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Discontinuous transition to a superconducting phase
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We discuss the instability of uniform superconducting states in j = 3/2 superconductors that contain the pair-
ing correlations belonging to the odd-frequency symmetry class. The instability originates from the paramagnetic
response of odd-frequency Cooper pairs and is considerable at finite temperatures. As a result, the pair potential
varies discontinuously at the transition temperature when the amplitude of the odd-frequency pairing correlation
functions is sufficiently large. We also discuss the discontinuous transition in other uniform superconductors.
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I. INTRODUCTION

There are two types of uniform perturbations that act on
uniform superconducting states. One does not change the
thermal properties, while the other does. Spin-orbit inter-
actions and Zeeman fields correspond to the examples of
such perturbations in a spin-singlet superconductor. Spin-
orbit interactions do not change any thermal properties of a
superconductor such as the transition temperature Tc or the
dependence of order parameter � on temperatures T [1]. On
the other hand, uniform Zeeman fields decrease Tc. Moreover,
the transition to the superconducting phase by decreasing the
temperature changes to a first-order transition in sufficiently
strong Zeeman fields [2,3]. Namely, the superconducting state
is thermally unstable under Zeeman fields. A recent study
[4] has reported that j = 3/2 superconductors also exhibit
very similar instabilities. Although such discontinuous transi-
tion has been observed in spin-singlet superconductors under
Zeeman fields [5–7], there has been no comprehensive expla-
nation for why the superconducting transition changes to a
first-order transition and what distinguishes the two types of
perturbations. We address these issues in the present paper.

To the best of our knowledge, odd-frequency Cooper pairs
[8–13] tend to cause thermal instability in superconducting
states. This consideration is supported by the following find-
ings for odd-frequency pairs localized various places in a
superconductor such as at a vortex core [14], in the vicin-
ity of a magnetic cluster [15,16], and at the surface of a
topologically nontrivial superconductor [17,18]. An analysis
of the free-energy density shows that the superconducting
states are unstable locally around these defects [19,20]. The
paramagnetic response of odd-frequency Cooper pairs to an
external magnetic field is responsible for the instability [21].
In uniform superconductors, odd-frequency Cooper pairs exist
as subdominant pairing correlations when the electronic struc-
tures have extra degrees of freedom such as spins, orbitals
and sublattices [22]. It has been shown that the Tc of such
superconductors decreases as the amplitude of odd-frequency
pairs increases [23].

The purpose of this paper is to show that a uniform
superconductor having a large amplitude of odd-frequency

Cooper pairs exhibit the discontinuous transition from the
normal state to the superconducting state. For this purpose,
we analyze the way in which the odd-frequency pairing cor-
relation functions change the coefficient of the �4 term in
the Ginzburg-Landau (GL) free-energy functional and the
superfluid density. We find that the odd-frequency pairing
correlations decrease the coefficient and the superfluid den-
sity in the same manner. The instability originates from the
suppression of the superfluid density due to odd-frequency
pairs. We conclude that the discontinuous transition to the
superconducting phase is a common feature of superconduc-
tors that contain a large amount of uniform paramagnetic
odd-frequency Cooper pairs in their superconducting phase.
The two types of uniform perturbations are distinguished by
whether they induce odd-frequency Cooper pairs.

This paper is organized as follows: In Sec. II, we explain a
model of j = 3/2 superconductors which we mainly analyze
in this paper and show the expression of the coefficients in the
GL free-energy functional in terms of the Green’s function.
The discontinuous transition to the superconducting phase is
demonstrated numerically in Sec. III. The mechanism of the
discontinuous transition is discussed by analyzing the tem-
perature dependence of the superfluid density in Sec. IV. In
Sec. V, we discuss the discontinuous transition in other cases
by analyzing a spin-singlet superconductor in Zeeman fields
and a two-band superconductor under the band-hybridization.
The conclusions are given in Sec. VI.

II. GINZBURG-LANDAU FREE ENERGY

A. Multiband superconductors

In this paper, we mainly analyze the Hamiltonian of
pseudospin-quintet states in a j = 3/2 superconductor for
the following several reasons. The normal-state Hamiltonian
describes the most general multiband electronic states, which
have four internal degrees of freedom and preserve both time-
reversal symmetry and inversion symmetry [24]. The pair
potential can be represented by a simple formula [25,26]. Use-
ful mathematical tools are available to calculate the Green’s
function analytically. The high-pseudospin electronic states
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stem from the strong coupling between orbitals with angular
momentum � = 1 and spin with s = 1/2 [25–29]. The mean-
field Hamiltonian can be expressed as

H = 1

2

∑
k

��†
k H (k) ��k + N�2

g̃
, (1)

��k = [ �ψT
k , �ψ†

−k

]T
, (2)

�ψk = [ck,3/2, ck,1/2, ck,−1/2, ck,−3/2]T, (3)

where g̃ > 0 represents the strength of the attractive interac-
tion, N is the number of unit cells of the underlying lattice, �

denotes the pair potential, and ck, jz is the annihilation operator
of an electron at k with pseudospin jz. The Bogoliubov–de
Gennes (BdG) Hamiltonian in Eq. (1) is

H (k) =
[

HN(k) �(k)
−�∗(−k) −H∗

N(−k)

]
. (4)

The normal-state Hamiltonian is represented by the tight-
binding model on a simple cubic lattice [27] as

HN(k) = −2t1
∑

ν

cos kν − 2t2
∑

ν

cos kνJ2
ν

+ 4t3
∑
ν �=ν ′

sin kν sin kν ′JνJν ′ + 6t1 + 15

2
t2 − μ,

= ξk + �εk · �γ , (5)

with μ being the chemical potential. The corresponding point
group is Oh. The nearest-neighbor hopping independent of
(depending on) pseudospin is t1 (t2). The second neighbor
hopping is denoted by t3. ξk represents kinetic energy of
an electron and the five-component vector �εk determines the
dependence of the normal-state dispersions on pseudospins.
The expressions of �εk and five 4 × 4 matrices γ j for j = 1–5
are given in Appendix A. The pair potential is represented by

�(k) = ��ηk · �γUT , (6)

�ηk = (ηk,1, ηk,2, ηk,3, ηk,4, ηk,5), (7)

where the five-component vector �ηk with |�ηk| = √
�ηk · �η ∗

k =
1 represents an even-parity pseudospin-quintet pairing order.
The Fermi-Dirac statistics of electrons implies

�T(−k) = −�(k). (8)

Here T means the transpose of the matrix which represents the
interchange of pseudospins at two electrons in a Cooper pair.
Since [�ηk · �γUT ]T = −�ηk · �γUT , the pseudospin-quintet states
are antisymmetric under interchanging two pseudospins.

B. Ginzburg-Landau expansion

To analyze superconducting states, we solve the Gor’kov
equation

[iωn − H (k)]

[
G(k, iωn) F (k, iωn)

−F
˜

(k, iωn) −G
˜

(k, iωn)

]
= 1, (9)

where ωn = (2n + 1)πT is the fermionic Matsubara
frequency with n being an integer, and X

˜
(k, iωn) ≡

X ∗(−k, iωn) represents the particle-hole conjugation
of X (k, iωn). The anomalous Green’s function satisfies
FT(−k,−iωn) = −F (k, iωn) due to the Fermi-Dirac
statistics of electrons. The GL free-energy functional per
unit cell is represented in terms of the Green’s function
[30,31]

SN(�) = a�2 + b�4 + c�6 + higher-order terms, (10)

a�2 = �2

g̃
+ T

∑
ωn

1

N

∑
k

1

2
Tr[F1(k, iωn)�†(k)], (11)

b�4 = T
∑
ωn

1

N

∑
k

1

4
Tr[F1(k, iωn)�†(k)F1(k, iωn)�†(k)],

(12)

where F1(k, iωn) ≡ −GN(k, iωn)�(k)G
˜

N(k, iωn) is the
anomalous Green’s function within the first order of �

and GN(k, iωn) = [iωn − HN(k)]−1 is the Green’s function
in the normal state. In a usual second-order transition,
the equation a = 0 gives the transition temperature Tc.
The inequalities a < 0 and b > 0 describe the stable
superconducting state for T < Tc.

The anomalous Green’s function for Eqs. (5) and (6) con-
sists of four components as

F1(k, iωn) = �

Z0

[
f �
1 (k, iωn) + f s

1 (k, iωn) + f q
1 (k, iωn)

+ f odd
1 (k, iωn)

]
, (13)

f �
1 (k, iωn) = −(

ω2
n + ξ 2

k

)
�ηk · �γUT ,

f s
1 (k, iωn) = 2ξk�ηk · �εkUT ,

f q
1 (k, iωn) = −�εk · �γ �ηk · �γ �εk · �γUT , (14)

f odd
1 (k, iωn) = −iωnPOUT , PO = [�ηk · �γ , �εk · �γ ], (15)

Z0 = (
ω2

n + ξ 2
k − �ε 2

k

)2 + 4ω2
n�ε 2

k

= ξ 4
k + 2ξ 2

k

(
ω2

n − �ε 2
k

) + (
ω2

n + �ε 2
k

)2
, (16)

with [A, B] = AB − BA. f �
1 in Eq. (13) belongs to

pseudospin-quintet symmetry and is linked to the pair
potential through the gap equation. The spin-orbit inter-
actions �εk induce a pseudospin-singlet correlation function
f s
1 and another pseudospin-quintet correlation function f q

1 .
f odd
1 represents an induced pairing correlation belonging to

the odd-frequency symmetry class and is finite for PO �= 0
[32,33]. The structure of f q

1 is modified by f odd
1 because the

two correlation functions are related to each other through
the Gor’kov equation in Eq. (9). Therefore, the pseudospin-
quintet components linked to the pair potential are indirectly
modified by the odd-frequency component. The singlet com-
ponent f s

1 and odd-frequency component f odd
1 do not form

any pair potentials because the attractive interactions for
the corresponding pairing channels are absent at the starting
Hamiltonian.

In the absence of the odd-frequency pairing correlations
(i.e., PO = 0), the coefficients in the free-energy functional are
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calculated to be

f q
1 (k, iωn) = −�ε 2

k �ηk · �γUT , (17)

a = 1

g̃
+ T

∑
ωn

1

N

∑
k

−2

Z0

(
ω2

n + ξ 2
k + �ε 2

k

)
, (18)

b = T
∑
ωn

1

N

∑
k

1

Z2
0

{(
ω2

n + ξ 2
k + �ε 2

k

)2 + 4ξ 2
k �ε 2

k

}
× {2 − |�ηk · �ηk|2}. (19)

�ε 2
k in the last term of the numerator of Eq. (18) originates from

f q
1 and amplifies the integrand. The gap equation correspond-

ing to a = 0 has the same expression as that in the BCS theory
[33]. In addition, the coefficient b is always positive. As a re-
sult, the transition to the superconducting state is second order
and the superconducting state is stable for T < Tc. Therefore,
the equation PO = 0 characterizes the perturbations that pre-
serve the thermal properties of the superconducting states.
Namely, the thermal properties of superconducting states in
the absence of odd-frequency Cooper pairs are identical to
those in the BCS state. We note that the thermal properties of
a pseudospin-singlet superconducting state are also identical
to those in the BCS state as shown in Appendix B.

In the presence of odd-frequency pairing correlation (i.e.,
PO �= 0), it is not easy to obtain analytical expression of the
GL coefficients without further simplifications. To proceed
discussions, we restrict ourselves to consider Eg pairing order
�ηk = (0, 0, 0, ηk,4, ηk,5) because there are only two compo-
nents in the pair potential. This simplification enables us to
get the following analytical expressions:

f q
1 (k, iωn) = �ε 2

k �ηk · �γUT − 2�εk · �ηk�εk · �γUT , (20)

a = 1

g̃
+ T

∑
ωn

1

N

∑
k

−2

Z0

(
ω2

n + ξ 2
k + �ε 2

k − 2A0
)
,

A0 = �ε 2
k − |�εk · �ηk|2, (21)

b = T
∑
ωn

1

N

∑
k

1

Z2
0

[(
ω2

n + ξ 2
k − �ε 2

k

)2 − 4ω2
n�ε 2

k

− {(
ω2

n + ξ 2
k − �ε 2

k

)2 − 4ω2
n

(
ε2

k,1 + ε2
k,2 + ε2

k,3

− ε2
k,4 − ε2

k,5

)}η2
k,4(ηk,5 − η∗

k,5)2

+ 8|�εk · �ηk|2
(
ω2

n + ξ 2
k − �ε 2

k + |�εk · �ηk|2
)]

, (22)

where we chose the common phase factor of the pair potential
so that � and ηk,4 are real but ηk,5 is complex in general.

We found that the expression of f q
1 and a in Eqs. (20)

and (21) is also valid for the general case: �ηk =
(ηk,1, ηk,2, ηk,3, ηk,4, ηk,5). Comparing with Eq. (17), the sign
of the first term in Eq. (20) is reversed due to f odd

1 and a cor-
rection appears at the second term. Comparing with Eq. (18),
an additional term −2A0 appears in Eq. (21) to compen-
sate for the presence of odd-frequency pairs. Since A0 � 0,
the odd-frequency component f odd

1 suppresses the amplitudes
of the pseudospin-quintet components, which leads to the
suppression of Tc [23]. Similar arguments have also been
presented in other papers [12,34,35]. The paramagnetic prop-
erty of uniform odd-frequency Cooper pairs are summarized

in Appendix C. Even under the simplifications in the pair
potential �ηk = (0, 0, 0, ηk,4, ηk,5), PO �= 0 makes the expres-
sion of the coefficient b lengthy and complicated as shown
in Eq. (22). To obtain the physical insights from the ana-
lytical expression of b, we consider specific examples such
as (ηk,4, ηk,5) = (1, 0), (0, 1), (1, 1)/

√
2, and (1, i)/

√
2. The

first, second, and fourth ones are predicted to be stable states
within the phenomenological GL theory [26,28,36]. The com-
mutator in Eq. (15) is calculated for (1,0) state

P(1,0)
O = 2γ 4

∑
i �=4

εk,iγ
i. (23)

The results for (0,1), (1, 1)/
√

2, and (1, i)/
√

2 states are given
in Appendix D. The resulting correlation functions in Eq. (15)
have a common matrix structure

f odd
1 (k, iωn) ∝ iωn

∑
i=4,5

∑
j�=i

ai,j(k)γ iγ jUT , (24)

where ai,j is an even-parity function. Since [ f odd
1 (k, iωn)]T =

f odd
1 (k, iωn), the induced odd-frequency pairing correlations

consist of pseudospin-triplet states and pseudospin-septet
states.

The expression of the coefficient b

bTRS = T
∑
ωn

1

N

∑
k

1

Z2
0

[(
ω2

n + ξ 2
k − �ε 2

k

)2

+ 4|�εk · �ηk|2
(
ω2

n + 2ξ 2
k − 2A0

) − 4ω2
nA0

]
, (25)

is common in all the time-reversal invariant states
(ηk,4, ηk,5) = (1, 0), (0, 1), and (1, 1)/

√
2. The results of

b for a time-reversal breaking state (1, i)/
√

2 are given in
Appendix D. The last terms proportional to ω2

n in Eqs. (25)
and (D4) originate from f odd

1 and are always less than or
equal to zero. Thus, the last term decreases the coefficient b
down to zero when the amplitude of f odd

1 is sufficiently large.
The relation PO �= 0 in Eq. (15) characterizes perturbations
that change the thermal properties of the superconducting
states. Therefore, the two types of perturbations mentioned
in the introduction are distinguished by whether they induce
odd-frequency Cooper pairs.

The sixth- and higher-order terms in Eq. (10) are also mod-
ified by the odd-frequency correlation functions. However, it
is not easy to separate the contributions of the odd-frequency
correlations from those of the even-frequency correlations
because of their cross terms. An example of the analytical
expression of the sixth-order coefficient c is given in Ap-
pendix E.

III. DISCONTINUOUS TRANSITION

In this section, we demonstrate that the transition to
the superconducting phase becomes discontinuous when the
amplitude of the odd-frequency pairing components are
sufficiently large. We choose t2 = 0 in the normal-state
Hamiltonian in Eq. (5). This simplification enables us to
solve the Gor’kov equation in Eq. (9) analytically up to the
infinite order of �. In what follows, we consider a pair poten-
tial (ηk,4, ηk,5) = (1, 0) preserving time-reversal symmetry.
The following discussions are valid also for (ηk,4, ηk,5) =
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(0, 1), (1, 1)/
√

2, and (1, i)/
√

2. We found that the thermal
properties are the same among these states at t2 = 0. The
existence of odd-frequency Cooper pairs is a common fea-
ture among these states. The anomalous Green’s function for
(ηk,4, ηk,5) = (1, 0) results in

F (k, iωn) = −�

Z
[W − 2iωn�εk · �γ ]�ηk · �γUT , (26)

Z = W 2 + 4ω2
n�ε 2

k , W = ω2
n + ξ 2

k − �ε 2
k + �2. (27)

The second term in Eq. (26) is the pairing correlation belong-
ing to the odd-frequency symmetry class, which is induced
by the spin-orbit interaction �εk. The coefficient of the fourth-
order term is calculated to be

b(T ) = T
∑
ωn

1

N

∑
k

1

Z2
0

[
W 2

0 − 4ω2
n�ε 2

k

]
, (28)

with Z0 = Z|�=0 and W0 = W |�=0. The last term in Eq. (28)
is derived from the odd-frequency pairing correlation func-
tions and contributes negatively to the coefficient b as already
mentioned in Eq. (25). The amplitude of the pair potential
� is determined self-consistently from the thermodynamic
potential in the superconducting state

S(�) = �2

g̃
− 2T

N

∑
k,λ=S±

ln

[
2 cosh

(
Eλ(k)

2T

)]
, (29)

where ES±(k) =
√

ξ 2
k + �2 ± |�εk| and irrelevant constants are

neglected. The pair potential is determined by minimizing
S(�) with respect to �. Thus, the solution in the equilibrium
state (�eq) always satisfies

SN(�eq ) = min
�

{SN(�)|� ∈ R} � 0, (30)

with SN(�) ≡ S(�) − S(0). The solution of �eq is plot-
ted as a function of temperature in Fig. 1(a) for several choices
of spin-orbit interaction t3. Hereafter, the transition tempera-
ture at t3 = 0 is denoted by T0, and the pair potential at T = 0
and t3 = 0 is denoted by �0. In the numerical simulation,
we chose μ = t1 and g̃ = 2.463t1 so that T0 = 0.05t1. We
obtained �0 = 0.0882t1 ≈ 1.76T0, which corresponds to BCS
universal relation [37]. The transition temperature decreases
monotonically with increasing t3. Although �eq is insensitive
to t3 at very low temperature T � T0, it abruptly vanishes for
t3 � 0.023t1. Uniform superconducting states are no longer
stable under strong spin-orbit couplings. Furthermore, �eq

shows the discontinuous behavior at Tc for t3 � 0.0205t1. In
Fig. 1(b), the coefficient b(Tc) is plotted as a function of
t3. We obtained b(T0) = 1.237t−3

1 at t3 = 0. As predicted in
Eq. (28), the odd-frequency pairing correlations decrease the
coefficient b(Tc). As a result, the transition becomes discon-
tinuous for b(Tc) < 0 as shown in Figs. 1(a) and 1(b). Thus,
odd-frequency Cooper pairs are responsible for the discontin-
uous transition to the superconducting states.

IV. SUPERFLUID DENSITY

To understand why odd-frequency Cooper pairs cause the
discontinuous transition, we discuss the relationship between
the coefficient b and the response function to an electromag-

FIG. 1. The self-consistent solution of the pair potential �eq(T )
in a j = 3/2 superconductor is plotted as a function of temperature
for several strengths of spin-orbit interaction t3 in panel (a), where
T0 is the transition temperature at t3 = 0 and �0 is the amplitude of
the pair potential at T = 0 and t3 = 0. The coefficient b at T = Tc

is plotted as a function of t3 in panel (b), where Tc is obtained from
the results in panel (a). The temperature dependence of the superfluid
density Q and Q̃ is shown in panels (c) and (d), respectively. Q0 (Q̃0)
in panel (c) [(d)] represents Q (Q̃) at T = 0 and t3 = 0.

netic field,

jx(q, ω) = −Kxx(q, ω)Ax(q, ω), (31)

where jν is the electric current and Aν (q, ω) is the Fourier
component of a vector potential. The derivation of the re-
sponse kernel Kνν is presented in Appendix F. The response
kernel to a static transverse gauge potential is called Meissner
kernel or superfluid density:

Q = Kxx(q → 0, ω = 0)

2e2t1
, (32)

where e is the charge of an electron and Q has no dimensions.
In Fig. 1(c), the superfluid density Q is plotted as a function
of temperature for several choices of t3, where Q0 = 0.0664
is the superfluid density at T = 0 and t3 = 0 in our numer-
ical simulation. At T ≈ 0, the superfluid density is almost
independent of t3 for t3 � 0.0225t1. However, the superfluid
density decreases drastically at finite temperatures. To under-
stand such characteristic features, we analyze the contribution
of the anomalous Green’s function in Eq. (26) to the superfluid
density,

QF = T
∑
ωn

1

N

∑
k

2t1 sin2 kx
4�2

Z2

[
W 2 − 4ω2

n�ε 2
k

]
. (33)

The second term is derived from the odd-frequency pairing
correlations and reduces the superfluid density. The depen-
dence of Q on temperature in Fig. 1(c) is dominated mainly
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by that of �2
eq(T ) because Q is proportional to �2

eq(T ) as
shown in Eq. (33). Thus, it is not easy to extract the effects
of odd-frequency pairs on the superfluid density. To highlight
a role of odd-frequency pairs in the discontinuous transition,
we calculate.

Q̃(T, t3) = Q(T, t3,�BCS(T ))

�2
BCS(T )

, (34)

for T < T0. Here we first replace �eq(T, t3) by

�BCS(T ) = �eq(T, t3 = 0) (35)

and divide the results by �2
BCS(T ) to relax the influence of

�BCS(T ). In Fig. 1(d), Q̃ is plotted for several choices of
t3. The vertical axis is normalized to Q̃0 = Q̃(T = 0, t3 = 0).
The black line for t3 = 0 almost corresponds to the results of
BCS theory

Q̃(T, t3 = 0)

Q̃0
≈ �2

0πT
∑
ωn

1[
ω2

n + �2
BCS(T )

]3/2 , (36)

and decreases with increasing temperature almost linearly
for T � 0.3T0. Q̃ at T = 0 remains unchanged even in the
presence of the spin-orbit interaction, whereas it at finite tem-
peratures decreases with increasing t3. The suppression from
the black line is remarkable for 0.2 � T/T0 � 0.5. As a result,
the curves for t3/t1 = 0.015–0.0225 are convex downward.
The drastic suppression of the superfluid density in such finite
temperatures is responsible for the suppression of Tc and the
discontinuous transition finding at t3/t1 � 0.0205.

When we compare Eq. (28) with Eq. (33), the odd-
frequency pairs decrease the coefficient b and the superfluid
density QF in the same manner. The two values are related to
each other by the relation

b ≈ AQF/�2|�→0, (37)

with A > 0 being a constant. QF in Eq. (37) would be re-
placed by Q (total superfluid density) if we can perform the
momentum integration analytically. The relationship between
b and Q in Eq. (37) at the discontinuous transition is a cen-
tral finding in this paper. We revisit the relation in other
superconducting states in Sec. V. As shown in Eq. (26), the
odd-frequency pairing correlation function is proportional to
the Matsubara frequency, which is a common property of
odd-frequency pairs in uniform superconductors [12,23]. As
a result, the instability due to odd-frequency pairs is con-
siderable at finite temperatures [38]. We conclude that the
discontinuous transition to the superconducting phase occurs
because odd-frequency Cooper pairs reduce the superfluid
density at finite temperatures.

V. DISCONTINUOUS TRANSITION IN OTHER CASES

A. Other j = 3/2 states

The discontinuous transition due to odd-frequency Cooper
pairs and the relationship in Eq. (37) are confirmed in other
superconducting states. Indeed, the expression in Eqs. (28)
and (33) can be applied also to other Eg states such as
(ηk,4, ηk,5) = (0, 1) and (1, 1)/

√
2 at t2 = 0.

The discontinuous transition in j = 3/2 superconductors
has also been reported in T2g pairing states at T � 0 [4]. The

authors of Ref. [4] concluded that the interband pair potentials
are responsible for the discontinuous transition. Here, band
means the diagonalized normal-state band (i.e., Bloch band).
The pair potentials for such T2g states can be described as

�ηk = (0, ηk,2, ηk,3, 0, 0). (38)

The odd-frequency Cooper pairs exist also in T2g states. Since
the commutator in Eq. (15) for T2g states is calculated to be

P
T2g

O = 2

⎛
⎝ηk,2γ

2
∑
i �=2

εk,iγ
i + ηk,3γ

3
∑
i �=3

εk,iγ
i

⎞
⎠, (39)

the odd-frequency pairing correlation function has a mathe-
matical structure of

f odd
1 (k, iωn) ∝ iωn

∑
i=2,3

∑
j�=i

ai,j(k)γ iγ jUT . (40)

The correlation function has essentially the same structures
as that in Eq. (24). Such an analysis suggests that the dis-
continuous transition due to odd-frequency Cooper pairs also
occurs in the T2g states. Unfortunately, however, we cannot
conclude clearly because we cannot derive the relation in
Eq. (37) analytically.

In Ref. [4], the authors pointed out an important role of
interband pair potentials in the discontinuous transition. Thus
it seems meaningful to compare the two pairing states and sort
out their relationship. The interband pair potential and odd-
frequency pairing are not equivalent concept to each other. To
make this point clear, we consider a two-band superconductor
described by

HBdG(k) =
[

EN(k) �(k)
�(k) −EN(k)

]
, (41)

EN =
[
ε1 0
0 ε2

]
, � =

[
�1 0
0 �2

]
, (42)

where the normal-state Hamiltonian is diagonalized by a
unitary transformation. We assume that the pair potential
has only diagonal elements in the Bloch band picture. The
spin symmetry and the momentum-parity of the pair poten-
tials � j can be either spin-singlet even parity or spin-triplet
odd parity. We assume EN(−k) = EN(k) for simplicity. The
BdG Hamiltonian can be block-diagonalized for each band.
Therefore, the interband pair potentials are absent in such a
superconducting state. The odd-frequency pairing correlation
in this case f odd ∝ iωn[EN� − �EN] is also absent because
the commutator is zero. Next, we introduce the interband
superconducting order parameter

� =
[

�1 �12

�12 �2

]
. (43)

Here we assume that �12 appears as a results of the unitary
transformation that diagonalizes the normal state Hamilto-
nian. Three pairing correlations contribute to the pair potential
in Eq. (43). In addition to the two intraband pairing cor-
relations, the interband pairing correlation forms the pair
potentials. The pair potential in Eq. (43) satisfies �T = �,
which means the pair potentials are symmetric under inter-
changing the band indices. When the two bands are identical
to each other ε1 = ε2, EN is proportional to the identity matrix
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and commutes with �. As a result, the odd-frequency pairing
correlation is absent. For ε1 �= ε2, the asymmetry between the
two bands generates the odd-frequency pairs as a subdominant
pairing correlation

fodd ∝ iωn

[
0 �12(ε1 − ε2)

−�12(ε1 − ε2) 0

]
. (44)

In contrast with the interband pairing correlation forming
�12 in Eq. (43), the induced interband pairing correlation is
antisymmetric under interchanging band indices, (i.e., f T

odd =
− fodd). Cooper pairs linked to �12 belong to even-frequency
even-band-parity symmetry class, whereas induced Cooper
pairs belong to odd-frequency odd-band-parity symmetry
class. Such symmetry conversion occurs because the band
asymmetry preserves both spin configurations and momentum
parity of a Cooper pair. Thus, the interband pair potential and
the odd-frequency Cooper pairing are different concepts from
each other. In Ref. [4], the authors may not distinguish two
interband Cooper pairs. However, in this paper, we clearly
distinguish the two interband pairs because they contribute to
the superfluid density in opposite ways to each other.

The instability at T = 0 for both T2g and Eg pairing
states has been also discussed in Ref. [39]. The authors of
Ref. [39] compared the free energy among multiple supercon-
ducting states with changing the amplitude of the attractive
interaction between the two electrons. They found that the
transition to another superconducting phase becomes first-
order. Odd-frequency pairing correlations are also present in
these superconducting states. Therefore, the transition from
the normal state to one of these superconducting states would
be discontinuous when the amplitude of the odd-frequency
pairs are sufficiently large.

B. Other s = 1/2 states

In addition to j = 3/2 superconductors, the discontin-
uous transition has been found in other superconducting
states of s = 1/2 electrons. The transition in a two-band su-
perconductor with interband pairing order becomes one of
the examples when the band hybridization V is sufficiently
large [40]. We note that bands in Ref. [40] indicates atomic
orbitals rather than the Bloch bands. In this model, the band-
hybridization corresponds to the perturbation which generates
odd-frequency Cooper pairs. The paramagnetic property of
the odd-frequency Cooper pairs explains well the mechanism
of the discontinuous transition. The analysis for such an inter-
band superconductor in Ref. [40] is presented in Appendix G.
We also discuss the effects of band asymmetry ε on the
discontinuous transition. The fourth-order coefficient of the
GL free energy b and the superfluid density Q share the same
expression as shown in Eq. (G6). As a result, we confirm the
relation in Eq. (37) also in a two-band superconductor.

Finally, we emphasize the relevance of the conclusions in
this paper to an important open issue. The transition to the
uniform spin-singlet s-wave superconducting state is known
to be discontinuous under a Zeeman field B [2,3,41,42]. The
calculated results for the coefficient b and the superfluid den-
sity Q are given by

b = N0

4
Y (A0,C0), (45)

FIG. 2. The self-consistent solution of the pair potential �eq(T )
in a spin-singlet superconductor under a Zeeman field is plotted as a
function of temperature for several strengths of Zeeman interaction
B in panel (a), where T0 is the transition temperature at B = 0 and
�0 is the amplitude of the pair potential at T = 0 and B = 0. The
coefficient b at T = Tc is plotted as a function of B in panel (b),
where Tc is obtained from the results in panel (a). The temperature
dependence of the superfluid density Q and Q̃ is shown in panels
(c) and (d), respectively. Q0 (Q̃0) in panel (c) [(d)] represents Q (Q̃)
at T = 0 and B = 0.

Q = 2n�2Y (A,C), (46)

Y (A,C) =
√

2πT
∑
ωn

A3 + √
C

(
A2 − 2ω2

nμ
2
BB2

)
[C(A + √

C)]3/2
, (47)

A = �2 + ω2
n − μ2

BB2, C = A2 + 4ω2
nμ

2
BB2, (48)

with A0 = A|�=0 and C0 = C|�=0, where N0 is the density of
states at the Fermi level per spin in the normal state, n is the
electron density per spin, and μB is Bohr’s magneton. The
derivations are given in Appendix H. We also calculate

Q̃(T, B) = Q(T, B,�BCS(T ))

�2
BCS(T )

= 2nY (A,C)|�=�BCS(T ), (49)

where �BCS(T ) = �eq(T, B = 0) represents the pair potential
of a BCS superconductor. The last term in Eq. (47) is derived
from the odd-frequency pairing correlation, which is gener-
ated by a Zeeman field. The coefficient b and the superfluid
density Q satisfy the relation in Eq. (37). The self-consistent
pair potential �eq, the coefficient b at the transition tem-
perature, the superfluid density Q, and Q̃ in the spin-singlet
superconductor are plotted in Figs. 2(a)–2(d), respectively.
We denote the transition temperature at B = 0 by T0 and the
pair potential at T = 0 and B = 0 by �0 ≈ 1.76T0 [37]. The
coefficient b at T = T0 and B = 0 corresponds to the BCS
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TABLE I. Three theoretical models which describe the discontinuous transition to the superconducting phase. The structures of the pair
potential are given in the second row. The third row shows the perturbations that induce odd-frequency pairing correlations. The transition to
the superconducting state becomes discontinuous because odd-frequency Cooper pairs decrease the superfluid density to zero. The fourth-order
coefficient of the GL free energy b and the superfluid density Q are proportional to each other, as shown in Eq. (37).

j = 3/2 SC Conventional SC Two-band SC

Pair potential ��ηk · �γUT �iσ̂2 �iρ̂2

Perturbation Spin-orbit interaction Zeeman field Band hybridization and asymmetry
�εk · �γ μBB · σ̂a ερ̂3 + V ρ̂1

b

b ≈ AQ(F )/�2|�→0 Eqs. (28) and (33) Eqs. (45) and (46) Eq. (G6)

aσ̂j for j = 1–3 are Pauli matrices in spin space.
bρ̂j for j = 1–3 are Pauli matrices in band space.

results:

bBCS(T0) = N0
7ζ (3)

16(πT0)2
. (50)

Q0 = 2n is the superfluid density at T = 0 and B = 0. Q̃0 =
2n/�2

0 represents Q̃ at T = 0 and B = 0. The characteristic
properties shown in Fig. 2 are almost identical to those in
Fig. 1.

In Table I, we summarize the obtained results for three
theoretical models of superconducting state. The second row
shows the structure of the pair potentials. The third row shows
the perturbations that generate the odd-frequency pairing cor-
relations. Since f odd ∝ iωn[HN(k)�(k) − �(k)H

˜
N(k)], it is

easy to confirm the presence of odd-frequency pairs when
the normal-state Hamiltonian HN includes the perturbations
on the table. Although these three models describe different
superconducting states in different electronic structures, the
coefficient b and the superfluid density Q share essentially the
same expression as shown in Eq. (37). The existence of odd-
frequency Cooper pairs is a common feature among the three
uniform superconducting states. The discontinuous transition
occurs because odd-frequency Cooper pairs decrease the su-
perfluid density at finite temperature. The results displayed
on Table I suggest that the origin of the phenomenon among
these models is common. In this paper, we find a sufficient
condition that makes the transition to the superconducting
phase discontinuous. We do not deny other mechanisms for
the discontinuous transition.

C. A relating state

The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state is ex-
pected at high Zeeman fields [43,44]. For μBB/2πT0 � 0.18,
such spatially oscillating states can be a stable solution of the
Gor’kov equation [45]. Theoretical studies [46,47] showed
that the transition from the normal state to the FFLO state
can be both first and second order depending on model pa-
rameters. Since odd-frequency Cooper pairs also exist in such
regime [48,49], there might be nontrivial relationships be-
tween the nonuniform odd-frequency Cooper pairs and the
order of the phase transition. However, the problem is beyond
the scope of this paper and is left for our future study.

VI. CONCLUSION

We have theoretically studied the thermodynamic insta-
bility of uniform superconducting states that include the
subdominant pairing correlations belonging to the odd-
frequency symmetry class. We especially focus on roles of
odd-frequency Cooper pairs in the discontinuous transition
to the superconducting phase. In j = 3/2 superconductors,
we analyzed the contributions of the odd-frequency pairing
correlations to the coefficient of �4 term in the Ginzburg-
Landau (GL) free energy b and the superfluid density Q. The
odd-frequency pairing correlations decrease b and Q down
to zero in the same manner because odd-frequency Cooper
pairs are paramagnetic. Since the effects are considerable at
finite temperatures, the transition to a superconducting phase
becomes discontinuous. At a low temperature far below the
transition temperature, on the other hand, the pair poten-
tial and the superfluid density remain unchanged even in
the presence of odd-frequency pairs. The dependence of the
odd-frequency pairing correlation functions on the Matsubara
frequency explains well such characteristic features of the
instability.

We also analyze the discontinuous transition in other su-
perconductors such as a conventional s-wave spin-singlet
superconductor under Zeeman fields and a two-band su-
perconductor with interband pairing order. If odd-frequency
Cooper pairs significantly reduce the superfluid density, the
transitions to these superconducting states can be discontinu-
ous. The coefficient b and the superfluid density Q calculated
for these states also share essentially the same expressions.
We conclude that the discontinuous transition to the uniform
superconducting state is a common feature of superconductors
in which the amplitude of the odd-frequency pairing correla-
tion function is sufficiently large.
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APPENDIX A: ALGEBRAS OF γ MATRICES

The dispersions in the normal-state Hamiltonian are given
by

ξk =
(

−2t1 − 5

2
t2

)∑
ν

cos kν + 6t1 + 15

2
t2 − μ, (A1)

εk,1 = 4
√

3t3 sin kx sin ky, (A2)

εk,2 = 4
√

3t3 sin ky sin kz, (A3)

εk,3 = 4
√

3t3 sin kz sin kx, (A4)

εk,4 =
√

3t2(− cos kx + cos ky), (A5)

εk,5 = t2(−2 cos kz + cos kx + cos ky). (A6)

The spinors for the angular momentum of j = 3/2 are de-
scribed by

Jx = 1

2

⎡
⎢⎢⎢⎣

0
√

3 0 0√
3 0 2 0

0 2 0
√

3
0 0

√
3 0

⎤
⎥⎥⎥⎦, (A7)

Jy = 1

2

⎡
⎢⎢⎢⎣

0 −i
√

3 0 0
i
√

3 0 −2i 0
0 2i 0 −i

√
3

0 0 i
√

3 0

⎤
⎥⎥⎥⎦, (A8)

Jz = 1

2

⎡
⎢⎢⎣

3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

⎤
⎥⎥⎦. (A9)

The five Dirac’s γ -matrices are defined in 4 × 4 pseudospin
space as

γ 1 = 1√
3
(JxJy + JyJx ), γ 2 = 1√

3
(JyJz + JzJy), (A10)

γ 3 = 1√
3
(JzJx + JxJz ), γ 4 = 1√

3

(
J2

x − J2
y

)
, (A11)

γ 5 =1

3

(
2J2

z − J2
x − J2

y

)
, (A12)

and 14×4 is the identity matrix. They satisfy the following
relations:

γ iγ j + γ jγ i = 2 × 14×4δi,j, (A13)

γ 1γ 2γ 3γ 4γ 5 = −14×4, (A14)

{γ i}∗ = {γ i}T = UT γ iU −1
T , UT = γ 1γ 2, (A15)

where UT is the unitary part of the time-reversal operation
T = UTK with K meaning complex conjugation. Equa-

tion (5) corresponds to the Luttinger-Kohn Hamiltonian [27]
with cubic anisotropy when we expand the trigonometric
functions up to the second order of the momentum.

APPENDIX B: PSEUDOSPIN-SINGLET PAIRING ORDER

Pseudospin-singlet pair potential in the j = 3/2 model is
described by

�(k) = �UT , (B1)

in the BdG Hamiltonian in Eq. (4) [25,26]. Here, � is chosen
to be real. The anomalous Green’s function within the first
order of � results in

F singlet
1 = �

Z0

[ − (
ω2

n + ξ 2
k + �ε 2

k

) + 2ξk�εk · �γ
]
UT . (B2)

In this pairing order, the spin-orbit interaction does not induce
any odd-frequency pairing correlations but generates an even-
frequency pseudospin-quintet pairing correlation described by
the second term in Eq. (B2). The coefficients in the GL free-
energy functional are expressed as

asinglet = 1

g̃
+ T

∑
ωn

1

N

∑
k

−2

Z0

(
ω2

n + ξ 2
k + �ε 2

k

)
, (B3)

bsinglet = T
∑
ωn

1

N

∑
k

1

Z2
0

{(
ω2

n + ξ 2
k + �ε 2

k

)2 + 4ξ 2
k �ε 2

k

}
,

(B4)

where asinglet and bsinglet represent second- and fourth-order
coefficients of the GL functional, respectively. The expression
of asinglet is equivalent to a in Eq. (18) and bsinglet > 0 holds
true. Therefore, the thermal property of the pseudospin-singlet
state is identical to that of the BCS state as well as the
pseudospin-quintet states without odd-frequency Cooper pairs
discussed in Sec. II B.

APPENDIX C: PARAMAGNETIC PROPERTY OF
ODD-FREQUENCY COOPER PAIR

We consider a general Bogoliubov–de Gennes Hamiltonian
describing electronic states of a uniform superconductor:

H (k) =
[

HN(k) �(k)
−�

˜
(k) −H

˜
N(k)

]
, (C1)

where X
˜

(k, iωn) = X ∗(−k, iωn) represents particle-hole con-

jugation. We assume H (k) is a 2M × 2M matrix with M being
a positive integer. H (k) has particle-hole symmetry described
as

CH (−k)C−1 = −H (k), C = τ1K, (C2)

where C represents charge-conjugation operator and τ j for
j = 1–3 are Pauli matrices in the particle-hole space. When
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we examine a response of superconductors to external pertur-
bations within the linear response theory, we often need to
compute a correlation function of this form:

� = T
∑
ωn

1

Vvol

∑
k

A2Tr[GG − F
˜
F](k,iωn ), (C3)

where A represents a vertex in a corresponding correlation
function (e.g., current operator in a current-current correlation
function) and G(F ) is normal (anomalous) Green’s function.
The Green’s function is calculated by the Gor’kov equation,

[iωn − H (k)]

[
G F

−F
˜

−G
˜

]
(k,iωn )

= 1. (C4)

The relation

FT(−k,−iωn) = −F (k, iωn), (C5)

holds true by the Fermi-Dirac statistics of electrons. The con-
tribution of the anomalous Green’s function to the correlation
function is calculated to be

�F = T
∑
ωn

1

Vvol

∑
k

A2Tr[−F
˜

(k, iωn)F (k, iωn)]

= T
∑
ωn

1

Vvol

∑
k

A2
∑
αβ

F∗
βα (k,−iωn)Fβα (k, iωn)

= T
∑
ωn

1

Vvol

∑
k

× A2
∑
αβ

(∣∣ f e
βα (k, iωn)

∣∣2 − ∣∣ f o
βα (k, iωn)

∣∣2)
, (C6)

where we used the relation in Eq. (C5) to reach the second
line. Fβα represents (β, α) component of the M × M matrix
F and

f e/o
βα (k, iωn) = Fβα (k, iωn) ± Fβα (k,−iωn)

2
(C7)

represents even- and odd-frequency components of Fβα .
Equation (C6) clearly shows the anomalous properties of odd-
frequency Cooper pairs by the negative sign of the second
term. When we consider a linear response to a static transverse
vector potential, the second term indicates that odd-frequency
pairing correlations always have negative contributions to the
Meissner kernel. In other words, odd-frequency Cooper pairs
exhibit a paramagnetic response to external magnetic fields
and then destabilize superconductivity by disturbing phase
coherence. Actually, above arguments are not valid when the
corresponding vertex cannot be factorized like Eq. (C3). It has
been shown that diamagnetic odd-frequency Cooper pairs can
exist in some special systems [50,51]. But the odd-frequency

Cooper pairs in most multiband or orbital superconductors
show paramagnetic response [23] and those considered in this
paper are also paramagnetic.

APPENDIX D: INDUCED PAIRING CORRELATIONS

The odd-frequency pairing correlations induced by the
spin-orbit interactions are represented by f odd

1 (k, iωn) =
−iωnPOUT . We supply the calculated results of PO for
(ηk,4, ηk,5) = (0, 1), (1, 1)/

√
2 and (1, i)/

√
2,

P(0,1)
O = 2γ 5

∑
i �=5

εk,iγ
i, (D1)

P(1,1)/
√

2
O =

√
2

[
(γ 4 + γ 5)

3∑
i=1

εk,iγ
i

+ (εk,5 − εk,4)γ 4γ 5

]
, (D2)

P(1,i)/
√

2
O =

√
2

[
(γ 4 + iγ 5)

3∑
i=1

εk,iγ
i

+ (εk,5 − iεk,4)γ 4γ 5

]
. (D3)

The expression of the coefficient b for (1, i)/
√

2 state is
given by

bTRSB = T
∑
ωn

1

N

∑
k

1

Z2
0

[
2
(
ω2

n + ξ 2
k − A0

+ |�εk · �ηk|2
)2 − 8ω2

n(A0 − |�εk · �ηk|2)
]
. (D4)

APPENDIX E: SIXTH-ORDER COEFFICIENT

The sixth-order coefficient of the GL functional in Eq. (10)
is represented as

c�6 = T
∑
ωn

1

N

∑
k

1

6
Tr[F1(k, iωn)�†(k)

× F1(k, iωn)�†(k)F1(k, iωn)�†(k)]. (E1)

When we choose (ηk,4, ηk,5) = (1, 0) and t2 = 0 in Eq. (4) as
we assumed in Sec. III, the sixth-order coefficient of the GL
functional results in

c = T
∑
ωn

1

N

∑
k

−2

3Z3
0

{(
ω2

n + ξ 2
k − �ε 2

k

)3

− 12ω2
n�ε 2

k

(
ω2

n + ξ 2
k − �ε 2

k

)}
. (E2)

The first term in Eq. (E2) originates from the even-frequency
correlation function. On the other hand, the second term is
composed of both even and odd-frequency correlation func-
tion. Although eighth-order coefficients and above are also
modified by odd-frequency correlation functions, it is difficult
to extract the physical meaning from these coefficients due to
the cross terms.
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APPENDIX F: LINEAR RESPONSE TO
ELECTROMAGNETIC FIELDS IN A LATTICE MODEL

The coupling between an electron and an electromagnetic
field is considered through the Peierls phase in the kinetic
energy [52,53]:

Hkin
N = −t1

∑
jz

∑
〈ri,rj〉

eiϕij c†
ri, jz

crj, jz + H.c.,

ϕij = e
∫ ri

rj

dr · A(r), (F1)

where c†
r, jz

(cr, jz ) is the creation (annihilation) operator for the
electron at r with pseudospin jz. We neglect the correction to
the weak spin-orbit interactions (t3 � t1). The current density
operator j is defined from the variation of the Hamiltonian
with respect to the vector potential:

δH(t ) = −
∑

r

j(r, t ) · δA(r, t ). (F2)

Within the first order of the vector potential, the current can
be decomposed into the paramagnetic and diamagnetic terms,

jμ(r, t ) = jpara
μ (r) + jdia

μ (r, t ) (μ = x, y, z), (F3)

jpara
μ (r) = iet1

∑
jz

[
c†

r+r̂μ, jz
cr, jz − H.c.

]
,

jdia
μ (r, t ) = e2kμ(r)Aμ(r, t ), (F4)

where r̂μ is the basic lattice vector along the μ direction of a
simple cubic lattice and kμ(r) is local kinetic-energy operator
with respect to the μ-oriented links, which is defined as

kμ(r) = −t1
∑

jz

[
c†

r+r̂μ, jz
cr, jz + H.c.

]
. (F5)

The perturbation Hamiltonian H′ within the first order of the
vector potential reads

H′(t ) = −
∑

r

jpara (r) · A(r, t ). (F6)

In Sec. IV, we examine the linear response in the x-direction:

jx(q, ω) = −Kxx(q, ω)Ax(q, ω). (F7)

The response kernel Kxx is calculated to be [54–56]

Kxx(q, ω) = e2〈−kx(r)〉 − �R
xx(q, ω), (F8)

where 〈−kx(r)〉 represents the kinetic energy along the x di-
rection per unit cell and �R

xx is the current-current correlation
function expressed as

�R
xx(q, ω) = �xx(q, iνm → ω + iδ), (F9)

�xx(q, iνm) = −e2T
∑
ωn

1

N

∑
k

4t2
1 sin2 kx

× Tr[G(k + q, iωn + iνm)G(k, iωn)

− F
˜

(k + q, iωn + iνm)F (k, iωn)], (F10)

where νm = 2mπT is a bosonic Matsubara frequency with m
being an integer and δ is a small positive real value. We only
consider the transverse gauge fields [i.e., q · A(q, ω) = 0].
The superfluid density is defined by

Q = Kxx(q → 0, ω = 0)

2e2t1
. (F11)

The contribution of odd-frequency pairing correlations in
Sec. IV is described by using

QF = T
∑
ωn

1

N

∑
k

2t1 sin2 kxTr[−F
˜

(k, iωn)F (k, iωn)].

(F12)

The summation over Matsubara frequencies can be carried out
analytically, when we use the spectral representation of the
Green’s function,

G(k, iωn) =
∑

λ

�φk,λ �φ †
k,λ

iωn − Eλ(k)
. (F13)

Here, the summation is taken over all eight indices of the
eigenstates of the BdG Hamiltonian and �φk,λ is the eigenvector
belonging to the eigenenergy Eλ(k). After the summation over
the Matsubara frequencies, we reach

〈−kx(r)〉 = 1

N

∑
k,λ=S±

2t1 cos kx
[
u2

k f (Eλ) + v2
k f (−Eλ)

]
,

(F14)

with

u2
k = 1 + ξk√

ξ 2
k + �2

, v2
k = 1 − ξk√

ξ 2
k + �2

, (F15)

and

�R
xx(q → 0, ω = 0) = e2 1

N

∑
k,λ=S±

8t2
1 sin2 kx

(
−∂ f (Eλ)

∂Eλ

)
,

(F16)

where f (E ) = [eE/T + 1]−1 is Fermi distribution function.
Above expressions are valid for (ηk,4, ηk,5) = (1, 0), (0, 1),
and (1, 1)/

√
2 at t2 = 0.

The Green’s function for (ηk,4, ηk,5) = (1, 0), (0, 1), and
(1, 1)/

√
2 at t2 = 0 is calculated to be

G(k, iωn) = − 1

Z

[(
ω2

n + ξ 2
k + �2

)
(iωn + ξk) + �ε 2

k (iωn − ξk)

− {
(iωn + ξk)2 + �2 − �ε 2

k

}
�εk · �γ

]
, (F17)

F (k, iωn) = −�

Z

[
ω2

n+ξ 2
k +�2 − �ε 2

k − 2iωn�εk · �γ
]
�ηk · �γUT ,

(F18)

Z = (
ω2

n + ξ 2
k + �2 − �ε 2

k

)2 + 4ω2
n�ε 2

k . (F19)

The last term in Eq. (F18) represents the odd-frequency pair-
ing correlation induced by the spin-orbit interaction.
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APPENDIX G: DISCONTINUOUS TRANSITION IN A TWO-BAND SUPERCONDUCTOR
WITH INTERBAND PAIRING ORDER

We consider following mean-field Hamiltonian which describes the two-band superconducting states with the interband
pairing order,

H =
∑

k

[a†
k,↑ a†

k,↓ b†
k,↑ b†

k,↓a−k,↑ a−k,↓ b−k,↑ b−k,↓]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εa
k V �

εa
k V s�

V εb
k −s�

V εb
k −�

−� −εa
k −V

−s� −εa
k −V

s� −V −εb
k

� −V −εb
k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ak,↑
ak,↓
bk,↑
bk,↓

a†
−k,↑

a†
−k,↓

b†
−k,↑

b†
−k,↓

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (G1)

where a†
kσ

(b†
kσ

) is a creation operator of an electron in band a (b) with momentum k and spin σ (=↑,↓). εl
k (l = a, b) is

defined by εl
k = k2/2ml − μl and V is the hybridization potential mixing the two bands. � represents interband pairing potential

belonging to s-wave spin-triplet odd-band-parity (spin-singlet even-band-parity) symmetry class when we choose s = +1 (−1).
Equation (G1) with s = +1 corresponds to the mean-field Hamiltonian considered in Ref. [40]. Equation (G1) can be block-
diagonalized and the reduced 4 × 4 Hamiltonian is represented by

Ȟ (k) =
[

ĤN �̂

�̂† −ĤN

]
, ĤN = ξ + ερ̂3 + V ρ̂1, �̂ =

{
�(iρ̂2) (s = +1)
�ρ̂1 (s = −1), (G2)

where ξ = (εa
k + εb

k )/2, ε = (εa
k − εb

k )/2, and ρ̂j for j = 1–3 are Pauli matrices in the two-band space. The anomalous Green’s
function F̂ is calculated as

F̂ (k, iωn) =
{ −1

Z+1

[
ω2

n + ξ 2 − ε2 − V 2 + �2 − 2iωn(ερ̂3 + V ρ̂1)
]
�(iρ̂2) (s = +1)

−1
Z−1

[
ω2

n + ξ 2 − ε2 + V 2 + �2 − 2V ξ ρ̂1 + 2iV ερ̂2 − 2iωnερ̂3
]
�ρ̂1 (s = −1),

(G3)

Z+1 = (
ω2

n + ξ 2 − ε2 − V 2 + �2
)2 + 4ω2

n(ε2 + V 2), (G4)

Z−1 = (
ω2

n+ξ 2 − ε2+V 2+�2
)2−4

(
V 2ξ 2−V 2ε2−ω2

nε
2
)
. (G5)

−2iωnερ̂3�(iρ̂2) and −2iωnV ρ̂1�(iρ̂2) in the numerator for s = +1 and −2iωnερ̂3�ρ̂1 in that for s = −1 represent odd-
frequency pairing correlations.

The authors of Ref. [40] analyzed the transition from the normal state to the superconducting state described by H in Eq. (G1)
with s = +1. They found that the transition becomes first-order under the sufficiently large band hybridization V . The mechanism
is explained well by the paramagnetic property of the odd-frequency Cooper pairs induced by V as well as we discussed in this
paper. Moreover, the discontinuous transition is also expected in the presence of sufficiently large asymmetry between the two
bands ε. In this case, the odd-frequency pairing correlation is induced also by the band asymmetry ε. This argument is valid
because Ȟ (k) in Eq. (G2) for s = +1 is equivalent to the Hamiltonian of a spin-singlet superconductor under Zeeman fields.
The calculated results of the fourth-order coefficient of the GL free energy and the superfluid density are given by

b ∝ Yinter (A0,C0), Q ∝ �2Yinter (A,C), (G6)

with Yinter = Y |
μBB→

√
(ε2+V 2 )

in Eq. (47). Here we consider a simple band structure ma = mb [23] for simplicity.

APPENDIX H: A SPIN-SINGLET SUPERCONDUCTOR UNDER SPIN-DEPENDENT POTENTIALS

We consider a spatially uniform spin-singlet s-wave superconducting state under spin-dependent potentials. The Gor’kov
equation reads

[iωn − ȞBdG]

[
G F

−F
˜

−G
˜

]
(k,iωn )

= 1̌, ȞBdG =
[

ĤN �̂

−�̂
˜

−Ĥ
˜

N

]
. (H1)

The anomalous Green’s function is represented as

F (k, iωn) = [
�̂�̂

˜
− ω2

n − �̂Ĥ
˜

N�̂−1ĤN + iωnP
]−1

�̂, (H2)

P = (
�̂Ĥ

˜
N − ĤN�̂

)
�̂−1, �̂ = �iσ̂2, (H3)
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where σ̂j for j = 1–3 are Pauli matrices in the spin space. The odd-frequency pairing correlations appear for P �= 0 [12]. The
electric current j within the linear response to a vector potential A is described by [57]

j = − e2

mc
QA,

Q = nT
∑
ωn

∫
dξ 〈Tr[GG − F

˜
F − GNGN](k,iωn )〉FS, (H4)

where n is the electron density per spin, 〈· · · 〉FS ≡ ∫
d
4π

· · · is the Fermi-surface average, and Q is referred to as superfluid
density.

First, we consider the normal-state Hamiltonian including an antisymmetric spin-orbit interaction,

ĤN(k) = ξk − αk · σ̂, ξk = h̄2k2

2m
− μ, α−k = −αk. (H5)

The Fermi surface is split into two due to the spin-orbit interaction in the normal state. The Green’s functions are calculated
to be

G(k, iωn) = − (iωn + ξk)
(
ω2

n + ξ 2
k + �2

) + (iωn − ξk)α2
k + {

(iωn + ξk)2 − α2
k − �2

}
αk · σ̂{

ω2
n + ξ 2

k + �2 + α2
k

}2 − 4ξ 2
k α2

k

, (H6)

F (k, iωn) = − ω2
n + ξ 2

k + �2 + α2
k + 2ξkαk · σ̂{

ω2
n + ξ 2

k + �2 + α2
k

}2 − 4ξ 2
k α2

k

�iσ̂2. (H7)

The last term in the numerator of F represents the spin-
triplet odd-parity pairing correlation induced by the spin-orbit
interaction. Since P = 0, the odd-frequency component is ab-
sent. The gap equation becomes

� = gT
∑
ωn

1

Vvol

∑
k

1

2
Tr[F (k, iωn)iσ̂2]

= gN0πT
∑
ωn

�√
ω2

n + �2
, (H8)

which is identical to that in the BCS theory, where N0 is the
density of states at the Fermi level per spin. It is possible to
show that the superfluid density and the coefficients of the GL
free energy are identical to those in the BCS theory,

QBCS = 2nπT
∑
ωn

�2(
ω2

n + �2
)3/2 ,

aBCS = 1

g
− N0πT

∑
ωn

1

|ωn| ,

bBCS = N0π

4
T

∑
ωn

1

|ωn|3 = N0
7ζ (3)

16(πT )2 , (H9)

where ζ (n) is Riemann zeta function. Therefore, the spin-orbit
interactions do not change any thermal properties of a spin-
singlet superconductor [1] as we discussed in the introduction.

Second, we consider the normal-state Hamiltonian includ-
ing the Zeeman potential,

ĤN(k) = ξk − μBB · σ̂, (H10)

where μB is Bohr’s magneton and B is a Zeeman field.
The odd-frequency pairing correlation appears because P =

2 μBB · σ̂ remains finite. The Green’s functions are calculated
as

G(k, iωn) = −1

Zz

[
(iωn + ξk)

(
ω2

n + ξ 2
k + �2

)
+ (iωn − ξk)μ2

BB2

+ {
(iωn + ξk)2 + �2 − μ2

BB2}μBB · σ̂
]
,

(H11)

F (k, iωn) = −1

Zz

[
ω2

n+ξ 2
k +�2−μ2

BB2+2iωnμBB · σ̂]
�iσ̂2,

(H12)

Zz = ξ 4
k + 2ξ 2

k A + C, A = �2 + ω2
n − μ2

BB2,

C = A2 + 4ω2
nμ

2
BB2. (H13)

The last term in F represents the pairing correlation belonging
to odd-frequency spin-triplet s-wave symmetry class. The gap
equation becomes

� = gN0πT
∑
ωn

�
√

A + √
C√

2C
. (H14)

The self-consistent pair potential �eq satisfies Eq. (H14) and
minimizes the thermodynamic potential. The coefficients in
the free energy result in

a = 1

g
− N0πT

∑
ωn

ω2
n

|ωn|
(
ω2

n + μ2
BB2

) ,

b =
√

2

4
N0πT

∑
ωn

A3
0 + √

C0
(
A2

0 − 2ω2
nμ

2
BB2

)
[C0(A0 + √

C0)]3/2
, (H15)

with A0 = A|�=0 and C0 = C|�=0. The second term of the co-
efficient a in Eq. (H15) becomes smaller than that in Eq. (H9),
which leads to the suppression of Tc. The last term of the
coefficient b in Eq. (H15) is derived from the odd-frequency
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pairing correlation function and decreases the coefficient b.
The superfluid density is calculated to be

Q = 2
√

2nπT
∑
ωn

�2
{
A3 + √

C
(
A2 − 2ω2

nμ
2
BB2

)}
[C(A + √

C)]3/2
. (H16)

The comparison between the expression of the superfluid den-
sity in Eq. (H16) and that of the coefficient b in Eq. (H15)
shows that the odd-frequency pairing correlation decreases Q
and b in exactly the same manner.

[1] P. A. Frigeri, D. F. Agterberg, A. Koga, and M. Sigrist,
Superconductivity without inversion symmetry: MnSi versus
CePt3Si, Phys. Rev. Lett. 92, 097001 (2004).

[2] G. Sarma, On the influence of a uniform exchange field acting
on the spins of the conduction electrons in a superconductor,
J. Phys. Chem. Solids 24, 1029 (1963).

[3] K. Maki and T. Tsuneto, Pauli paramagnetism and supercon-
ducting state, Prog. Theor. Phys. 31, 945 (1964).

[4] H. Menke, C. Timm, and P. M. R. Brydon, Bogoliubov Fermi
surfaces stabilized by spin-orbit coupling, Phys. Rev. B 100,
224505 (2019).

[5] A. Bianchi, R. Movshovich, N. Oeschler, P. Gegenwart, F.
Steglich, J. D. Thompson, P. G. Pagliuso, and J. L. Sarrao,
First-order superconducting phase transition in CeCoIn5, Phys.
Rev. Lett. 89, 137002 (2002).

[6] H. A. Radovan, N. A. Fortune, T. P. Murphy, S. T. Hannahs,
E. C. Palm, S. W. Tozer, and D. Hall, Magnetic enhancement of
superconductivity from electron spin domains, Nature (London)
425, 51 (2003).

[7] R. Lortz, Y. Wang, A. Demuer, P. H. M. Böttger, B.
Bergk, G. Zwicknagl, Y. Nakazawa, and J. Wosnitza, Calori-
metric evidence for a Fulde-Ferrell-Larkin-Ovchinnikov su-
perconducting state in the layered organic superconductor
κ-(BEDT-TTF)2Cu(NCS)2, Phys. Rev. Lett. 99, 187002
(2007).

[8] V. L. Berezinskii, New model of the anisotropic phase of su-
perfluid He3, Pis’ma Zh. Eksp. Teor. Fiz. 20, 628 (1974) [JETP
Lett. 20, 287 (1974)].

[9] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Odd triplet
superconductivity and related phenomena in superconductor-
ferromagnet structures, Rev. Mod. Phys. 77, 1321
(2005).

[10] Y. Tanaka, M. Sato, and N. Nagaosa, Symmetry and topology
in superconductors –odd-frequency pairing and edge states–,
J. Phys. Soc. Jpn. 81, 011013 (2012).

[11] J. Linder and A. V. Balatsky, Odd-frequency superconductivity,
Rev. Mod. Phys. 91, 045005 (2019).

[12] C. Triola, J. Cayao, and A. M. Black-Schaffer, The role of odd-
frequency pairing in multiband superconductors, Ann. Phys.
(Berlin, Ger.) 532, 1900298 (2020).

[13] J. Cayao, C. Triola, and A. M. Black-Schaffer, Odd-frequency
superconducting pairing in one-dimensional systems, Eur. Phys.
J. Spec. Top. 229, 545 (2020).

[14] Y. Tanuma, N. Hayashi, Y. Tanaka, and A. A. Golubov, Model
for vortex-core tunneling spectroscopy of chiral p-wave super-
conductors via odd-frequency pairing states, Phys. Rev. Lett.
102, 117003 (2009).

[15] D. Kuzmanovski, R. S. Souto, and A. V. Balatsky, Odd-
frequency superconductivity near a magnetic impurity in
a conventional superconductor, Phys. Rev. B 101, 094505
(2020).

[16] V. Perrin, F. L. N. Santos, G. C. Ménard, C. Brun, T. Cren, M.
Civelli, and P. Simon, Unveiling odd-frequency pairing around
a magnetic impurity in a superconductor, Phys. Rev. Lett. 125,
117003 (2020).

[17] Y. Tanaka and A. A. Golubov, Theory of the proximity effect
in junctions with unconventional superconductors, Phys. Rev.
Lett. 98, 037003 (2007).

[18] Y. Asano and Y. Tanaka, Majorana fermions and odd-frequency
Cooper pairs in a normal-metal nanowire proximity-coupled
to a topological superconductor, Phys. Rev. B 87, 104513
(2013).

[19] S.-I. Suzuki and Y. Asano, Paramagnetic instability of
small topological superconductors, Phys. Rev. B 89, 184508
(2014).

[20] S.-I. Suzuki, T. Sato, and Y. Asano, Odd-frequency Cooper
pair around a magnetic impurity, Phys. Rev. B 106, 104518
(2022).

[21] Y. Asano, A. A. Golubov, Y. V. Fominov, and Y. Tanaka,
Unconventional surface impedance of a normal-metal film
covering a spin-triplet superconductor due to odd-frequency
Cooper pairs, Phys. Rev. Lett. 107, 087001 (2011).

[22] A. M. Black-Schaffer and A. V. Balatsky, Odd-frequency super-
conducting pairing in multiband superconductors, Phys. Rev. B
88, 104514 (2013).

[23] Y. Asano and A. Sasaki, Odd-frequency Cooper pairs in two-
band superconductors and their magnetic response, Phys. Rev.
B 92, 224508 (2015).

[24] D. C. Cavanagh, D. F. Agterberg, and P. M. R. Brydon, Pair
breaking in superconductors with strong spin-orbit coupling,
Phys. Rev. B 107, L060504 (2023).

[25] D. F. Agterberg, P. M. R. Brydon, and C. Timm, Bogoliubov
fermi surfaces in superconductors with broken time-reversal
symmetry, Phys. Rev. Lett. 118, 127001 (2017).

[26] P. M. R. Brydon, D. F. Agterberg, H. Menke, and C. Timm,
Bogoliubov Fermi surfaces: General theory, magnetic order,
and topology, Phys. Rev. B 98, 224509 (2018).

[27] J. M. Luttinger and W. Kohn, Motion of electrons and holes in
perturbed periodic fields, Phys. Rev. 97, 869 (1955).

[28] P. M. R. Brydon, L. Wang, M. Weinert, and D. F. Agterberg,
Pairing of j = 3/2 fermions in half-Heusler superconductors,
Phys. Rev. Lett. 116, 177001 (2016).

[29] B. Roy, S. A. A. Ghorashi, M. S. Foster, and A. H.
Nevidomskyy, Topological superconductivity of spin-3/2 car-
riers in a three-dimensional doped Luttinger semimetal, Phys.
Rev. B 99, 054505 (2019).

[30] G. Eilenberger, General approximation method for the free en-
ergy functional of superconducting alloys, Eur. Phys. J. A 190,
142 (1966).

[31] H. G. Suh, H. Menke, P. M. R. Brydon, C. Timm, A. Ramires,
and D. F. Agterberg, Stabilizing even-parity chiral superconduc-
tivity in Sr2RuO4, Phys. Rev. Res. 2, 032023(R) (2020).

144503-13

https://doi.org/10.1103/PhysRevLett.92.097001
https://doi.org/10.1016/0022-3697(63)90007-6
https://doi.org/10.1143/PTP.31.945
https://doi.org/10.1103/PhysRevB.100.224505
https://doi.org/10.1103/PhysRevLett.89.137002
https://doi.org/10.1038/nature01842
https://doi.org/10.1103/PhysRevLett.99.187002
https://doi.org/10.1103/RevModPhys.77.1321
https://doi.org/10.1143/JPSJ.81.011013
https://doi.org/10.1103/RevModPhys.91.045005
https://doi.org/10.1002/andp.201900298
https://doi.org/10.1140/epjst/e2019-900168-0
https://doi.org/10.1103/PhysRevLett.102.117003
https://doi.org/10.1103/PhysRevB.101.094505
https://doi.org/10.1103/PhysRevLett.125.117003
https://doi.org/10.1103/PhysRevLett.98.037003
https://doi.org/10.1103/PhysRevB.87.104513
https://doi.org/10.1103/PhysRevB.89.184508
https://doi.org/10.1103/PhysRevB.106.104518
https://doi.org/10.1103/PhysRevLett.107.087001
https://doi.org/10.1103/PhysRevB.88.104514
https://doi.org/10.1103/PhysRevB.92.224508
https://doi.org/10.1103/PhysRevB.107.L060504
https://doi.org/10.1103/PhysRevLett.118.127001
https://doi.org/10.1103/PhysRevB.98.224509
https://doi.org/10.1103/PhysRev.97.869
https://doi.org/10.1103/PhysRevLett.116.177001
https://doi.org/10.1103/PhysRevB.99.054505
https://doi.org/10.1007/BF01327140
https://doi.org/10.1103/PhysRevResearch.2.032023


SATO, KOBAYASHI, AND ASANO PHYSICAL REVIEW B 110, 144503 (2024)

[32] D. Kim, S. Kobayashi, and Y. Asano, Josephson effect of su-
perconductors with J = 3

2 electrons, Phys. Rev. B 103, 184516
(2021).

[33] D. Kim, T. Sato, S. Kobayashi, and Y. Asano, Spin susceptibility
of a J = 3/2 superconductor, J. Phys. Soc. Jpn. 92, 054703
(2023).

[34] A. Ramires and M. Sigrist, Identifying detrimental effects for
multiorbital superconductivity: Application to Sr2RuO4, Phys.
Rev. B 94, 104501 (2016).

[35] A. Ramires, D. F. Agterberg, and M. Sigrist, Tailoring Tc by
symmetry principles: The concept of superconducting fitness,
Phys. Rev. B 98, 024501 (2018).

[36] M. Sigrist and K. Ueda, Phenomenological theory of unconven-
tional superconductivity, Rev. Mod. Phys. 63, 239 (1991).

[37] M. Tinkham, Introduction to Superconductivity (McGraw-Hill,
New York, 1996).

[38] A. Sasaki, S. Ikegaya, T. Habe, A. A. Golubov, and Y. Asano,
Josephson effect in two-band superconductors, Phys. Rev. B
101, 184501 (2020).

[39] A. Bhattacharya and C. Timm, Stability of Bogoliubov fermi
surfaces within BCS theory, Phys. Rev. B 107, L220501 (2023).

[40] M. Gomes da Silva, F. Dinóla Neto, I. Padilha, J. Ricardo de
Sousa, and M. Continentino, First-order superconducting tran-
sition in the inter-band model, Phys. Lett. A 378, 1396 (2014).

[41] B. S. Chandrasekhar, A note on the maximum critical field of
high-field superconductors, Appl. Phys. Lett. 1, 7 (1962).

[42] A. M. Clogston, Upper limit for the critical field in hard super-
conductors, Phys. Rev. Lett. 9, 266 (1962).

[43] P. Fulde and R. A. Ferrell, Superconductivity in a strong spin-
exchange field, Phys. Rev. 135, A550 (1964).

[44] A. I. Larkin and Y. N. Ovchinnikov, Nonuniform state of su-
perconductors, Zh. Eksp. Teor. Fiz. 47, 1136 (1964) [Sov. Phys.
JETP 20, 762 (1965)].

[45] Y. Matsuda and H. Shimahara, Fulde-Ferrell-Larkin-
Ovchinnikov state in heavy fermion superconductors,
J. Phys. Soc. Jpn. 76, 051005 (2007).

[46] H. Burkhardt and D. Rainer, Fulde-Ferrell-Larkin-Ovchinnikov
state in layered superconductors, Ann. Phys. (Berlin, Ger.) 506,
181 (1994).

[47] S. Matsuo, S. Higashitani, Y. Nagato, and K. Nagai, Phase
diagram of the Fulde-Ferrell-Larkin-Ovchinnikov state in a
three-dimensional superconductor, J. Phys. Soc. Jpn. 67, 280
(1998).

[48] D. Chakraborty and A. M. Black-Schaffer, Interplay of finite-
energy and finite-momentum superconducting pairing, Phys.
Rev. B 106, 024511 (2022).

[49] S.-I. Suzuki, T. Sato, A. A. Golubov, and Y. Asano, Fulde-
Ferrell-Larkin-Ovchinnikov state in a superconducting thin film
attached to a ferromagnetic cluster, Phys. Rev. B 108, 064509
(2023).

[50] J. Schmidt, F. Parhizgar, and A. M. Black-Schaffer, Odd-
frequency superconductivity and Meissner effect in the doped
topological insulator Bi2Se3, Phys. Rev. B 101, 180512(R)
(2020).

[51] F. Parhizgar and A. M. Black-Schaffer, Diamagnetic and
paramagnetic Meissner effect from odd-frequency pairing in
multiorbital superconductors, Phys. Rev. B 104, 054507 (2021).

[52] R. Peierls, Zur theorie des diamagnetismus von leitungselektro-
nen, Eur. Phys. J. A 80, 763 (1933).

[53] J. M. Luttinger, The effect of a magnetic field on electrons in a
periodic potential, Phys. Rev. 84, 814 (1951).

[54] D. J. Scalapino, S. R. White, and S. C. Zhang, Superfluid
density and the Drude weight of the Hubbard model, Phys. Rev.
Lett. 68, 2830 (1992).

[55] D. J. Scalapino, S. R. White, and S. Zhang, Insulator, metal, or
superconductor: The criteria, Phys. Rev. B 47, 7995 (1993).

[56] T. Kostyrko, R. Micnas, and K. A. Chao, Gauge-invariant theory
of the Meissner effect in the lattice model of a superconductor
with local pairing, Phys. Rev. B 49, 6158 (1994).

[57] A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinski, Meth-
ods of Quantum Field Theory in Statistical Physics (Dover
Publications, New York, 1975).

144503-14

https://doi.org/10.1103/PhysRevB.103.184516
https://doi.org/10.7566/JPSJ.92.054703
https://doi.org/10.1103/PhysRevB.94.104501
https://doi.org/10.1103/PhysRevB.98.024501
https://doi.org/10.1103/RevModPhys.63.239
https://doi.org/10.1103/PhysRevB.101.184501
https://doi.org/10.1103/PhysRevB.107.L220501
https://doi.org/10.1016/j.physleta.2014.03.017
https://doi.org/10.1063/1.1777362
https://doi.org/10.1103/PhysRevLett.9.266
https://doi.org/10.1103/PhysRev.135.A550
https://doi.org/10.1143/JPSJ.76.051005
https://doi.org/10.1002/andp.19945060305
https://doi.org/10.1143/JPSJ.67.280
https://doi.org/10.1103/PhysRevB.106.024511
https://doi.org/10.1103/PhysRevB.108.064509
https://doi.org/10.1103/PhysRevB.101.180512
https://doi.org/10.1103/PhysRevB.104.054507
https://doi.org/10.1007/BF01342591
https://doi.org/10.1103/PhysRev.84.814
https://doi.org/10.1103/PhysRevLett.68.2830
https://doi.org/10.1103/PhysRevB.47.7995
https://doi.org/10.1103/PhysRevB.49.6158

