V · σ̂∗ − iλ × ∇̂r2 · σ̂∗

]
, (A7)

where τ̌i(i = 1, 2, 3) are Pauli’s matrix in particle-hole space. The self-energy consists of two contributions,

�̌X (x1, x2) = �̌(x1, x2) + �̌X
imp(r1 − r2)δ(t1 − t2), (X = R, A, K ). (A8)

The pair potential

�̌(x1, x2) =
[

0 �̂(x1 − x2)
−�̂∗(x1 − x2) 0

]
, (A9)

is the self-energy due to the attractive interactions. The impurity self-energy is uniform in real space due to ensemble averaging
and instantaneous in time.

2. Mixed representation

In what follows, we apply the mixed representation to the Green’s function

Ǧ(x1, x2) = Ǧ(R, r, T, t ) =
∫

dkdε

(2π )d+1
Ǧ(R, k, T, ε)ei(k·r−εt ), (A10)

with

R = r1 + r2

2
, r = r1 − r2, T = t1 + t2

2
, t = t1 − t2. (A11)

The Green’s function is independent of center-of-mass-time T because we consider time-independent phenomena in this paper.
We have applied the Fourier transformation to the internal degree of freedom x1 − x2. Since ∇r1 = ∇R/2 + ∇r, we obtain

∇r1 G(x1, x2) =
∫

dkdε

(2π )d+1

[
1

2
∇R + ik

]
G(R, k, ε)ei(k·r−εt ). (A12)

In the mean-field theory of superconductivity, the spatial gradient of the Green’s function is estimated as |∇RG(R, k, ε)| �
G(R, k, ε)/ξ0, whereas the dominant wave number to the integral is |k| � kF � 1/λF . The coherence length ξ0 = h̄vF /(π�0) �
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εF /(πkF Tc) is much longer than the Fermi wavelength λF . The first term is negligible because the transition temperature Tc is
much smaller than the Fermi energy εF . By applying the argument to the current density in Eq. (A3), we obtain Eq. (6) in the
text.

The derivative in Ľ is carried out as

∇r2 Ǧ(x2, x3) =
∫

dkdε

(2π )d+1

{
1

2
∇R23 + ∇r23

}
Ǧ(R23, k, ε)ei(k·r23−εt23 ), (A13)

�
∫

dkdε

(2π )d+1
ikǦ(R23, k, ε)ei(k·r23−εt23 ), (A14)

∇2
r2

Ǧ(x2, x3) =
∫

dkdε

(2π )d+1

{
1

4
∇2

R23
+ ∇R23 · ∇r23 + ∇2

r23

}
Ǧ(R23, k, ε)ei(k·r23−εt23 ),

�
∫

dkdε

(2π )d+1

{
i∇R23 · k − k2}Ǧ(R23, k, ε)ei(k·r23−εt23 ), (A15)

∂t2 Ǧ(x2, x3) =
∫

dkdε

(2π )d+1

{
1

2
∂T23 + ∂t23

}
Ǧ(R23, k, ε)ei(k·r23−εt23 ),

=
∫

dkdε

(2π )d+1
iεǦ(R23, k, ε)ei(k·r23−εt23 ). (A16)

By substituting these results into Eq. (A5), we obtain the Gor’kov equation for the mixed-representation in Eq. (7).

3. Current formula in the linear response

The spatial gradient of temperature is considered through the distribution function


(ε, R) = tanh

[
ε

2T (R)

]
. (A17)

In what follows, we derive the current in Eq. (6) within the first order of ∇
. The Gor’kov equation for ǦR,A becomes[
Ľ0(k, ε) − �̌R,A(k, ε) + i

2
h̄v · ∇Rτ̌3

][
ǦR,A

0 (k, ε) + δǦR,A(R, k, ε)
] = 1̌, (A18)

where δǦR,A is the deviation of the Green’s function from their values in equilibrium ǦR,A
0 . Within the first order, we obtain

[Ľ0(k, ε) − �̌R,A(k, ε)]δǦR,A(R, k, ε) = 0, (A19)

because ∇RǦR,A
0 = 0 and Gor’kov equation in equilibrium [Ľ0(k, ε) − �̌R,A(k, ε)]ǦR,A

0 (k, ε) = 1̌. The solution is
δǦR,A(R, k, ε) = 0. The Gor’kov equation for the Keldysh component is given in Eq. (14) We seek the solution of the form

ǦK (R, k, ε) = ǦR
0 (k, ε)
(ε, R) − 
(ε, R)ǦA

0 (k, ε) + δǦK (R, k, ε), (A20)

�̌K (k, ε) = �̌R(k, ε)
(ε, R) − 
(ε, R)�̌A(k, ε) + δ�̌K (R, k, ε). (A21)

The first term and second term in Eqs. (A20) and (A21) are the solutions in equilibrium. We put δ�̌K = 0 because the deviation
of the self-energy �̌ is considered through the distribution function. The solution is presented in Eq. (15). By substituting the
results into Eq. (6), the current density is calculated to be

jμ(R) = eh̄

8

∫
dkdε

(2π )d+1
vμvν · (∇ν

R

)
Tr

[
ǦR

0 (k, ε)τ̌3
{
ǦR

0 (k, ε) − ǦA
0 (k, ε)

}]
, (A22)

= −αμ,ν∇ν
RT . (A23)

The thermoelectric coefficient is given by

αμ,ν = eh̄

32πT 2

∫ ∞

−∞
dε

ε

cosh2(ε/2T )

∫
dk

(2π )d
vμvνI (k, ε), (A24)

= eh̄

32πT 2

∫ ∞

−∞
dε

ε

cosh2(ε/2T )

∫
d k̂
Sd

k̂μk̂ν

∫ ∞

−∞
dξN (ξ )v2(ξ )I (k, ε), (A25)
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I (k, ε) ≡ Tr
[
ǦR

0 (k, ε)τ̌3
{
ǦR

0 (k, ε) − ǦA
0 (k, ε)

}]
, (A26)

= Tr[Ĝ(Ĝ − Ĝ†) − Ĝ
˜

(Ĝ
˜

− Ĝ
˜

†
) + F̂ F̂ † − F̂

˜
F̂
˜

†
]R

(k,ε), (A27)

where μ and ν are respectively the direction of current density and temperature gradient. Tr in Eq. (A27) means the trace in
spin space. The contribution from the anomalous Green’s function vanishes by applying Tr for any Zeeman fields and spin-orbit
interactions in a spin-singlet s-wave superconductor. We have used the structure of the Green’s function in particle-hole space
represented as

ǦR,A(k, ε) =
[

Ĝ F̂
−F̂

˜
−Ĝ

˜

]
(k,ε)

, ǦA(k, ε) = [ǦR(k, ε)]†. (A28)

The thermoelectric coefficient in a spin-singlet s-wave superconductor is calculated to be

α = αN
3

2π2

∫ ∞

�/T
dx

x2

cosh2(x/2)
, (A29)

αN = π2

3d
eh̄T τC0, C0 = d

dξ
N (ξ )v2(ξ )

∣∣∣∣
ξ=0

, (A30)

where τ is the relaxation time due to random impurities. The results are identical to the previous results [34]. The lower limit
of integral reflects the effects of superconductivity. The thermoelectric coefficient of an s-wave superconductor is exponentially
smaller than αN at low temperatures α ∝ αN exp(−�/T ) � αN.

APPENDIX B: ENERGY DISPERSION

In this Appendix, we discuss the role of SOI in the for-
mation of BFSs. Figures 7(a) and 7(b) show the BFSs in
momentum space at V = 1.5�0 calculated for λkF = 2�0

and λkF = 5�0, respectively. When λkF increases, the outer
BFSs and the inner BFSs shift the opposite direction to each
other along the kx axis. The size of the BFSs in the ky direc-
tion is insensitive to λkF . A direction in the two-dimensional
momentum space is specified by an angle θ . The energy
dispersions are plotted as a function of the wave number for
several directions in momentum space. The results for λkF =
2�0 are displayed in Figs. 7(c)–7(e) and those for λkF = 5�0

are displayed in Figs. 7(f)–7(h). Comparing Figs. 7(c)–7(e)
with Figs. 7(f)–7(h), the SOI shifts the energy dispersions
in the k-direction, which is the main role of the SOI in the
formation of BFSs. As a result, the characteristic features of
the thermoelectric effect are insensitive to λkF .

APPENDIX C: THERMOELECTRIC EFFECT IN A d-WAVE
SUPERCONDUCTOR WITH BFSS

In this Appendix, we discuss the thermoelectric effect in
a d-wave superconductor with the BFSs, and compare our
results with the results in a normal-metal/superconductor
junction [27]. The BFSs also exist by the inflation of point
nodes in a d-wave superconductor in two-dimension [2]. The
BdG Hamiltonian in a d-wave superconductor under a Zee-
man field is represented as

ȞBdG =
[

ĥN(k) �θ iσ̂y

−�θσ̂y −ĥ∗
N(−k)

]
, (C1)

ĥN = ξkσ̂0 − V · σ̂, (C2)

�θ = � cos[2(θ + β )], (C3)

FIG. 7. The BFSs at V = 1.5�0 are displayed for λkF = 2�0 in (a) and for λkF = 5�0 in (b). The dispersion along several directions
in momentum space are plotted for λkF = 2�0 in (c)–(e) and for λkF = 5�0 in (f)–(h). The vertical axis is normalized to the chemical
potential μ.
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FIG. 8. The BFSs in a d-wave superconductor at V = 0.5�0 are
displayed for β = 0 in (a) and for β = π/6 in (b), respectively.

with θ = tan−1(ky/kx ) and orientation angle β, where a Zee-
man field is applied in the y direction. The energy eigenvalues
are calculated to be

Ek =
√

ξ 2
k + �2

θ ± V, −
√

ξ 2
k + �2

θ ± V. (C4)

Figure 8 shows the BFSs (possible eigenvalues of the BdG
Hamiltonian at zero energy) for β = 0 (dx2−y2 -wave) in (a) and
those for β = π/6 in (b), where we fix a Zeeman potential at
V = 0.5�0. The BFSs appear around the point nodes even for
V < �0.

The DOS in a d-wave superconductor with the BFSs cal-
culated to be

N (E ) = N0

2

∫ 2π

0

dθ

2π

⎡
⎢⎣ |E + V | �(|E + V | − |�θ |)√

(E + V )2 − �2
θ

+ |E − V | �(|E − V | − |�θ |)√
(E − V )2 − �2

θ

⎤
⎥⎦, (C5)

where � is the step function. In Fig. 9, we present the DOS in
the presence of the BFSs in a d-wave superconductor. The

FIG. 9. The density of states (DOS) in a d-wave superconductor.
The solid line shows the DOS at V = 0.5�0 and the dotted line
shows the DOS at V = 0.

DOS vanishes at E = 0 in the absence of a Zeeman field,
whereas that remains a finite value for V = 0.5�0.

The shape of the pair potential on the Fermi surface is an
important factor in a thermoelectric effect. Because |�θ | =
|�θ+ π

2
| holds in a d-wave superconductor, the thermoelectric

coefficients in the x direction and that in the y direction are
equal to each other. Therefore, we calculate the thermoelectric
coefficients in the x direction αx for several β. The thermo-
electric coefficient is represented as

αx = eh̄

32πT 2

∫ ∞

−∞
dε

ε

cosh2(ε/2T )

×
∫ 2π

0

dθ

2π
cos2 θ

∫ ∞

−∞
dξN (ξ )v2(ξ )I (ξ, θ, ε). (C6)

The results of the thermoelectric coefficients are plotted as
a function of temperature in Fig. 10. The results for V = 0
and those for V = 0.5�0 are shown in Figs. 10(a) and 10(b),
respectively. We assume that the dependence of � on tem-
peratures is described by BCS theory and is common in Figs.
10(a) and 10(b). The solid, dashed, and dotted lines represent
the coefficients for β = 0, β = π/6, and β = π/4, respec-
tively. The numerical results indicate that the thermoelectric
coefficients in a d-wave superconductor are isotropic in real
space. To make this point clear, we analyze the integral of θ

in Eq. (C6). As θ dependence of I (ξ, θ, ε) is derived from
|�θ+β | in Eq. (21), the relation

I (ξ, θ, ε) = I (ξ, θ + π/2, ε) (C7)

holds in a d-wave superconductor even in a Zeeman field. The
integral of θ is calculated to be∫ 2π

0
dθ cos2 θ I (ξ, θ + β, ε)

= 2
∫ π

0
dθ cos2(θ − β ) I (ξ, θ, ε),

= 2
∫ π

2

0
dθ cos2(θ − β ) I (ξ, θ, ε)

+ 2
∫ π

π
2

dθ cos2(θ − β ) I (ξ, θ, ε),

= 2
∫ π

2

0
dθ cos2(θ − β ) I (ξ, θ, ε)

+ 2
∫ π

2

0
dθ cos2(θ − β + π/2) I (ξ, θ + π/2, ε),

= 2
∫ π

2

0
dθ {cos2(θ − β ) + sin2(θ − β )} I (ξ, θ, ε),

= 2
∫ π

2

0
dθ I (ξ, θ, ε) (independent of β ). (C8)

Therefore, the thermoelectric coefficients are independent of
β in a d-wave superconductor. The results also indicate αx <

αN . To realize a large thermoelectric effect, a large Zeeman
field V ≈ � is necessary to shift the coherence peak in DOS
to zero energy. However, a superconducting state becomes
unstable in such large Zeeman fields.
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FIG. 10. The thermoelectric coefficient versus temperature in a d-wave superconductor for V = 0 and V = 0.5�0 are displayed in (a) and
(b), respectively. The coefficients for β = 0, β = π/6, and β = π/4 are represented with the solid line, dashed line, and dotted line.

In a normal-metal/d-wave superconductor junction,
the thermoelectric effect shows the anisotropy and the
thermoelectric coefficient in a certain direction can be larger

than that in the normal state. Such behaviors originate
from the Andreev bound states at the interface of the
junction [27].
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