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We discuss the spin susceptibility of superconductors in which a Cooper pair consists of two electrons having the
angular momentum J = 3=2 due to strong spin–orbit interactions. The susceptibility is calculated analytically for several
pseudospin quintet states within the linear response to a Zeeman field. The susceptibility for A1g symmetry states is
isotropic in real space. For Eg and T2g symmetry cases, the susceptibility is anisotropic depending sensitively on choices
of order parameter. We also find in T2g states that the susceptibility tensor has off-diagonal elements.

1. Introduction

Spin–orbit interaction is a source of exotic electronic states
realized in topological semimetals,1,2) topological insula-
tors,3,4) and topological superconductors.5–9) In the presence
of strong spin–orbit interactions, spin S ¼ 1=2 and orbital
angular momentum L ¼ 1 of an electron are inseparable
degrees of freedom. Electronic properties of such materials
are characterized by an electron with pseudospin J ¼ L þ
S ¼ 3=2. Recent studies have suggested a possibility of
superconductivity due to Cooper pairing between two
electrons with J ¼ 3=2.10,11) The large angular momentum
of an electron enriches the symmetry of the order parameter
such as pseudospin-quintet even-parity and pseudospin-septet
odd-parity12–14) in addition to conventional spin-singlet
even-parity and spin-triplet odd-parity. Such high angular-
momentum pairing states would feature superconducting
phenomena of J ¼ 3=2 superconductors.15–23) In particular, a
large angular momentum of a Cooper pair would qualita-
tively change the magnetic response of a superconductor to
an external magnetic field.

The spin susceptibility reflects well the internal spin
structures of a Cooper pair. It is well known in spin-singlet
superconductors that the spin susceptibility decreases mono-
tonically with the decrease of temperature below Tc and
vanishes at zero temperature.24) This phenomenon occurs
independently of the direction of a Zeeman field H because a
Cooper pair has no spin. In spin-triplet superconductors, on
the other hand, the susceptibility can be anisotropic depend-
ing on the relative alignment between a Zeeman field and a d
vector in the order parameter. For d ? H, the spin suscepti-
bility is constant independent of temperature. Thus, the
unchanged Knight shift across Tc in experiments could be
strong evidence of spin-triplet superconductivity. For d k H,
the susceptibility decreases with decreasing temperature
below Tc. Such anisotropy is more remarkable when the
number of components in a d vector is smaller. For J ¼ 3=2
superconductors, however, our knowledge of the spin
susceptibility is very limited to a theoretical paper that
reported vanishing the spin susceptibility at zero temperature
for a singlet-quintet mixed state in a centrosymmetric
superconductor.25)

In this paper, we study theoretically the response of
pseudospin-quintet even-parity superconductors to an exter-
nal Zeeman field. The angular momentum of a Cooper pair in
such superconductors is J ¼ 2. Since the pairing symmetries

of the pseudospin-quintet states are not well understood, we
decided to calculate the spin susceptibility for the plausible
pair potentials preserving time-reversal symmetry. The spin
susceptibility is analytically calculated based on the linear
response formula.26) The pair potential of pseudospin-quintet
states is described by a five-component vector that couples to
five 4 � 4 matrices in pseudospin space. Such complicated
internal structures of the pair potential enrich the magnetic
response of J ¼ 3=2 superconductors. For high symmetry
pair potentials in pseudospin space (A1g states), the magnetic
response is isotropic in real space and the spin susceptibility
decreases monotonically with the decrease of temperature.
The results are similar to those of 3He B-phase. When the pair
potential are independent of wavenumber for lower symmetry
states (T2g and Eg), the magnetic response becomes ani-
sotropic in real space. In addition, we find that the suscepti-
bility tensor has finite off-diagonal elements in T2g states.

This paper is organized as follows. In Sect. 2, we explain
the tools that describe the electronic structures and the pair
potentials of J ¼ 3=2 superconductors. In Sect. 3, we discuss
the pair potentials considered in this paper and the normal
states that stabilize them. The characteristic behaviors of the
spin-susceptibility are discussed in Sect. 4. The conclusion is
given in Sect. 5. Algebras of 4 � 4 matrices and a number of
mathematical relationships used in the paper are summarized
in Appendices. Throughout this paper, we use the system of
units ħ ¼ kB ¼ c ¼ 1, where kB is the Boltzmann constant
and c is the speed of light.

2. J ¼ 3=2 Superconductor

We begin our analysis with the normal state Hamiltonian
adopted in Ref. 13. The electronic states have four degrees of
freedom consisting of two orbitals of equal parity and spin
1=2. In the presence of strong spin–orbit interactions, the
effective Hamiltonian for a J ¼ 3=2 electron is given by27,28)

HN ¼
X
k

�y
k HNðkÞ�k; ð1Þ

�k ¼ ½ck;3=2; ck;1=2; ck;�1=2; ck;�3=2�T; ð2Þ
where T means the transpose of a matrix and ck;jz is the
annihilation operator of an electron at k with the z-component
of angular momentum being jz. The normal state Hamiltonian
is represented by

HNðkÞ ¼ �k2 þ �ðk � JÞ2 � � ¼ �k 14�4 þ ~�k � ~� ð3Þ

with �k ¼ �k;0 � � and
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�k;0 ¼ � þ 5

4
�

� �
k2; �k;j ¼ � k2 ej cjðk̂Þ; ð4Þ

c1ðk̂Þ ¼
ffiffiffiffiffiffi
15

p
k̂x k̂y; c2ðk̂Þ ¼

ffiffiffiffiffiffi
15

p
k̂y k̂z; ð5Þ

c3ðk̂Þ ¼
ffiffiffiffiffiffi
15

p
k̂z k̂x; c4ðk̂Þ ¼

ffiffiffiffiffiffi
15

p

2
ðk̂2x � k̂2y Þ; ð6Þ

c5ðk̂Þ ¼
ffiffiffi
5

p

2
ð2k̂2z � k̂2x � k̂2y Þ; ð7Þ

where k̂j ¼ kj=jkj for j ¼ x, y, and z represents the direction
of wavenumber on the Fermi surface. The constants � > 0

and β determine the normal state property. The spin–orbit
interactions increase with the increase of � > 0. The
coefficients cj are normalized as

hciðk̂Þcjðk̂Þik̂ �
Z

dk̂

4�
ciðk̂Þcjðk̂Þ ¼ 	i;j; ð8Þ

where h� � �ik̂ means the integral over the solid angle on the
Fermi surface. The normalized five-component vector ~e ¼
ðe1; e2; e3; e4; e5Þ=j~ej determines the dependence of the
normal state dispersions on pseudospins. The spinors for
the angular momentum of J ¼ 3=2 are described by,

Jx ¼
1

2

0
ffiffiffi
3

p
0 0ffiffiffi

3
p

0 2 0

0 2 0
ffiffiffi
3

p

0 0
ffiffiffi
3

p
0

2
66664

3
77775; ð9Þ

Jy ¼
1

2

0 �i
ffiffiffi
3

p
0 0

i
ffiffiffi
3

p
0 �2i 0

0 2i 0 �i
ffiffiffi
3

p

0 0 i
ffiffiffi
3

p
0

2
66664

3
77775; ð10Þ

Jz ¼
1

2

3 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �3

2
66664

3
77775: ð11Þ

The 4 � 4 matrices in pseudospin space are defined as

�1 ¼ 1ffiffiffi
3

p ðJxJy þ JyJxÞ; �2 ¼ 1ffiffiffi
3

p ðJyJz þ JzJyÞ; ð12Þ

�3 ¼ 1ffiffiffi
3

p ðJzJx þ JxJzÞ; �4 ¼ 1ffiffiffi
3

p ðJ2x � J2y Þ; ð13Þ

�5 ¼ 1

3
ð2J2z � J2x � J2y Þ; ð14Þ

and 14�4 is the identity matrix. They satisfy the following
relations

�
 �� þ �� �
 ¼ 2 � 14�4	
;�; ð15Þ

�1 �2 �3 �4 �5 ¼ �14�4; ð16Þ

f�
g� ¼ f�
gT ¼ UT �

 U�1

T ; UT ¼ �1 �2; ð17Þ
where UT is the unitary part of the time-reversal operation
T ¼ UTK with K meaning complex conjugation. The
superconducting pair potential is represented as

�ðkÞ ¼ ~�k � ~�UT; ð18Þ

where a five-component vector ~�k represents an even-parity
pseudospin-quintet state. Throughout this paper, we assume

that all components of ~�k are real values. As a result of
the Fermi–Dirac statistics of electrons, the pair potential
is antisymmetric under the permutation of two pseudo-
spins, [i.e., �TðkÞ ¼ ��ðkÞ]. The Bogoliubov–de Gennes
Hamiltonian reads,

HBdGðkÞ ¼
HNðkÞ �ðkÞ
���ðkÞ �H�NðkÞ

" #
; ð19Þ

where X�ðk; i!Þ � X�ð�k; i!Þ represents the particle–hole
conjugation of Xðk; i!Þ.

The interaction with a uniform Zeeman field H is
described by27)

HZ ¼ ��B ~J �H; ð20Þ
~Jj ¼ g1Jj þ g3J

3
j ; ð21Þ

for j ¼ x, y, and z, where �B is the Bohr’s magneton, and g1
and g3 are the coupling constants. The matrix structures of Jj
and J3j are displayed in Appendix A. The angular momenta
in the Zeeman Hamiltonian are then given by

~Jx ¼ � i

2

� ffiffiffi
3

p
p1�

2 �5 þ p2�
1 �3 þ p1�

2 �4
�
; ð22Þ

~Jy ¼
i

2

� ffiffiffi
3

p
p1�

3 �5 þ p2�
1 �2 � p1�

3 �4
�
; ð23Þ

~Jz ¼
i

2
ðp2�2 �3 þ 2p1�

1 �4Þ; ð24Þ

p1 ¼ g1 þ
7

4
g3; p2 ¼ g1 þ

13

4
g3: ð25Þ

In the linear response theory, the spin susceptibility is
calculated by using the formula26)

�
 ¼ N 	�;
 �
�B
2

� �2
T
X
!n

Z
dk

ð2�Þ3

� Tr½Gðk; i!nÞ ~J� Gðk; i!nÞ ~J

þ F�ðk; i!lÞ ~J� Fðk; i!nÞð ~J
Þ�

� GNðk; i!nÞ ~J� GNðk; i!nÞ ~J
�: ð26Þ
The summation over the Matsubara frequency and that over
the wavenumber are regularized by introducing the Green’s
functions in the normal state GN and the spin susceptibility
N in the normal state.29)

The Green’s function for a superconducting state can be
obtained by solving the Gor’kov equation

½i!n � HBdGðkÞ�
Gðk; i!nÞ Fðk; i!nÞ
�F�ðk; i!nÞ �G�ðk; i!nÞ

" #

¼ 18�8: ð27Þ
The anomalous Green’s function results in

F�1ðk; i!nÞ ¼
UT

~�k
2
½ð!2

n þ �k
2 þ ~�k

2Þ~�k � ~�

þ i!n½~�k � ~�; ~�k � ~���
þ 2�k ~�k � ~�k þ ð~�k � ~�Þð~�k � ~�Þð~�k � ~�Þ�: ð28Þ

Generally speaking, it is not easy to calculate analytically the
inversion of 4 � 4 matrices.

3. Choice of Pair Potentials and Normal States

The original normal state Hamiltonian in Eq. (3) is spheric
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in both momentum and pseudospin spaces. For a cubic
symmetric superconductor,15) in which even-parity pair
potentials are classified into A1g, Eg, and T2g states according
to irreducible representations (irreps) of cubic symmetry.
With focusing on pseudospin-quintet Cooper pairs, their
pairing states are explicitly represented as

A1g: ~�k � ~� ¼ �
X5
j¼1

hj cjðk̂Þ � j; ð29Þ

Eg: ~�k � ~� ¼ �ðl4�4 þ l5�
5Þ; ð30Þ

T2g: ~�k � ~� ¼ �ðl1�1 þ l2�
2 þ l3�

3Þ; ð31Þ
where the unit vector ~h determines the pseudospin structure
of A1g state and li 2 C (i ¼ 1{5). A1g states involve
momentum-dependent coefficients, which comes from the
fact that �4 and �5 ð�1, �2, and �3) themselves belong to Eg

(T2g) irreps of cubic symmetry.
Generally speaking, the coefficients li for i ¼ 1{5 are

determined from the steady states of the free energy.30) For
Eg state, three distinct steady states exist: ðl4; l5Þ ¼ ð1; 0Þ,
ð0; 1Þ, and ð1; iÞ=

ffiffiffi
2

p
. The first two states preserve time-

reversal symmetry, while the last state breaks time-reversal
symmetry. For T2g state, there are four distinct steady states:
ðl1; l2; l3Þ ¼ ð1; 1; 1Þ=

ffiffiffi
3

p
, ð1; 0; 0Þ, ð1; ei2�=3; ei4�=3Þ=

ffiffiffi
3

p
,

ð1; i; 0Þ=
ffiffiffi
2

p
. The last two states break time-reversal symme-

try. Time-reversal symmetry-breaking superconducting states
have a problem specific to them: the formation of
Bogoliubov–Fermi surfaces.13,15,20) Since the relations be-
tween the pseudospin structures of a Cooper pair and the
magnetic response of a superconductor is the main issue in
this paper, we focus on time-reversal symmetry respecting
superconducting states. In addition to the steady states,
we also consider another pseudospin states described
by ðl4; l5Þ ¼ ð1; 1Þ=

ffiffiffi
2

p
, ðl1; l2; l3Þ ¼ ð1; 1; 0Þ=

ffiffiffi
2

p
, and

ðl1; l2; l3; l4; l5Þ ¼ ð1; 1; 1; 1; 1Þ=
ffiffiffi
5

p
. The last one is the

admixture of Eg and T2g states. These states complement
possible combinations of �i (i ¼ 1{5). The comparison
between the calculated results for such states and those for
the steady states helps us to understand the relations between
the pseudospin structures of a Cooper pair and the spin
susceptibility.

As shown in the second term in Eq. (28), the anomalous
Green’s function contains the pairing correlation belonging
to odd-frequency symmetry class. The stable superconduct-
ing states can be described by

Aodd ¼ ½~�k � ~�; ~�k � ~��� ¼ 0; ð32Þ

which means the absence of odd-frequency pairs. Odd-
frequency pairs increase the free-energy of a uniform
superconducting state31) because they indicate the para-
magnetic response to a magnetic field.32–34) A phenomeno-
logical argument on the paramagnetic response of odd-
frequency Cooper pairs is given in Appendix A of Ref. 35.
Equation (32) gives a guide that relates the stable pair
potential ~� to the electronic structures ~�.

To make the meaning of Eq. (32) clear, we discuss two
practical cases. First we briefly summarize the case of spin-
triplet superconductors in the presence of a strong Rashba
spin–orbit interaction � � � with

� ¼ �soðk̂yex � k̂xeyÞ; ð33Þ

where �so represents the amplitude of spin–orbit interaction,
�j and ej for j ¼ x, y, and z are the Pauli matrix and the unit
vector in spin space, respectively. The stable order parameter
id � � �y is determined as

½d � �; � � ��� ¼ 0 or d k �; ð34Þ

so that odd-frequency pairs are absent and the transition
temperature is optimal.31,36) Namely, the order parameter of a
spin helical state is stable in this case. The pair potentials
other than the helical state would be realized when the
Rashba spin–orbit interaction is sufficiently weak. The choice
in Eq. (34) and that in Eq. (32) are equivalent to each other.
Secondly we summarize instability of an Eg state with
ðl4; l5Þ ¼ ð1; iÞ=

ffiffiffi
2

p
under ~e ¼ ð1; 1; 1; 1; 1Þ=

ffiffiffi
5

p
. In this case,

Eq. (32) is not satisfied. Although such a time-reversal
breaking superconducting state takes the minimum of the
Ginzburg–Landau free-energy,12) its phase diagram is very
complicated.37) In some cases, the transition from the normal
state to the superconducting state become the first order,
which implies the instability of the superconducting state. A
paper showed that a term proportional to Tr½A2

odd� enters the
free-energy, increases the free-energy and decreases Tc.38)

Their conclusion agrees with that of suppression of Tc due to
odd-frequency Cooper pairs.31)

In this paper, we choose the normal state dispersion ~�k so
that Eq. (32) is satisfied for the pair potentials in Eqs. (29)–
(31). The Green’s function in the superconducting state can
be expressed simply and analytically under Eq. (32). The
results of the Green’s function in such a case are shown
in Appendix B. As we displayed in Appendix C, the gap
equation for the superconducting states satisfying Eq. (32) is
identical to that in the BCS theory. The transition to such
superconducting states from the normal one is always the
second order.

4. Spin Susceptibility

The spin susceptibility for pseudospin-quintet states are
calculated as

�

N

¼ 	�;


� �T
X
!n

1

2�3
~�2 	�;
 þ

L�;
ð~�Þ
Pþ

� �	 

k̂

; ð35Þ

with � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

n þ ~�2
p

. The tensor is defined by

L�;
ð~�Þ � Tr½~� � ~� ~J� ~� � ~� ~J
�; ð36Þ

and its elements are calculated to be
Lxx ¼ P�ð�21 � �22 þ �23Þ þ Rþ�

2
4 � R��

2
5

� 4
ffiffiffi
3

p
p21 �4 �5; ð37Þ

Lyy ¼ P�ð�21 þ �22 � �23Þ þ Rþ�
2
4 � R��

2
5

þ 4
ffiffiffi
3

p
p21 �4 �5; ð38Þ

Lzz ¼ P�ð��21 þ �22 þ �23 � �24Þ þ Pþ�
2
5; ð39Þ

Lxy ¼ 2
�
Pþ �2 �3 � 2

ffiffiffi
3

p
p1p2�1 �5

�
; ð40Þ

Lyz ¼ 2
�
Pþ �1 �3 þ

ffiffiffi
3

p
p1p2

�
�2 �5 �

ffiffiffi
3

p
�2�4

��
; ð41Þ

Lzx ¼ 2
�
Pþ �1 �2 þ

ffiffiffi
3

p
p1 p2

�
�3 �5 þ

ffiffiffi
3

p
�3�4

��
; ð42Þ

P	 � 4p21 	 p22; R	 ¼ 2p21 	 p22: ð43Þ
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The results in Eqs. (37)–(42) describe the characteristic
features of the susceptibility of J ¼ 3=2 superconductors.

4.1 A1g state
In the presence of attractive interactions in an A1g channel,

the pair potential is represented by Eqs. (18) and (29). We
always set ~e ¼ ~h so that Eq. (32) is satisfied. Different from
the s-wave spin-singlet pairing that also belongs to the A1g

irrep, an A1g state in the pseudo-spin quintet pairing has the
pseudospin degrees of freedom, which allows us to choose a
variety of pseudospin structures. We first choose a pseudo-
spin structure of a T2g irrep characterized by ~h ¼ ~hT2g

¼
ð1; 1; 1; 0; 0Þ=

ffiffiffi
3

p
. The spin susceptibility is calculated as

�
 ¼ N 	�;
 1 � 1

2
1 þ P�

3Pþ

� �
Q

 �
; ð44Þ

QðTÞ ¼ �T
X
!n

�2

�3
: ð45Þ

In BCS theory, Q represents the fraction of Cooper pairs to
quasiparticles on the Fermi surface. Indeed Q is zero at
T ¼ Tc, increases monotonically with the decrease of T, and
becomes unity at T ¼ 0. The susceptibility tensor is diagonal
and isotropic in real space. The susceptibility for a pseudospin
structure of an Eg irrep characterized by ~h ¼ ~hEg

¼
ð0; 0; 0; 1; 1Þ=

ffiffiffi
2

p
results in,

�
 ¼ N 	�;
 1 � 1

2
1 þ p22

Pþ

� �
Q

 �
: ð46Þ

The susceptibility for an admixture of T2g and Eg irreps
[~hT2gþEg

¼ ð1; 1; 1; 1; 1Þ=
ffiffiffi
5

p
] is also calculated as

�
 ¼ N 	�;
 1 � 1

2
1 þ 1

5

� �
Q

 �
: ð47Þ

The off-diagonal elements in the susceptibility tensor are
always zero in these cases, (i.e., �
 ¼ 0 for � ≠ 
). The pair
potentials in these states are represented by

�T2g
/ k̂x k̂yðJx Jy þ Jy JxÞ

þ k̂y k̂zðJy Jz þ Jz JyÞ þ k̂z k̂xðJz Jx þ Jx JzÞ; ð48Þ

�Eg
/ k̂2x J

2
x þ k̂2y J

2
y þ k̂2z J

2
z �

5

4
: ð49Þ

In Fig. 1(a), we plot the susceptibility at g3 ¼ 0 as a
function of temperature. The dependence of the pair potential
on temperature is calculated by solving the gap equation in
the weak coupling limit. As shown in Appendix C, the gap
equation is common for all the superconducting states
considered in the present paper and is identical to that
in BCS theory. The results show that the susceptibility
decreases with the decrease of temperature below Tc. The
results are independent of such choices of the pseudospin
structures as T2g, Eg, and T2g þ Eg at g3 ¼ 0. Although a
Cooper pair has the angular momentum of J ¼ 2 in the
quintet states, the susceptibility is isotropic for all the
pseudospin structures. The characteristic behaviors are inde-
pendent of the strength of spin–orbit interaction �=�. The
isotropic feature of the spin susceptibility is considered as
a result of high symmetry of the pair potential. The pair
potentials for a T2g and an Eg irreps shown in Eqs. (48) and
(49) are symmetric under the cyclic permutation among x, y,
and z. For comparison, we briefly mention the spin suscepti-
bility in superfluid 3He B-phase described by

d ¼ �ðk̂xex þ k̂yey þ k̂zezÞ: ð50Þ

The pair potential is symmetric under the cyclic permutation
among x, y, and z. As a result, the susceptibility plotted with a
broken line in Fig. 1(b) is isotropic in real space.

At the end of the subsection, we briefly discuss the effects
of J3� term on the spin susceptibility by choosing g3 ¼ g1.
The results are shown in Fig. 1(c). The isotropic nature of
the susceptibility remains unchanged even for g3 ¼ g1. The
amplitude of the susceptibility depends on the pseudospin
structure of the pair potential; the amplitude for a T2g irrep
becomes slightly larger than that for an Eg irrep.

4.2 T2g state
When attractive interactions between two electrons work

in a T2g or an Eg channel, the order parameters in Eqs. (30)
and (31) are isotropic in momentum space. To satisfy
Eq. (32), we switch off ~� ¼ 0 and consider a simple
pseudospin quintet superconductor in the following sub-
sections. In other words, the superconducting states charac-
terized by Eqs. (30) and (31) are stable when j~�j is
sufficiently smaller than the amplitude of the pair potential
at T ¼ 0. Even if we choose ~� ¼ 0, superconductors show
the rich magnetic response depending on the pseudospin
structures of the pair potential. The effects of the pseudospin-
dependent dispersions ~� ≠ 0 on the magnetic response will
be discussed later. The pair potential considered in this
subsection are represented by

�T2gðaÞ / ðJx Jy þ Jy JxÞ

þ ðJy Jz þ Jz JyÞ þ ðJz Jx þ Jx JzÞ; ð51Þ
�T2gðbÞ / ðJx Jy þ Jy JxÞ þ ðJy Jz þ Jz JyÞ; ð52Þ

�T2gðcÞ / ðJx Jy þ Jy JxÞ: ð53Þ
We first discuss a T2g state with ðl1; l2; l3Þ ¼ ð1; 1; 1Þ=

ffiffiffi
3

p
.

The pair potential is given by Eq. (51). The diagonal
elements shown in Eq. (44) are isotropic because the pair
potential is symmetric under the cyclic permutation among x,
y, and z. In addition to the diagonal elements, the suscepti-
bility has the off-diagonal elements as

Fig. 1. (Color online) The spin susceptibility for A1g states in the
pseudospin-quintet superconductors is plotted as a function of temperature
in (a), where we consider g3 ¼ 0 and ~� ¼ ~h. The diagonal elements in the
spin susceptibility tensor are isotropic in real space and the off-diagonal
elements are zero. In (b), the susceptibility of spin-triplet superconductors are
shown for a helical spin-triplet superconductor with two solid lines and for a
3He B-phase with a broken line. In (c), we consider the effects of J3j terms in
the Zeeman Hamiltonian by choosing g3 ¼ g1. Although the amplitudes of
susceptibility deviate slightly from those in (a), the characteristic features of
the susceptibility retain.

J. Phys. Soc. Jpn. 92, 054703 (2023) D. Kim et al.

054703-4 ©2023 The Physical Society of Japan

J. Phys. Soc. Jpn.
Downloaded from journals.jps.jp by 北海道大学 on 04/06/23



xy ¼ yz ¼ zx ¼ �N
1

3
Q: ð54Þ

The results for g3 ¼ 0 are displayed in Fig. 2(a). The pair
potential in Eq. (51) includes the off-diagonal terms. As a
result, the first term of L�
ð~�Þ in Eqs. (40)–(42) becomes finite.
Since the pair potential is independent of wavenumber, these
off-diagonal terms remain nonzero values even after averaging
over directions in momentum space on the Fermi surface.
Thus, the appearance of the off-diagonal elements in the
susceptibility tensor is a characteristic feature of a T2g state.

Secondly, we display the susceptibility for a T2g state with
ðl1; l2; l3Þ ¼ ð1; 1; 0Þ=

ffiffiffi
2

p
in Fig. 2(b). The pair potential

shown in Eq. (52) is symmetric under the permmutation of
Jx and Jz, whereas Jy is no longer equivalent to Jx and Jz. The
anisotropy of the diagonal elements in Fig. 2(b) is a direct
result of a pair potential at a low symmetry. As shown in
Eqs. (40)–(42), the off-diagonal elements are finite only for
the multi-component pair potentials. At the present case, only
the zx element remains finite because of l3 ¼ 0.

Finally, we display the susceptibility for a T2g state with
ðl1; l2; l3Þ ¼ ð1; 0; 0Þ=

ffiffiffi
2

p
in Fig. 2(c). The pair potential in

Eq. (53) is symmetric under the exchange between Jx and Jy.
The z axis is the high symmetry axis in this case. As a result,
the diagonal elements are anisotropic as shown in Fig. 2(c).
All the off-diagonal elements vanish because the pair
potential has only one pseudospin component.

4.3 Eg state
The pair potential for an Eg state with ðl4; l5Þ ¼ ð1; 1Þ=

ffiffiffi
2

p

becomes

�EgðaÞ /
� ffiffiffi

3
p

� 1
�
J2x �

� ffiffiffi
3

p
þ 1

�
J2y þ 2J2z ; ð55Þ

and the susceptibility is calculated as

xx ¼ N 1 � 1

2
1 þ p22 �

ffiffiffi
3

p
p21

Pþ

� �
Q

 �
; ð56Þ

yy ¼ N 1 � 1

2
1 þ p22 þ

ffiffiffi
3

p
p21

Pþ

� �
Q

 �
; ð57Þ

zz ¼ N 1 � 1

2
1 þ p22

Pþ

� �
Q

 �
; ð58Þ

xy ¼ yz ¼ zx ¼ 0: ð59Þ
The results are shown in Fig. 3(a). Since Jx, Jy, and Jz are
not equivalent to one another in Eq. (55) any longer, the

susceptibility becomes anisotropic in three directions. The
off-diagonal elements are absent in the susceptibility tensor
because the pair potential in Eq. (55) does not include such
off-diagonal terms as J�J
 with � ≠ 
.

In Figs. 3(b) and 3(c), we display the results for the single
component states with ðl4; l5Þ ¼ ð1; 0Þ and ð0; 1Þ, respec-
tively. They are possible order parameters of Eg states in the
presence of time-reversal symmetry.30) We find the relation

xx ¼ yy ≠ zz: ð60Þ

Their pair potentials �4 / J2x � J2y and �5 / 2J2z � J2x � J2y
remain unchanged under the permmutation of Jx and Jy.
Including the results in Fig. 2(c), Eqs. (37)–(42) suggest that
the anisotropic response like Eq. (60) and the absence of
off-diagonal elements are the common feature of the single
component order parameter.

The degree of the anisotropy of the diagonal response in
pseudospin-quintet states is rather weaker than that in a spin-
triplet superconductor. For comparison, in Fig. 1(b), we plot
the susceptibility of a spin-triplet helical state characterized

Fig. 2. (Color online) The spin susceptibility is plotted as a function of temperature for a T2g state with ðl1; l2; l3Þ ¼ ð1; 1; 1Þ=
ffiffiffi
3

p
in (a). The susceptibility

tensor in a T2g state has off-diagonal elements. In (b), the results for the state with ð1; 1; 0Þ=
ffiffiffi
2

p
are displayed, where we delete �3 component from the T2g pair

potential. The results for a single component pair potential with ð1; 0; 0Þ=
ffiffiffi
2

p
are shown in (c). Although we put g3 ¼ 0 in these figures, J3j terms in the Zeeman

potential do not change the characteristic features.

Fig. 3. (Color online) The spin susceptibility is plotted as a function of
temperature for a Eg state in (a).
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by d k � in Eq. (33) with two solid lines. When a Zeeman
field is perpendicular to d, the susceptibility is a constant
across Tc. The results for H k d, on the other hand, the
susceptibility decreases down to ð1=2ÞN. These behaviors
are independent of the amplitudes of �so > 0. In spin-triplet
superconductors, both the dimension in spin space and that in
real space are three. Therefore, it is possible to define two
different directions relatively to the direction of a Zeeman
field: (d k H and d ? H). The clear anisotropy of the
susceptibility in Fig. 1(b) is a result of the dimensional
consistency between in spin space and in real space. The
results in Figs. 2 and 3 indicate that the anisotropy of the
diagonal elements is more remarkable for the number of
components in the pair potential smaller.

4.4 Admixture of T2g and Eg states
The results for a the admixture of T2g and Eg states, [i.e.,

ðl1; l2; l3; l4; l5Þ ¼ ð1; 1; 1; 1; 1Þ=
ffiffiffi
5

p
], are calculated as

xx ¼ N 1 � 1

2
1 þ Pþ � 4

ffiffiffi
3

p
p21

5Pþ

� �
Q

 �
; ð61Þ

yy ¼ N 1 � 1

2
1 þ Pþ þ 4

ffiffiffi
3

p
p21

5Pþ

� �
Q

 �
; ð62Þ

zz ¼ N 1 � 1

2
1 þ 1

5

� �
Q

 �
: ð63Þ

The off-diagonal elements are calculated in the similar way,

xy ¼ �N Q Pþ � 2
ffiffiffi
3

p
p1 p2

5Pþ
; ð64Þ

yz ¼ �NQ
Pþ þ

ffiffiffi
3

p
p1 p2

�
1 �

ffiffiffi
3

p �
5Pþ

; ð65Þ

zx ¼ �NQ
Pþ þ

ffiffiffi
3

p
p1 p2

�
1 þ

ffiffiffi
3

p �
5Pþ

: ð66Þ

The calculated results for g3 ¼ 0 are plotted in Fig. 3(d). Not
only the diagonal elements but also the off-diagonal elements
are anisotropic. All the elements in Eqs. (37)–(42) are finite
and different from one another. The degree of the anisotropy
in the diagonal elements are weaker than that in Eg state and
stronger than that in T2g state. The characteristic features of
the susceptibility displayed in Figs. 2 and 3 retain even if we
consider J3� term in the Zeeman Hamiltonian.

Finally, we briefly discuss the effects of the pseudospin-
dependent dispersion ~� on the characteristic behaviors of the
susceptibility. When we switch on ~� in T2g and Eg states,
Eq. (32) is no longer holds. As a result, the additional terms
such as

Cf

2
i!n½~�k � ~�; ~�k � ~��� ¼ Cf i!n

X
i≠j

�i �j �
i � j; ð67Þ

appear at the numerator of the anomalous Green’s function in
Eq. (B·4), where Cf is a constant. Such components represent
the admixture of pseudospin-triplet and the pseudospin-septet
pairing correlations.20) Their contribution to the susceptibility
tensor is proportional to

C2
f !

2
n Tr

X
i≠j

�i �j�
i� j ~J�

X
k≠l

�k �l�
k�l ~J


" #
; ð68Þ

which modify the susceptibility tensor. However, they do not
always cancel the off-diagonal elements in Fig. 2(a) in a T2g

state. They do not wash out the anisotropy of the diagonal
elements in Fig. 3 in Eg states.

The results in Figs. 1–3 suggest that the behaviors of the
susceptibility depends sensitively on the orbital symmetry
and the pseudospin structures of the pair potential. In
particular, the appearance of the off-diagonal elements in
the susceptibility tensor is a characteristic feature of J ¼ 3=2
superconductors.

5. Conclusion

We have studied theoretically the spin susceptibility of
pseudospin-quintet pairing states in a J ¼ 3=2 superconduc-
tor that preserves time-reversal symmetry. Within the linear
response to a Zeeman field, we calculate the spin suscepti-
bility by using the Green’s function that is obtained by
solving the Gor’kov equation analytically. The calculated
results indicate that the magnetic response of pseudospin-
quintet states depends sensitively on the pseudospin
structures of the pair potential. The susceptibility tensor in
A1g (high symmetry) states is isotropic in real space. For T2g

and Eg states, the susceptibility tensor becomes anisotropic in
real space. We found in T2g states that the susceptibility
tensor has the off-diagonal elements.

Unfortunately, to our knowledge, experimental results of
spin susceptibility in J ¼ 3=2 superconductors are not
available. We believe that the characteristic features such as
the large anisotropy and the appearance of off-diagonal
elements would be helpful information to confirm J ¼ 3=2
superconductivity in experiments.
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Appendix A: Normal State

The spin susceptibility in the normal state is give by

N ¼� �B
2

� �2
T
X
!n

Z
dk

ð2�Þd
Tr½GNðk; i!nÞ ~J� GNðk; i!nÞ ~J
�;

ðA:1Þ

GN ¼ i!n � � þ ~�k � ~�
ði!n � �Þ2 � ~�k2

¼ �N þ �N~�k � ~�;

�N ¼ 1

2

1

zNþ
þ 1

zN�

 �
; �N ¼ 1

2j ~�kj
1

zNþ
� 1

zN�

 �
; ðA:2Þ

zN	 ¼ i!n � �	; �	 ¼ � 	 j ~�kj: ðA:3Þ
The Green’s function is the solution of

½i!n � HN�GNðk; !nÞ ¼ 1; HNðkÞ ¼ �k þ ~�k � ~�: ðA:4Þ

The trace of the Green’s function is calculated as
Tr½GNðk; i!nÞ ~J� GNðk; i!nÞ ~J
�

¼ 	�;
 Pþ �2
N þ �N �NM�;
ð~�kÞ þ �2NL�;
ð~�kÞ; ðA:5Þ

where we use Trð ~J� ~J
Þ ¼ Pþ 	�;
 and define the tensor

M�;
ð~�Þ � Tr½~� � ~�ð ~J� ~J
 þ ~J
 ~J�Þ�: ðA:6Þ

The angular momenta J
 are expressed in terms of �
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Jx ¼
�i
2

� ffiffiffi
3

p
�2 �5 þ �1 �3 þ �2 �4

�
; Jy ¼

i

2

� ffiffiffi
3

p
�3 �5 þ �1 �2 � �3 �4

�
; Jz ¼

i

2
½�2 �3 þ 2 �1 �4�: ðA:7Þ

They obey the relation UTðJ
Þ�U�1
T ¼ �J
, which simply means that the angular momenta are antisymmetric under the time-

reversal operation. The expression of J3


J3x ¼ � i

8

�
7

ffiffiffi
3

p
�2 �5 þ 13�1 �3 þ 7�2 �4

�
; J3y ¼ i

8

�
7

ffiffiffi
3

p
�3 �5 þ 13�1 �2 � 7�3 �4

�
; ðA:8Þ

J3z ¼ i

8
½13�2 �3 þ 14�1 �4�; ðA:9Þ

suggests that J
 and J3
 share the common matrix structures. The elements of the tensor are calculated as

Mxxð~�Þ ¼ 4p1 p2;
� ffiffiffi

3
p

�4 � �5
�
; Myyð~�Þ ¼ �4p1 p2;

� ffiffiffi
3

p
�4 þ �5

�
; Mzzð~�Þ ¼ 8p1 p2; �5; ðA:10Þ

Mxyð~�Þ ¼ Myxð~�Þ ¼ 4
ffiffiffi
3

p
p21�1; Mxzð~�Þ ¼ Mzxð~�Þ ¼ 4

ffiffiffi
3

p
p21�3; Myzð~�Þ ¼ Mzyð~�Þ ¼ 4

ffiffiffi
3

p
p21�2; ðA:11Þ

where �j ¼ �k2ej cjðk̂Þ as defined in Eq. (4) and we have used the relations

Tr½� j� ¼ 0; Tr½�i � j� ¼ 4	i;j; Tr½�i � j �k� ¼ 0; Tr½�i � j �k �l� ¼ 4½	i;j	k;l � 	i;k	j;l þ 	i;l	j;k�: ðA:12Þ

The another tensor L�;
 is defined by Eq. (36).
The summation over the wavenumber is replaced by the integration asZ

dk

ð2�Þd
FðkÞ ! N0

Z 1

�1
d� hFð�; k̂Þik̂; hFð�; k̂Þik̂ ¼

Z
dk̂

4�
Fð�; k̂Þ; ðA:13Þ

where k̂ is the unit vector on the Fermi surface. By using the relations

hM�;
ð~�kÞik̂ ¼ 0; hL�;
ð~�kÞik̂ ¼ hL�;�ik̂ 	�;
; ðA:14Þ

the susceptibility in the normal state becomes

N ¼ � �B
2

� �2
T
X
!n

Z
dk

ð2�Þd
½Pþ�

2
N þ �2NhL�;�ik̂�	�;
: ðA:15Þ

The summation over the Matsubara frequency is carried out as

T
X
!n

�2
N ¼ 1

4
T
X
!n

1

z2Nþ
þ 1

j ~�kj
1

zNþ
� 1

zN�

� �
þ 1

z2N�

 �
; ðA:16Þ

¼ 1

4
� 1

4T
cosh�2

�þ
2T

� 1

2j ~�kj
tanh

�þ
2T

� tanh
��
2T

� �
� 1

4T
cosh�2

��
2T

 �
: ðA:17Þ

The integration over ξ after the summation over the frequency can be calculated exactly asZ 1

�1
d� T

X
!n

�2
N ¼ �1;

Z 1

�1
d� T

X
!n

�2N ¼ 0: ðA:18Þ

The resulting spin susceptibility

N ¼ �B
2

� �2
Pþ N0; ðA:19Þ

is diagonal and isotropic independent of the direction of a Zeeman field.
The normal Green’s function can be described alternatively as

GN ¼ �1
ZNð!nÞ

½AN þ BN~�k � ~��; ZN ¼ �4 þ 2�2ð!2
n � ~�k

2Þ þ ð!2
n þ ~�k

2Þ2 ðA:20Þ

AN ¼ ð!2
n þ �2 þ ~�k

2Þi!n þ ð!2
n þ �2 � ~�k

2Þ�; BN ¼ �fði!n � �Þ2 � ~�k
2g: ðA:21Þ

When we carry out the summation over the wavenumber first as

N0

Z 1

�1
d�hTr½GNðk; i!nÞ ~J� GNðk; i!nÞ ~J
�ik̂ ¼ N0

Z 1

�1
d�

1

Z2
N

½	�;
 Pþ A2
N þ B2

NhL�;
ik̂�; ðA:22Þ

we find N ¼ 0 because of Z 1

�1
d�

A2
N

Z2
N

¼
Z 1

�1
d�

B2
N

Z2
N

¼ 0: ðA:23Þ

The discrepancy is derived from the fact that the integration over the wavenumber and the summation over the frequency do
not converge.29) On the way to Eq. (A·23), we have used the following relations
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I0 ¼
Z 1

�1
d�

1

ZN
¼ �

2j!njð!2
n þ "2Þ ; Jn ¼

Z 1

�1
d�

�n

Z2
N

; ðA:24Þ

J0 ¼
I0
8!2

n

5!2
n þ "2

ð!2
n þ "2Þ2

; J2 ¼
I0
8!2

n

; J4 ¼
I0
8!2

n

ð!2
n þ "2Þ; J6 ¼

I0
8!2

n

ð!2
n þ "2Þð5!2

n þ "2Þ: ðA:25Þ

We approximately replace ~�k̂
2
> 0 by "2 ¼ ð�=� þ 5=4Þ�2�2.

Appendix B: Superconducting State

The Green’s function under Eq. (32) is calculated to be

Gðk; !nÞ ¼
1

ZS
½Ag þ Bg ~�k � ~��; ðB:1Þ

Ag ¼ �ð!2
n þ �k

2 þ ~�k
2 þ ~�k

2Þi!n � ð!2
n þ �k

2 þ ~�k
2 � ~�k

2Þ �k; ðB:2Þ

Bg ¼ !2
n � �2 � 2i !n �k þ ~�k

2 þ ~�k
2; ðB:3Þ

Fðk; !nÞ ¼
1

ZS
½Af þ Bf ~�k � ~��UT; F�ðk; !nÞ ¼

UT

ZS
½Af þ Bf ~�k � ~��; ðB:4Þ

Af ¼ �2�k ~�k � ~�k; Bf ¼ ð!2
n þ �k

2 þ ~�k
2 þ ~�k

2Þ; ðB:5Þ

ZS ¼ ð!2
n þ �k

2 þ ~�k
2 þ ~�k

2Þ2 � 4�k
2 ~�k

2 ¼ ZNð�Þ; ðB:6Þ
with � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

n þ ~�k
2

p
. When we carry out the summation over the wavenumber, we find

N0

Z 1

�1
d�hTr½GSðk; i!nÞ ~J� GSðk; i!nÞ ~J
�ik̂;

¼ N0

Z 1

�1
d�

A2
Nð�Þ

Z2
Nð�Þ þ

~�k
2ð�2 þ ~�k

2 þ �2Þ2
Z2
S

� �
~J� ~J
 þ

B2
Nð�Þ

Z2
Nð�Þ þ

4~�k
2 �2

Z2
S

� �
L�;
ð~�kÞ

 �	 

k̂

;

¼ �N0

4�3ð�2 þ "2Þ ½Pþ ~�k
2ð2�2 þ "2Þ	�;
 þ "2 L�;
ð~�kÞ�

	 

k̂

; ðB:7Þ

N0

Z 1

�1
d�hTr½F� Sðk; i!nÞ ~J� FSðk; i!nÞð ~J
Þ��ik̂;

¼ N0

Z 1

�1
d�

4~�k
2 ~�k

2 �2Þ
Z2
S

� �
~J� ~J
 þ

ð�2 þ�2 þ ~�k
2Þ2

Z2
S

� �
L�;
ð~�kÞ

 �	 

k̂

;

¼ �N0

4�3ð�2 þ "2Þ ½Pþ ~�k
2 "2	�;
 þ ð2�2 þ "2ÞL�;
ð~�kÞ�

	 

k̂

: ðB:8Þ

The average hL�;
ik̂ describes the anisotropy and the off-
diagonal response of the spin susceptibility.

Appendix C: Gap Equation

The attractive interactions between two electrons are
necessary for Cooper pairing. Some bosonic excitation
usually mediates the attractive interactions. In this Appendix,
we assume the attractive interaction phenomenologically and
derive the gap equation for superconducting states discussed
in this paper. The pair potential of the superconducting states
is defined by

��;�ðk̂Þ ¼
1

Vvol

X
k0

X
�;�

V�;�;�;�ðk � k0Þhck0;� c�k0;�i;

¼ � 1

Vvol

X
k0

T
X
!n

X
�;�

V�;�;�;�ðk � k0ÞF�;�ðk0; !nÞ;

ðC:1Þ
where α, β, λ, and τ are the indices of pseudospin of an
electron. The attractive interaction V�;�;�;� works on two
electrons with λ and τ and generates the pair potential
between two electrons with α and β. The attractive interaction
can be decomposed as

V�;�;�;�ðk � k0Þ ¼
X

¼1{5

g
ðk � k0Þð�
 UTÞ�;�ð�
 UTÞ��;�: ðC:2Þ

For A1g states in Sect. 4.1, we choose

g
ðk � k0Þ ¼ g c
ðk̂Þ c
ðk̂0Þ 
 ¼ 1{3

0 
 ¼ 4; 5

(
T2g irreps ðC:3Þ

g
ðk � k0Þ ¼
0 
 ¼ 1{3

g c
ðk̂Þ c
ðk̂0Þ 
 ¼ 4; 5

�
Eg irreps ðC:4Þ

g
ðk � k0Þ ¼ g c
ðk̂Þ c
ðk̂0Þ; 
 ¼ 1{5 T2g þ Eg irreps:

ðC:5Þ
By substituting the anomalous Green’s function in Eq. (B·4)
into Eq. (C·1), we obtain the gap equation

� ¼ T
X
!n

gN0

Z
d�

Bf �

ZS
; ðC:6Þ

where we have used Eq. (8). After integrating over ξ, we
obtain

1 ¼ gN0T
X
!n

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

n þ�2
p : ðC:7Þ

The results coinsides with the gap equation in BCS theory.
For T2g, Eg, and an admixture state of them in Sects. 4.2 and
4.3, we replace c
ðk̂Þ by 1 for all ν in Eqs. (C·3)–(C·5). The
gap equation for such states is identical to Eq. (C·7).
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