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Nuclear spin relaxation rate of nonunitary Dirac and Weyl superconductors

Koki Maeno,' Yuki Kawaguchi®,' Yasuhiro Asano®,? and Shingo Kobayashi

3

' Department of Applied Physics, Nagoya University, Nagoya 464-8603, Japan
2Department of Applied Physics, Hokkaido University, Supporo 060-8628, Japan
3RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan

® (Received 6 November 2022; revised 13 February 2023; accepted 14 February 2023; published 27 February 2023)

Nonunitary superconductivity has attracted renewed interest as a novel gapless phase of matter. In this
study, we investigate the superconducting gap structure of nonunitary odd-parity chiral pairing states in a
superconductor involving strong spin-orbit interactions. By applying a group theoretical classification of chiral
states in terms of discrete rotation symmetry, we categorized all possible point-nodal gap structures in nonunitary
chiral states into four types in terms of the topological number of nodes and node positions relative to the rotation
axis. In addition to conventional Dirac and Weyl point nodes, we identify a type of Dirac point nodes unique to
nonunitary chiral superconducting states. Such a Dirac point node is a nodal point of two pseudospin excitations,
but the dispersions around it depend on the pseudospin. The node type can be identified experimentally based on
the temperature dependence of the nuclear magnetic resonance longitudinal relaxation rate. The implication of
our results for a nonunitary odd-parity superconductor in UTe, is also discussed.
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I. INTRODUCTION

The striking feature of unconventional superconductors
(SCs) is that the internal phase of the pair potential varies
depending on the relative direction between the two elec-
trons that form the Cooper pair. Accordingly, sign changes
and phase singularities of the pair potential are inevitably
accompanied by gap closing points, forming line and point
nodes, respectively. At low temperatures, various physical
quantities such as specific heat, magnetic field penetration
length, and nuclear magnetic resonance (NMR) relaxation rate
exhibit characteristic power-low dependencies on temperature
T, reflecting low-energy quasiparticle excitation around the
nodes. For instance, the NMR relaxation rate, which is a
powerful experimental probe for detecting low-energy exci-
tations, shows 7° (T3) dependence at low temperatures in an
SC with linear point nodes (line nodes) in its gap structures
[1]. In addition, the appearance of the Hebel-Slichter peak
below the critical temperature is the result of a fully gapped
excitation spectrum, suggesting a conventional s-wave Cooper
pairing [2]. The internal phase of the pair potential is also a
source of the topologically nontrivial states in an SC [3-8].
From a topological perspective, the existence of nodes can
be well explained by a nonzero topological number [9-15].
Indeed, the bulk-boundary correspondence ensures the exis-
tence of zero-energy Andreev bound states at a certain surface
of unconventional SCs [16-22], which exhibit characteristic
magnetic response [23-29].

In time-reversal symmetry-breaking odd-parity supercon-
ducting states, any line node is fragile owing to inevitable
perturbations in real SCs [10,30], and only point nodes are
stable in their gap structures. The superfluid *He-A phase is a
well-known example of such a state, where the gap structure
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has two Dirac point nodes, point nodes with spin degeneracy.
SHe-A phase is often called a chiral state because Cooper
pairs spontaneously have nonzero angular momenta, which
results in the breakdown of the time-reversal symmetry. The
angular momentum of a Cooper pair is well characterized by
the eigenvalues of the rotation operator around an axis. In
the presence of continuous rotational symmetry, Dirac point
nodes appear on the rotation axis in *He-A phase.

The concept of chiral superconductivity has recently been
applied to superconducting states realized in the presence
of strong spin-orbit interactions [31,32]. In materials with
strong spin-orbit interactions, an electron is well character-
ized by a pseudospin that represents a combined degree of
freedom between the spin and orbital. At the same time, the
continuous rotation symmetry breaks into discrete rotation
symmetry because of the underlying crystal structures. By
applying group theory, a variety of Weyl point nodes, point
nodes without pseudospin degeneracy, have been predicted to
appear in odd-parity SCs [31]. Schematic pictures of Weyl
point nodes are shown in Fig. 1(a). The low-energy excita-
tions around a Weyl point node depend on the pseudospin
of the quasiparticle. Generally, such superconducting states
are chiral superconducting states belonging to the nonunitary
class [1,33]; that is, there is no pseudospin degeneracy in the
excitation spectrum owing to the pseudospin-dependent pair
potentials. The physical quantities in nonunitary states would
therefore exhibit qualitatively different behaviors from those
well-established in unitary superconducting states [31].

In this study, we explore all possible point nodes in nonuni-
tary odd-parity chiral superconducting states and analyze their
characteristic low-energy excitations. For this purpose, we
first reclassified the nonunitary odd-parity chiral pairing states
in terms of n-fold rotation (C,) symmetry and Cooper pair

©2023 American Physical Society
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FIG. 1. Schematic illustration of the gap structures of (a) Weyl
point nodes and (b) nonunitary Dirac point nodes (N, M are nonzero
integers). The left (right) panel indicates the gap structure of A,
(Ay) [Eq. (3)], where nonunitary odd-parity SCs generally satisfy
A # A, . The white circles describe the position of the point node,
and the number in the circle indicates the Chern number [Eq. (12)],
which is related to the dispersion around the point nodes. The Weyl
point nodes are further classified into the ones on [type (i)] and
off [type (ii)] axis, whereas the nonunitary Dirac point nodes are
categorized to the ones with |[N| = |M| [type (iii)] and |N| # |[M|
[type (iv)]. See Fig. 2.

angular momentum. In addition to the conventional Dirac and
Weyl point nodes, in this study, we found that a novel type
of Dirac point node is possible in a nonunitary chiral SC.
Figure 1(b) shows the gap structures around such a node,
which we call a nonunitary Dirac point node. Although pseu-
dospin degeneracy holds at a nonunitary Dirac point node, the
excitations around the node depend on the pseudospin of the
electron. Based on this classification, we demonstrate that the
possible point nodes in the gap structures were categorized
into four types in terms of topological numbers and posi-
tions in relation to the rotational axis: (i) Weyl point nodes

along rotation axis, (ii) Weyl point nodes off the rotation axis,
(iii) Nonunitary Dirac point nodes characterized by a Chern
number, and (iv) nonunitary Dirac point nodes characterized
by a pair of Chern numbers. We further demonstrate that the
difference between the node types appears in the temperature
dependence of the NMR longitudinal relaxation rate, 1/7] as
summarized in Table I. As in the case of unitary pairs with
a nodal gap structure, the relaxation rate exhibits power-law
behavior: 1/Ty ~ ATY, where A and y are positive real values.
However, because the low-energy excitations in nonunitary
SCs are strongly dependent on the pseudospin structure, the
relaxation rate, i.e., the values of A and y, is sensitive to the
relative angle 6; between the rotation symmetry axis and the
external magnetic field. In particular, we found that the point
nodes of types (i) and (iv) can be distinguished from others
by observing the temperature dependence of (1/73),/(1/T7) 4,
where the subscripts || and L denote the values at 6; = 0 and
7 /2, respectively. Finally, we discuss the implications of our
results for the recently discovered superconductivity in UTe,
[34], which is a promising material candidate for a nonunitary
odd-parity SC with point nodes [35-42].

The remainder of this paper is organized as follows. In
Sec. II, we reclassify the chiral pairing states in terms of C,
symmetry and Cooper pair angular momentum. We catego-
rized all possible point nodes into four types. In Sec. IV, we
discuss the power-law dependence of 1/7; on temperature in
a unitary chiral SC. In Sec. V, the calculation of 1/7; was
applied to nonunitary chiral SCs. Finally, we summarize the
results and discuss their application to UTe, in Sec. VI. In
Appendices A, B, and C, the basic properties of nonunitary
odd-parity SCs, some gap structures that are not discussed in
the main text, and the calculation of NMR relaxation rates are
discussed.

II. NONUNITARY CHIRAL COOPER PAIRS

We consider chiral SCs in a system with strong spin-orbit
coupling and inversion symmetry (I: I> = 1). We assume that
TR symmetry (T: T? = —1) is preserved in the normal state
and spontaneously broken in the superconducting states. We
focus on odd-parity Cooper pairs, that is, the pair potential
satisfies 1 AkIT —A_ k- Owing to Fermi statistics, odd-
parity Cooper pairs are pseudospin-triplets on a single-band
pseudospin basis. Here, we consider electrons with angular
momentum j, which is a combination of spin and orbital

TABLE I. Temperature dependence of NMR relaxation rates at low temperature for nonunitary chiral SCs. We categorize the point nodes
into four types in terms of the Chern numbers N, M (see Fig. 1) and the position relative to the rotation axis: (i) Weyl point nodes on the

rotation axis, (ii) Weyl point nodes off the rotation axis, (iii) nonunitary Dirac point nodes with |[N| =

M|, and (iv) nonunitary Dirac point

nodes with [N| # [M|. We define (1/7;);.) as 1/T; with an applied magnetic field being parallel (perpendicular) to the rotation axis. Shown
are the temperature dependence of (1/7;); and (1/7;), with N, M > 0 in comparison with unitary Dirac point node states (the last column).
Each coefficient depends on the details of systems, whose explicit forms are discussed in Secs. V A and V B. The last row represents the
temperature dependence of a ratio between (1/7;); and (1/7;),, where “const.” indicates that the ratio is independent of the temperature.

Observable @) (ii) (iii) @iv) Unita
ry
(Ti])" ANT%-%—Z D” TS DN,H T%-H BN,MT%+%+I DNT%_H
()1 Doy T+ D, T’ Dy TH*! D;T%“—i—D’ T+ Dy T+
;://TTII :ll T const. const. TRl const.
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angular momenta, and thus, takes a half integer. We assume
that among the Kramers pairs of |j, j,) and |j, —j,) (j, =
1/2,3/2,---j), only the pairs of fixed j, form Cooper pairs.
For simplicity, we consider only the two relevant internal
states and use the pseudospin s = {1, |} description. The
pseudospin-triplet pairing states are characterized by the d
vector as

[Axlsy = dx - [0(ioy)]sy, (1

where d_x = —dy and o = (0, 0y, 0;) are Pauli matrices
in the pseudospin space. Pseudospin-triplet pairings without
TR symmetry generally induce nonzero magnetization, q, =
Tr(AliorAk)/Z = idy x dy, which is called the g vector [1].

We are interested in nonunitary chiral pairing states, i.e.,
AkAI{, is not proportional to the identity matrix [1]. The
nonunitary properties of pseudospin-triplet pairing states are
characterized by the ¢ vector. The energy spectrum of super-
conducting states is described in [1],

Ef = /8 + (AF?, 2)
Ay = VIdx? £ gyl A3)

where & is the normal-state energy relative to the Fermi
energy. Thus, g, # 0 implies that the magnitude of the su-
perconducting gaps depends on the pseudospin structure on
the Fermi surface. The nodes appear when EJ =0, ie.,
& = 0 and A} = 0 (¢ = %). The first condition implies that
the nodes are on the Fermi surface, whereas the second
condition determines the position of the nodes and their pseu-
dospin degeneracy. In the second condition, the Dirac (Weyl)
point nodes are defined as points that satisfy |dx| = |q| =0
(Idx|* = Igy| # 0).

In the following, we reclassify the nonunitary chiral pairing
states in terms of C,, symmetry. The operation of the n-fold ro-
tation about the z axis changes the annihilation operator of an
electron with momentum k and projected angular momentum
J. as follows:

_,‘le_
Ckj, = CRk.j.€ "7, “)

where R, is the n-fold rotation in momentum space, for
example, Ry : (ky, ky, k;) — (—ky, ki, k;), and j. determines
the phase change associated with the rotation in pseudospin
space. On the rotation symmetric line satisfying R,k = k, the
electronic states indicate the eigenstates of the C, operations
and their eigenvalues depend on j,. Thus, under C,, symmetry,
the electronic states are classified as j,.

When Cooper pairs have the projected angular momentum
J. (0 < J, < 2j,), the gap function after the n-fold rotation
should satisfy [5]

A A AT —iZ g A
G AkG, ;. = e " Agk, (5)

with G, ;. = diag[e~i'" -, ¢ J]. By using the d vectors,
Eq. (5) can be rewritten as

cAm . + 27
e nld = ef'Tijd,;k, 6)
i+ —iZJ, g+
enlidl = e kdy )
z _ ,—iZI gz
di =e dg x ®)

TABLE II. Classification of pseudospin-triplet pairing states
with J; # 0 under the C, symmetry. The k dependence of the d vector
in the leading order for various sets of n, J,, and j,, where J, and
=+ j, are the projected angular momentum of a Cooper pair and those
of electrons constituting the Cooper pair, k+ = k, + ik,, and dif =
di £ id;,. Here, we only consider the cases of j, = 1/2,3/2,5/2 and
J. =1, 2,3. The results for J, < 0 are obtained from those for |J,|
via the TR symmetry. The seventh and eighth columns indicate the
node types, Weyl (W) or Dirac (D), and types (i)—(iv). The double
labels, e.g., (i, ii), imply the coexistence of on and off axis point
nodes. The last two columns indicate the Chern number, |Q. |, of the
point nodes on the rotation axis in Eki Here, “-” refers to the absence
of point nodes on the rotation axis.

noJooj. d¢ 4 di  Node Types [0 [Q-|
2 1 1k k., ki ke W (ii) - -
31 1k k_ ky W, W (i) - 1
301 3 ke ke ky D (iii) 1 1
301 3 ke k. ky W, W (i) - 1
4 1 3k kkk o ke W @) - 2
4 1 2 ki Kk ky W ) - 2
4 2 1 ks k_ kK2 D (iii) 1 1
4 2 2 Kk ky kK2 D (iii) 1 1
6 1 1 k kK Kk W @ - 2
6 1 2 kK kk ks D (iii) 1 1
6 1 3 kk k ky W @ - 2
6 2 1 ki ki kk: D (iv) 1 3
6 2 3 kK k_ k.k> D (iii) 1 1
6 2 I K ky k.k D (iv) 1 3
6 3 1 kK kk* ki W,D (i, iii 2 2
6 3 3 k k. K W (i) - -
6 3 3 kK kk ki W,D (i, iii 2 2

where df = df + id}, In addition, we expand d to the lead-
ing order of k, df o kY'kTkl! (i =+, —, z), where p;, g;, r;
are nonnegative integers, and ky = k, & ik, satisfies R,k =
eii%ki. Substituting these into Egs. (6), (7), and (8), we
obtain the relations between J,, j,, p;, and g;,

2j,+p-—qg-=J, modn, )
—2j:+p+—q+=J. modn, (10)
p:—q.=J; modn, (11)

which determines the momentum dependence of the d vector
perpendicular to the rotational axis. In addition, r; is con-
strained by inversion symmetry; because the d vector is an odd
function of k, we require that p; + ¢g; + r; is an odd integer.
The symmetry-allowed forms of d vectors are summarized in
Table II, where we only consider the lowest-order terms of k
in each di (i = +, —, 7). Because Cooper pairs with J, < 0
are related to those with J, > 0 by TR symmetry, we assume
J; > 0 in Table II.

We determined the gap structure of these pair potentials by
analyzing Eq. (2). Dirac point nodes require |dk| = 0, that is,
d;' =d, = d; =0, which automatically leads to |q, | = 0. It
follows that the Dirac point nodes are on the rotational axis.
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It should be noted that even though both E,” and E,_ vanish
at Dirac point nodes, their dispersions are not necessarily
degenerate. On the other hand, the Weyl point nodes can be
on or off the rotation axis.

To characterize the point nodes, we employed a topological
argument. The Chern number Q, on sphere S? enclosing a
point node is defined by

1
0, = . . dk e[,ak,.A;?k, (12)
with the antisymmetric tensor €;; = —¢;; (|¢;;| = 1) and Berry

connection Af} = i(uky |y, Uke ). Here, |uk,) is the eigenvector
with eigenvalue —E of the Bogoliubov-de Gennes (BdG)
Hamiltonian, the properties of which are summarized in Ap-
pendix A. The concrete form of |uy,) is given by (A9) and
(A10). We assume that the energy spectra are nondegenerate
on S, which is satisfied for nonunitary point node states. | Q|
is related to the dispersion relation around point nodes in EZ.
The details are presented in Sec. III. The Chern number is
conserved on the sphere even under a small perturbation that
causes a point node in the rotation axis to split into multiple
off-axis nodes as long as the sphere encloses the split point
nodes. This conservation law helps us understand the structure
of the split point nodes, as the sum of all Chern numbers in the
Brillouin zone is zero. In addition, a nonzero Chern number
manifests itself in the existence of surface zero-energy states
via bulk-boundary correspondence, which provides further
evidence of nonunitary chiral SCs [31].

In Table II, we categorize the gap structures into four types
in terms of the Chern number and the location relative to the
rotation axis: (i) Weyl point nodes on the rotation axis, (ii)
Weyl point nodes off the rotation axis, (iii) nonunitary Dirac
point nodes with |Q| = |Q_|, and (iv) nonunitary Dirac point
nodes with |Q+| # |Q—_]|.

Note that the classification in Table II corresponds to that
in Table 2 in Ref. [31], where the gap structures around the
Weyl point nodes [(i) and (ii)] in Table II are discussed. In our
study, we also focus on the nonunitary Dirac point nodes [(iii)
and (iv)] and examine their properties.

III. NONUNITARY POINT NODE STATES

In the following, we present concrete examples of gap
structures of types (i)—(iv). Schematics of the gap structures
are shown in Fig. 2. Focusing on the dispersion relation
around the point nodes in AF, we examine the relation
between the dispersion relation and Chern number Q,. In
the low-energy regime, the energy spectrum is approximated
around the point node, which is described by the momentum
relative to the point nodes, p = k — k¢ (|p| < kr), where kg
is the Fermi wavenumber and Kk is the momentum at the point
node, e.g., ko = ki = (0, 0, £kr) when the node is on the
rotation axis. To simplify the notation, we define Igi = k;/kr

(i=x,y2), ks =k, + ilgy andk, =, /I%% + 123 The same no-
tation is applied to p.

A. Type (i)
We begin with the Weyl point nodes on the rotation
axis. For instance, we consider the d vector of (n, J;, j;) =

(a) Type (i) (b) Type (ii)

kZ kZ kZ kZ
Af A A Af Ay
‘I 1
NSl
-2
(c) Type (iii) (d) Type (iv)
kz kz kZ kz
—_ + —
Al—: 1 Ak & Ak 1 Ak 3

-1 1 -1 3

FIG. 2. Gap structures Af of nonunitary Dirac and Weyl SCs
under C, symmetry. (a), (b), (c), and (d) concretely exhibit the
gap structures of types (i)—(iv), where we adopt the d vectors of
(n,J,, j,)=1(6,1,1/2), (2,1,1/2), (4,2,1/2), and (6, 2, 1/2), re-
spectively. Here, the blue sphere represents the Fermi sphere and the
white (light-green) circles the position of point nodes at this side (the
other side) of the paper. The number in the circle indicates the Chern
number.

(6, 1, 1/2), whose components, dx = (dj, dﬁ, dy), are given
by

d][(6.1’%] = (Ata]gZ’ l’)\.ak\zs )\b]€+)’ (13)

where Aq, A, € R. We neglect the k-cubic terms d) kzki
because their contribution to the nodes is small. The d vector
in Eq. (13) leads to the g vector as

1 A A A A A
gt = 2(hhskike, hadpkike, —22R2),  (14)

which represents the pseudospin structure of the nonunitary
pairing state. Substituting Eqs. (13) and (14) into Eq. (3), the
dispersion relation up to the leading order of p is obtained as

A+

-~ - oy A2
oop = 20kl Ap L, = TaPT, (15)

where D) = Alz)/2|ka|, Thus, the point node appears only
in E_ and exhibits quadratic dispersion. See Fig. 2(a) and
Eq. (12) around the point node at the north (south) pole is
0 =2(-2).

In general, the d vector of type (i) can be expressed as
die = Ouaky, —inake, 2pkY), (16)

where N is a positive integer [43]. The corresponding disper-
sion relation and Chern number are given by A tp = 0a ﬁi_N
and Q_ = 2N (F2N) at the north (south) pole.

B. Type (ii)

Weyl point nodes on the rotation axis are often split
into multiple off-axis point nodes via symmetry reduction.
To observe the splitting of nodes, we consider the case of
(n,J;, j.) = (2,1,1/2), which is obtained by reducing the
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symmetry of (n, J;, j.) = (6, 1, 1/2) from Cg to C,. The cor-
responding d vector contains additional terms in Eq. (13), and
is given by

¢t = (O Aok, 10 — 20k Ak + Aak]

1
6,1,

=d\"" 4 ko, —incko, hako), (17)

where A4, Ap, A, g € R. Accordingly, the g vector changes
from Eq. (14) to

2.1,4 rk
g7 = = 2((ha — A)(hp + Aadkike,

Ora + 2Oy — Aoy,
— (A2 = A2)k2). (18)

To check the dispersion relation, we set A; = 0 and A A, >
0. In this case, by solving A, =0 (A} is fully gapped), the
position of the point nodes is represented as

20y Aahe N\
\/ A2+ dhghe \//\g + 4hghe

knys']z =kr|0 ) (19)

where 7,, n, = & indicate the position of the point nodes.
Around the point nodes, the energy spectrum is approximated
to the leading order of p as follows:

Mg o™= VR 03,2, (20)
where Vax = 2058/ Aahe/(ha + Ae) and vay =

2, /Aakc(Ai 4+ 4rrhe)/ (Mg + Ac). Here, we rotate the

coordinates to eliminate p, dependence (see Appendix C 3).
Thus, the point node has linear dispersion, and the Chern
number of each split point node is |Q_| = 1. The sign of
the Chern numbers obeys the conservation law of the Chern
number.

In general, a C,, symmetric system has at least 2n off-axis
Weyl point nodes. The positions of the off-axis Weyl point
nodes in C3 and Cg symmetric systems are discussed in Ap-
pendix B.

C. Type (iii)

Nonunitary Dirac point nodes of type (iii) share common
properties with chiral (helical) pairing states in unitary SCs
that host Dirac point nodes with nonzero (zero) Chern num-
bers. The nonzero g vector of type (iii) originates from the
mismatch of coefficients between d; and d,_. To observe
this, we consider the gap structure of (n, J;, j;) = (4, 2, 1/2),
whose d vector and ¢ vector are given by

L
dy" = Gaky + ko, ingke — ko, 0), 21)

qL4A,2,%] = (0,0,2(22 — A)k%), (22)

where we neglect the contribution of the k-cubic term. The
dispersion relation is given by the linear dispersion as

AIJ(;_'_P ~ vZﬁl, Al;i‘HJ ~ U;ﬁl, (23)

with UX = 2|A4| and v, = 2|Ap|. The corresponding Chern
number of EEE at the north (south) pole is Q4+ = +1(F1). The
gap structure is shown in Fig. 2(c).

Clearly, the d vector is reduced to a helical pairing
state when A, = A,. Note that a helical pairing state pre-
serves TR symmetry; however, the nonunitary Dirac point
node state breaks the TR symmetry because A, 7# Ap. Simi-
larly, a nonunitary version of chiral pairing states appears in
(n,J, j.) = (6,2,3/2), whose d vector is given by replacing
Agky with A k_ in Eq. (21).

For later convenience, we generalize Eq. (21) for the cases
with higher Chern numbers. The generalized form of the d
vector can be described by

di M = kY + kY in kY — in kL 0),  (24)

where N, M is a positive integer [44]. Here, the nonunitary
Dirac point nodes of type (iii) satisfy N = M. The dispersion
relation and the Chern numbers are given by

o~ AT~ M
Agip ZVAPL, By yp = VAP, 25)

and Q. = N and Q_ = £M at the north pole. Note that a gap
structure with N # M is also possible, which is categorized as
type (iv); the details are discussed in the next section.

D. Type (iv)

Finally, we consider nonunitary Dirac point nodes of type
(iv). As an example, we focus on the case of (n,J;, j;) =
(6,2, 1/2), where the d vector is given by

AP = Ok + 1R+ AR,
i(haky — Mk — Ack2), hak k2).  (26)

Here, we consider the third-order terms of k because £} is
completely gapless when A, = A, = Ay = 0. Adding k-cubic
terms changes the surface node to a point node in Ex_.

To verify the dispersion relation, we set A, = 0 for brevity.
Keeping the leading contribution of p, the gap structure
around the point nodes is given by

+ ot a3
Aki+p = UpPL, Aki+p = UaDY> (27)

where U, = |2, + )»5 /2X4|. The Chern numbers of the point
nodes at the north (south) pole are Oy = 1(—1) and Q_ =
3(—3). The gap structure is shown in Fig. 2(d). The general
form of type (iv) can be described by Eq. (24), where the
dispersion relations satisfy Eq. (25) with N # M.

IV. NMR RELAXATION RATE

We consider the spin-lattice relaxation rate 1/77 of NMR
to be a probe for the pseudospin-dependent low-energy den-
sity of states. The measurement of 1/7; at low temperatures
is a powerful experimental technique for detecting the node
structures. The low-temperature power-law behavior of 1/T;
was used as a measure of the density of states and enabled
the identification of gap structures from the temperature ex-
ponent.

We assume that the NMR relaxation originates from the
interaction between the nuclear spin and quasiparticle states
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of the SC, mediated by the hyperfine coupling Hamiltonian
between the nuclear and itinerant electrons,

Hyr = YnAng Z ZI Cp O iy (28)
s,s' kKK

where I denotes the nuclear spin operator vector, j;, denotes
the nuclear gyromagnetic ratio, and Ap; denotes the hyperfine
coupling constant. Here, we simplify the hyperfine coupling
constant by neglecting the material-dependent momentum de-
pendence and anisotropy so that we extract a universal feature
of low-energy excitations around the point nodes.

Using Eq. (28), we examined the NMR longitudinal re-
laxation rate for nonunitary chiral SCs. For simplicity, we
consider the case of nuclear spin of / = 1/2. Then, 1/T is
formulated using Fermi’s golden rule [2] as

12
— =SS (- LkelHy LK B AL (1 - )
nooh o kK

x 8(Ef — Ef, — hi), 29

where wq is the NMR frequency, and |I; ko) = |I) ® ko).
Here, |I) is the eigenstate of the nuclear spin I parallel to the
external magnetic field, and |ke) is the eigenstate of the BAG
Hamiltonian with the eigenvalue E}. The explicit form of |ka)
is provided in Appendix A. When an external magnetic field
is applied in the direction specified by the polar and azimuthal
angles 6; and ¢, relative to the symmetry axis, |I) is given by

Iy = (cos(6;/2), € sin(6;/2)) . (30)

We define (1/71)c1y as 1/T; with a fixed angle 6; = 0 (6; =
7 /2). The temperature dependence of 1/7; is included in
the Fermi-Dirac distribution function f = (eB/ksT 4 1)1
[45]. We study excitations around the point nodes in a low-
energy regime characterized by fiwy < kgT < Ap, where Ag
is the energy scale of the superconducting gap characterizing
the point nodes, for example, Ay = min[A,, Ap, A¢, A4] for

d E’l’%]. Throughout this study, we approximate fiwy ~ 0 and
use the unit 7 = kg = 1.

Before discussing our results, we revisit the power-law
temperature dependence of unitary chiral SCs whose energy
spectrum is described as

Ex = /& + ldi|%, (3D

di, = 70,0, &Y), (32)

where A € R, N denotes a positive integer, and g, = 0. In this
case, Eq. (29) is reduced to

1
i nylAL ka/(l — fx)3(Ex — Ex), (33)
Y

where we perform the sum over pseudospins (Appendix C 1
for details). Thus, 1/7; in unitary chiral SCs is independent of
the magnetic field direction. To proceed with the calculation,
we assume that & has a spherical Fermi surface, that is, & =
(k*> — k3)/2m, where m is the effective mass of the electron.
Because the contribution from the low-energy excitations
around the point nodes is dominant at low temperatures, the
energy spectrum can be approximated around the point nodes

atk, as

Ex,p = \Jvi P2 + va p7, (34)

where vp = vp/m and va = A. We replace the summation
with the integral }°, — [ D(E)dE, where D(E) is the den-
sity of states of the quasiparticles

D(E) = ﬁ /R A’ S(E — Eorp). (35)
Plugging Eq. (34) into Eq. (35), we obtain
D(E) = dyE~ (36)
with
3 1
= G o 7

Consequently, Eq. (33) becomes

1 =n ZAZ-/OODZ(E) —T% dE (38)
T~ Vn At ) IE ’

where fr(1 — fg) = —Tdfr/0E. Hence, the temperature de-
pendence originates from the E dependence of the density of
states, whose exponent is related to the Chern number of the
point nodes through the dispersion relation. Using Eqgs. (36)
and (38), 1/T; is calculated as

1 4
7= Ty2ALDNT v, (39)

with

D —ﬁ(l—zlﬁ)r(i> <i> (40)

where I'(x) and ¢ (x) are gamma and zeta functions, respec-
tively. Equation (39) reads T° for the linear point node (N =
1) and T3 for the quadratic point node (N = 2). In the next
section, we employ a similar approach for calculating 1/7;
for each point node.

V. NMR RELAXATION RATES IN NONUNITARY POINT
NODE STATES

We consider 1/7; of pair potentials categorized into types
(i)—(iv), assuming that the on- and off-axis point nodes do
not coexist. The coexistence yields a different behavior. For
instance, in the case of (n, J;, j,) = (3, 1, 1/2), point nodes
belonging to types (i) and (ii) coexist, and all point nodes
have a linear dispersion. Thus, a point node of type (i) is not
described by Eq. (16). See details in Appendix C 5.

The temperature dependence of 1/7; is summarized in Ta-
ble I. The key physical quantities are the two NMR relaxation
rates, (1/77); and (1/77),, because the two relaxation rates
are identical in the unitary states. Thus, the difference between
(1/Th); and (1/T7), characterizes the nonunitary states. We
find that the ratio (1/7;)/(1/T;), can be formally described
by

(1/Tv)
(1/Ty)y

’

~ATY, 41)
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reflects the four types of node structures. Coefficient A’ €
R depends on the details of the superconducting materials.
Meanwhile, power y’ takes a universal value containing the
Chern numbers of the point nodes as

1 for type (i),
y' =10 for types (ii) and (iii), 42)
| — 2| fortype (iv),

where N, M are positive integers related to Chern numbers.
Equation (42) includes the result in Ref. [31], which is a spe-
cial case of type (i). Therefore, the temperature dependence of
(1/T1)y/(1/T1), for (i) and (iv) provides strong evidence of
nonunitary states and is beneficial for understanding pairing
symmetry and superconducting mechanisms. On the other
hand, 1/T; for (ii) and (iii) share the same temperature de-
pendence as the unitary chiral SCs. However, A" depends on
the pseudospin structure, which also provides valuable infor-
mation about pairing symmetry.

In the following, we discuss the physical origin of y’ # 0
for (i) and (iv) in Sec. V A and examine how the pseudospin
structure modifies A’ for (ii) and (iii) in Sec. V B.

A. NMR relaxation rates for (i) and (iv)
1. Type (i)

First, we consider 1/T; for type (i). The Weyl point nodes
appear only on the rotation axis, accompanying the g vector
polarized along the rotation axis. The polarized g vector gives
rise to Yy’ # 0, as initially indicated in Ref. [31]. Here, we
generalize their results to the case of a higher Chern number
Q| =2N.

The calculation of 1/7; takes place in a similar manner to
the unitary chiral SCs; however, the pseudospin anisotropi-
cally couples with the nuclear spin because of the g vector.
In addition, we only consider the contribution from the E,
eigenspace, because El:r is fully gapped. Considering these
facts, we evaluated Eq. (29) in the system with d vector (16).
The energy spectrum around the point nodes is approximated

as follows:
Eg = VvEp? + 0ipt, (43)

and replacing the summation with the integral in terms of E,
1/T is recast as

2
7{1 —”VnAhf/ D?* (E) [G(E)w
sin”(6;) /e
+ Tj| (— oE >dE (44)

where D_(E) is the density of states in E,_ +p and G(E) is
induced by the ¢ vector, represented as (see Appendix C 2)

D_(E) = dwE¥, 45)
)\'2 / ,

Gy = 22 Vv g (46)
2N doy

where N’ = N/(N + 1). In deriving Eq. (44), some terms van-
ish via the integral of momenta on the spherical Fermi surface,
and we omit the higher order terms of p,. By performing

integration, we obtain

2 -2
1 — 242, 1 + cos (GI)ANT;+2 L sin (QI)DZNT%“ ’
n 2 4
47
where
AMdwdoy N (11
NE— ol T
42 N\N N

><F<1 + 1>¢<1 )(1 -Gy, (48)
N N N N ’

and dy and D,y are defined in Eqgs. (37) and (40) by
replacing va with 9. Therefore, the origin of y’#0
in Eq. (41) is the coefficient G(E) in Eq. (44), which
stems from the ¢ vector polarized along the z-axis. The
results are applicable to a situation in which the Weyl
point nodes appear only on the rotation axis. In Ta-
ble II, dﬁ’zl is realized for systems with (n,J,, j,) =
(2,1,1/2),(4,1,1/2),(6,1,1/2),(6,1,5/2) and d)y=* for
(6, 3,3/2). Note that we need a finetuning of the parameters
in (2, 1, 1/2) and (6, 3, 3/2) because the on-axis point nodes
split into off-axis Weyl point nodes.

2. Type (iv)

Second, we examine 1/7; for nonunitary Dirac point node
states of type (iv) in a system described by the d vector (24).
In the evaluation of 1/7}, we consider low-energy excitations
from E,f and E_. After following a procedure similar to

that for unitary chiral SCs, Eq. (29) can be rewritten as (see
Appendix C 4)

1 o 1 4G
— =my2A% f {D+(E)D_(E)M
T A 2

+ID2(E) + DA (ENED (9’)} (— 8f’f)czE (49)

where D (E) is the density of states in Ei +p given by

D, (E)=d}EV, (50)

D_(E)=d,E¥. (51)

Here dN is defined as dy [Eq. (37)], by replacing vy with
vE x- The E dependence differs between D, (E) and D_(E),
resulting in a nonzero y’. At low temperatures, by integrating
Eq. (49) in terms of E results in
il =w,3Aﬁf[—1 eSO p e
T 2

. 2 9
+ 306D pipin fporiy | (52)
where
By =did;, 2,2 (2,2 2,2
NM = vu)P\v T u )N T r
x (1 —21_(ﬁ+ﬁ)), (53)
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and Dﬁ is given by Eq. (40) with vf. The first term shows
the characteristic temperature dependence due to the mixing
of D, (E) and D_(E). In the second term, D, (E) and D_(E)
individually contribute to the temperature dependence. When
N > M (N < M), TYN+1 (T#M+1) i5 the leading contribution
of (1/T7).. Neglecting the subleading contribution, we obtain
Eq. (42).

In Table II, the above calculation is applied to the
cases of (n,J;, j,) = (6,2,1/2),(6,2,5/2). As discussed in
Sec. III D, the system realizes nonunitary Dirac point nodes
with N =1 and M = £3. Although Eq. (26) includes df =
)tdkzla, the A; term only changes v, to ¥, within the
low-energy regime. Thus, it does not affect the temperature
exponent. Another candidate is (n,J,, j;) = (6, 3,1/2), in
which nonunitary Dirac point node states with N =2 and
M = 4 emerge in a specific situation (see Appendix B 2).

B. NMR relaxation rates for (ii) and (iii)

Finally, we discuss the influence of the ¢ vector on A’ for
(i1) and (iii). In the following, we address nonunitary chiral
SCs with the d vectors (17) and (21) as concrete examples.

1. Type (ii)

We consider a C; symmetric system using Eq. (17) as an
example of type (ii). From Eqs. (19) and (54), the energy
spectrum around the four off-axis Weyl point nodes is given
by

By tp = \/ vp P2+ vy, P2+ v}, P (54)

Considering only the contribution from the E, eigenspace,
1/T; is evaluated as

1
— = 42D T (55)
T
with
21,4 7k3 are 14 cos?(6;)
1200703 03, | (Al 2

N Ao — Ao\ sin(6))
ha + Ac 4
Aake  cos(2¢p;)sin®(6)
(Mg + 2c)? 2 ’

(56)

where we take the summation over the four off-axis Weyl
point nodes (see Appendix C 3). The temperature dependence
becomes 1/7T; o« T? because the point nodes have linear dis-
persion. We find ¥y’ = 0 here because the effect of the ¢
vector is milder than that in type (i), which does not yield
the prefactor G(E) in Eq. (44). Yet, Eq. (56) deviates from the
unitary chiral pairing states. Interestingly, Eq. (56) follows the
C, symmetry around the z axis as

[2,1,5]
Or,¢1+7

[2,1,5]

D Or.¢1 °

=D (57)
which reflects the C, symmetry of the g vector. Figure 3(a)

shows the value of Eq. (56) in the nuclear spin space, which

(a) Type (ii) plzL] (b) Type (iii) [4 2,1]

917051
0.25 L6
0.2 1.4
Iz 0.15 12
0.1 |

0.05
0 0.8

FIG. 3. Anisotropy of coefficients of 1/7; in the nuclear-
spin space (the direction of magnetic field), where the colors
on the unit sphere represent the amplitude of the normal-

ized coefficients: (a) D; ;I’] 9, ¢, /[7k3 /(270v;v3, v3,)] and

) DY = =D, /172 /2700202 3 )], The parameters are
chosentobe(a))t =1,A=05and(b) A, =1, A, =0.5.

is linked to real space via an applied magnetic field. We find
that the coefficient retains the C, symmetry in terms of ¢;.

2. Type (iii)

We turn to the nonunitary Dirac point nodes of type (iii).
Using Eq. (24), 1/T; is given by (52) with N = M. Thus, the
temperature dependence is independent of the nuclear spin
direction, which is evaluated as

! vl
T x TN, (58)
Hence, the result is similar to that in Eq. (39) in unitary Dirac
point-node states. Nevertheless, the coefficients of 1/7; differ
from those in Eq. (39). In the following, we discuss how the
difference between A} and A affects the coefficient of 1/7j.

Concretely, we consider a C4 symmetric system using
Eq. (21), where the coefficients of A}" and A, around the
point nodes are different, i.e., UX #v,. 1/Ty is given by
Eq. (52), satisfying N = M = 1 as follows:

= TRARD, pi2alys, (59)
1
with

4241 _ Tk

g 12002 (vivy )2

L+cos?(0) () + (vy)* sin(6))
x 2 (vivy)? 4 |
(60)

The coefficient of 1/7; only depends on 6; because the gap
structure is axially symmetric. The anisotropy in terms of
nuclear spin space arises from the difference between vZ and
vy . In the unitary case, i.e., va = vJAr = v,, Eq. (60) can be
reduced to Eq. (39) for N = 1.

Equation (60) is visualized in the nuclear spin space, i.e.,
in the direction of the magnetic field, as shown in Fig. 3(b).
We found that the amplitude of the coefficient depends on 6;
in the nuclear spin space. The coefficients satisfy

1 1
_ < | =
<T1)|| - <T1)t’ ©D
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where (v)* + (vy)* = 2(v v, )% and equality is satisfied in
the unitary case. Thus, the amplitude of 1/7) in the xy plane
increase as the difference between UZ and v, increase.

The above discussion is applicable when d¢ = 0. This con-
dition is satisfied in Table II except in the case of (n, J,, j,) =
(3, 1,3/2). In this case, di is nonzero in the leading order,
which makes the coefficient of 1/7] nonaxially symmetric.
See details in Appendix C6.

VI. SUMMARY AND DISCUSSION

We developed a classification of nonunitary chiral pairing
states in terms of C, symmetry and found nonunitary Dirac
point nodes, from which excitations depend on the pseudospin
of electrons. We categorized the nonunitary point node states
into four types, (i)—(iv), in terms of the Chern number and
position relative to the rotation axis. These categories cover
all possible point nodes in nonunitary odd-parity chiral SCs
with C,, symmetry.

We examined the NMR longitudinal relaxation rate, 1/77,
as an observable to characterize the contribution of low-
energy excitations around the point nodes in each type. The
resultant 1/7; value depends on the type, as summarized in
Table I. The deviation of 1/7; from the unitary SCs is char-
acterized by a ratio between (1/77); and (1/77),. The ratio
is unity in unitary chiral SCs; in contrast, in nonunitary chiral
SCs, the ratio satisfies the relation (41) with A" and y’ being
positive real numbers. We found that the ratio depends on
the temperature in (i) and (iv), i.e., ¥’ # 0, which enables
us to experimentally distinguish between nonunitary Dirac
point, Weyl point, and unitary Dirac point nodes. However,
1/T; is independent of the temperature (y’ = 0) in (ii) and
(ii1); namely, the temperature dependence is the same as that
of the unitary chiral SCs. Nevertheless, A" is not unity and
reflects the configuration of the ¢ vectors, which also contain
information regarding the pairing symmetry.

Finally, we discuss an application to nonunitary SCs in
UTe,. Recently, considerable efforts have been made to un-
derstand the heavy fermion superconductor UTe, because it
is located near a ferromagnetic quantum critical point [34]
and exhibits several anomalous properties, including a high
upper critical field beyond the Pauli limit [46—48], reen-
trant superconductivity [48,49], and a small reduction in
the Knight shift in NMR [47]. These findings suggest that
UTe, is a potential candidate for odd-parity SCs. In addition,
recent experimental studies have reported unconventional su-
perconducting properties [35] such as the existence of point
nodes [36,37], time-reversal symmetry breaking [38—40], and
nonunitary pairing involving multiple components [39,41,42].
Thus, UTe, is a promising platform for studying nonunitary
odd-parity SCs with point nodes.

However, the symmetry of the pair potential remains to
be fully elucidated, and further experimental and theoreti-
cal studies are required. From a theoretical perspective, the
crystal symmetry of UTe; is Dyj,; namely, possible pair poten-
tials are classified by their irreducible representations (irreps):
Ay, By, Aoy, Az, for odd-parity pairing states. Furthermore,
these irreps are one-dimensional, which implies that a chi-
ral pairing state can be constructed from a mixture of two
different irreps. Such a mixed state may appear under per-

turbation breaking D,, down to Cy,. For instance, when a
magnetic field is applied parallel to the z axis (c axis in the
crystal), Dy, breaks to C,, with the rotation axis being the
z axis. Possible chiral pairing states include the By, + iA,
(Cy-even parity) and By, + iB3, (C>-odd parity) states, which
include 8 and 4 Weyl point nodes [42,50] at general momenta,
respectively.

When putting these irreps into our notation, the By, + iA,
state corresponds to the case where J, = 0 and By, + iB3,
states to J, = 1. Thus, in the former case, the pair potential
is not a rotation-symmetry-protected chiral pairing state, gen-
erally leading to a fully gapped state. In fact, when the A,
state is dominant, the gap structure is fully gapped as the
superfluid ’He-B phase is. If the By, state dominates the A,
state, multiple point nodes appear at general momenta [42,50].
On the other hand, in the latter case of J, = 1, the d vector is
equivalent to Eq. (17). Therefore, when the Weyl point nodes
are off the rotation axis, they belong to type (ii), and the
associated off-axis Weyl point nodes preserve C, symmetry.
When the Weyl point nodes are close to the rotation axis, they
belong to type (i) and form a quadratic Weyl point node on the
rotation axis.

Our theory can be applied to By, + iB3, states, whose
Weyl point nodes belong to either type (i) or (ii). For type
@i), 1/T; « T3 is to be expected, and the coefficient of 1/T}
preserves C, symmetry about the rotation axis. By contrast,
for type (i), the g vector is aligned along the rotation axis,
resulting in y" = 1, i.e., (1/T1); x T* and (/1) « T3.

The NMR measurement of UTe, under a magnetic field
along the b axis was reported in Ref. [47], where the com-
parison with a theoretical analysis based on a two-gap model
excluded the possibility of a line-node gap. Moreover, the
temperature dependence of 1/T; was close to T3. Since UTe,
hosts the Dy, symmetry, the NMR data is interpreted as
(1/T1) [(1/Ty)y] if one assumes the D,;, symmetry breaks
down to Gy, with the remaining symmetry axis along the a or
¢ axis [the b axis]. From the above argument, (1/77), « T3
for type (i) reasonably agrees the experimental observation,
implying the Weyl point nodes of type (i) on or very close to
the rotation symmetry axis parallel to the a or ¢ axis.

Finally, we discuss the dependence of the Fermi surface
shape. In previous theoretical studies [51-56], ellipsoidal,
cylindrical, and ring-shaped Fermi surfaces have been pro-
posed, although the Fermi surface of UTe, is yet to be
observed. Irrespective of the choice of Fermi surface, the ex-
ponent of temperature in 1/7; can be detected experimentally
because it only depends on the density of states and the q
vector around the point node. However, the coefficient of tem-
perature is sensitive not only to the shape of the Fermi surface,
but also to other factors such as hyperfine couplings. Thus, this
observation may be difficult, and more careful calculations
using a realistic model may be required.
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APPENDIX A: BdG HAMILTONIAN OF NONUNITARY
ODD-PARITY SUPERCONDUCTORS

In this Appendix, we summarize the properties of nonuni-
tary odd-parity SCs. We start from the BdG Hamiltonian
H =33, WHW, with W = (ciy, cxy. oy cf )T and

3 &l Ax )
Hy=1["% N
) ( Ay —&d,
where 1y isan N x N identity matrix, & is a normal Hamilto-
nian relative to the the Fermi level, and cf“ (cky) 1s the creation
(annihilation) operator of electron with pseudospin s € {1, | }.
Ag is a 2 x 2 matrix of pair potential defined by Eq. (1).

The BdG Hamiltonian is diagonalized by the generalized
Bogoliubov transformation Uy such that

(AL)

Ex = U, AUk, (A2)
with the eigenvalues and unitary operator,
EF 0 0 0
s | 0 Eg 0 0
E=1o o -Ef 0 | (A3)
0 0 0 E;
Y 7 ")
k= (f)ik i k). (A4)

J

ﬂk — Ukt + Ukt —
Uk |+ Uk|—

Here the 2 x 2 matrices ik and 0k are defined by

Chs = Y (lksale + Dsad’ ), (AS)

where alta (ake) 1s the creation (annihilation) operator of
a quasiparticle. Defining [ka) = (Ukya» Uk vfkm, vikw )T,
the eigenvalue equation is rewritten as
Hylka) = EZ [ka). (A6)

In the following, we show the explicit forms of Egs. (A3) and
(A4) for (non)unitary pair potentials, which satisfy Ay AIT( =
ldx |12 (AkA] = |di |1 + gy - 0).

For the unitary odd-parity pairing, Eqs. (A3) and (A4) are
given by Eq. (31) and

R 5( 2‘;) (A7)
R —Ax &k

1— A8

= dx| ( Ek) (A%

On the other hand, for the nonunitary odd-parity pairings,
the energy spectra are given by Eq. (2). The associated #ix and
Dk are described as [1]

1 &k £k . .

L+ 25 (i + gy - o)Az + 02) + 1+ == )(gxl12 — g - 0)d2 —02) |, (A9)
Sk E/ 2 E,
D = (Uk¢+ UkT)
Uk + Uk|—
Sk k + 00y 1 < ék Dk o0y
— (0 +0)+ 1— —~ =, -a) |, (A10)
[ E* VId? + gy i — Iy )
(

with Sy = /8(Iqx ? + ¢z1g,|) and D = |q, |dy £ idy x . node with Q_ = —1(1) and three off-axis point nodes with

APPENDIX B: OTHER GAP STRUCTURES

1. Gap structure of (3,1, 1/2)

Another type of splitting of Weyl point nodes occurs in
(n, J;, j;) = (3, 1, 1/2), where Weyl point nodes exist on and
off the rotation axis. Adding C3-symmetry-preserving pertur-
bations modify Egs. (13) and (14) as

1 A A A A~ ~
A0 = k. 4 ack, ik, — AR). ke (BI)
[3,17%] _ A A ~> ~>
g, 7 = = 2(hahvkik, — Ay (k7 — k7)),

Marpkyke + 2hphckiky, —22K2 + 22K%).  (B2)

Under the C; symmetry, the on-axis point node at the north
(south) pole with Q_ = 2(—2) changes to one on-axis point

Q_ = 1(—1). Therefore, we have eight point nodes in total.
The position of off-axis point nodes is determined from

4dghe
F ; (B3)

COS(3¢) = :l:l, tan(@) = )\'2
b

where the double sign corresponds.

2. Gap structure of (6, 3,1/2)
We consider the node structure of (n, J;, j.) = (6, 3, 1/2).
The d vector is represented as

163,31

d,” 7 = Ok i + apk 2,

iOhak k2 — Mpk k2 ), Ak + aak), (B4)

which consists only of k-cubic terms. For brevity, we set
Aq = 0. The gap structure is categorized into two cases de-
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pending on ;. First we consider the case of A, = 0, in which
nonunitary Dirac point nodes of type (iv) appear. Around the
point nodes, the dispersion relation is given by

2

A — )\' A~
A: +p — 2)\,,1]73_, Aki+p 2)5 pﬁ_’ (BS)

and their Chern numbers are calculated as Q. =2 and Q_ =
4 at the north pole. When A is turn on, the point nodes in A,
split into six off-axis Weyl point nodes with |Q_| = 1 through
the change of the Chern number from Q_ =4to -2+ 1 x 6,
where the on-axis point remains as a nonunitary Dirac point
node of type (iii) with quadratic dispersion. As a result, two
nonunitary Dirac point nodes and twelve off-axis Weyl point
nodes appear. The position of the off-axis Weyl point nodes is
given by

4xqhp
22

c

cos(6¢) = +1, tan’*(¥) = F

(B6)

3. Gap structure of (6, 3,3/2)

Finally, we discuss off-axis Weyl point nodes for
(n,J;, j,) = (6, 3,3/2). The d vector including k-cubic terms
is given by

3 A A . A
4 = (O + Mk, (O — Mo Ak + 2ak2). (BT
In the absence of the cubic terms, both Ex, and Ex_ have

a line node at k, = 0. Adding the k-cubic terms changes the
line node to twelve off-axis Weyl point nodes. The position of
off-axis Weyl point nodes is given by

cos(6¢p) = £1, =F—, (B3)

ke dahp
T2 A2

where we put A; = 0. Note that, when we choose A, = 0 or
Ay = 0, the off-axis Weyl point nodes meet at the rotation axis
and create a Weyl point node of type (i) with |Q_| = 6.

APPENDIX C: CALCULATIONS OF NMR
RELAXATION RATES

In this Appendix, we show the derivation of 1/7; in
the main paragraph. For the evaluation of 1/7}, Eq (29) is
rewritten, using the generalized Bogoliubov transformation
[Eq. (AS5)] and (kjar|ay o ax,p [KaB) = Sk, koS ks, 8p - S

—2773/ A DD

a.p kk
X |(—I|I+|I>(Mkwuk/m - vfklwv—km)
+ () (i i —

+ (=TT (up 1 —

Uik/Tlgv—kia)

vfk,w V_kta
2

— Uyt V0 VKo

x fio (1= (B — EL). (G

where we define I = (I, &= il,)/2 and neglect a pair exci-
tation process. From Eq. (30), the expectation values of the
nuclear spin are calculated as

(=1L |I) = € sin*(6)), (C2a)
(—=I|I_|I) = —e™ ™ cos?(6)), (C2b)
(~IL\I) = Si“f’). (C20)

In addition, ug,, and vk, are given by Eqgs. (A7) and (A8)
[Egs. (A9) and (A10)] for the (non)unitary pair potentials.
Using this, we proceed with the calculation of 1/7} in the
low-energy regime 7' << Ay. Hereafter, we assume a spherical
Fermi surface for simplicity.

1. Unitary

To begin with, we consider 1/7; of the unitary state.
Rewriting Eqgs. (A7) and (A8) as g = uxl, and v = vgAy,
Eqg. (29) is recast as

. _ZnynAﬁt ZZ

a.f kK

(=1L (0})sy (ult“k’(ssa Ss’ﬂ

i ss
2

— Ve k(AR (Ak)sa)| fie(1 = fi)8(Ex — Ex')

—hnAﬁZ{uuu e 12+ | Are [P Arc v 1 o)
k. k’

— > (DL
ij

+ Tr(AL 0; Ako ) ugctiy vig v }fk’(l — fi)d(Ex — Ex),
(C3)

—IL ) [Tr(0i Ag o A) gt vie vy

where we use Tr(ojo;) =28;; and ), H(=I|L* = 1/2.
The last terms describe the coherence factor, which remains
nonzero for s-wave SCs. In contrast, in chiral SCs, this term
vanishes under the integral over momenta on the Fermi sur-
face. Substituting Eqs. (A7) and (AS8) into Eq. (C3) yields

—zmAhf ) (1 4 S )fk (1 = fi)8(Ex — Ex),
k.k’
(C4)

where the second term vanishes under the integral of mo-
menta. Thus, we arrive at Eq. (33).

2. Type (i)

We now turn to the nonunitary cases. We start from the
derivation of Eq. (44). The d vector is given by Egs. (16).
Since E, is fully gapped, we only consider Eq. (C1) with o =
B = —. Substituting the d vector into Egs. (A9) and (A10) and
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expanding them around the point nodes to the leading order of
p, low-energy effective forms are given by

AppN
_ = 1+ 22 C5
- = o 2( T E; > (C5a)
1
Up,— = 5(1 + g—p_>, (CSb)
P
)\bﬁ 1 gp
=2 (1= 22 ), C5
bt 2, 2( E; (€50)
~A2N
|1 3
Upi— = — v E(l — E—p) (C5d)
yZn p

where &, = vrp,. We relabel the subscript as Eyx, — Ep
for the simplicity of notation. Then, 1/7; is calculated by
substituting Egs. (C5) and (C2) into Eq. (C1) and replacing
the summation with the integral. Keeping the leading contri-
butions of p, Eq. (C1) is recast as

1
_=2 d3 d3 /
T ””“%2f/ /

14+cos®(0)) |y . sin®(0r) oy
ol I — p.p

2 STy
X fo (L= f)S(E; — Ey), (Co)
where g\, and g2, are given by

)LZPN Epbp

IN pSp
gV = 122 (C7)

PP T g0 ( E, E,
v _ Ly Baba ) C8
Spp = 2( + B E (C8)

When integrating p on the Fermi surface, the second term of
Egs. (C7) and (C8) vanishes. Thus, using the density of states,
Eq. (C6) is rewritten as Eq. (44). Performing the integral in
terms of E, we finally get Eq. (47).

3. Type (ii)

Next, we show the derivation of Eq. (55). Similarly to
Appendix C 2, the main contribution to 1/7; comes from the
Ex_ eigenspace. The uy,— and vk, expanded around the Weyl
point nodes to the leading order of p = k — k,, ;. become

_iny\/)\_ ( é:p >
Upp— 1+ , C9a
P Tt E, (0
VR ( &p )
o, 1422 ), C9b
e v E: (C9b)
/o, NhoPx iy [A} 4+ 4hahe Py
Upp— =
Vha+ e \/Agp)% + (A2 + o) 2
1 £
—(1-249), C9
2( %) (o

—inw /AC nz)‘bp\x + i\/ )‘12, + 4)\'61)"Cﬁ)7

V3t ke L3+ (33 + 4 7

1
x [=(1— g—P ,
2 Ey
rotate p as P — (Px, Py cos(Oy,.n,) +
—py sin(8y, n.) + p; cos(8y, ,.)) with

Up|— =

(C9d)

where  we
pzsin(6y, ),

nz)\b
cos(Oy,.y,) = ———=, (C10a)
A7 4 4hahe
20y hake
Sin(6),.,,) = —m2 e (C10b)

JAE+ Ahah

to eliminate the p, dependence. Substituting the eigenstates to
Eq. (C1), we obtain

1 1
- :2 2A2~ /d3 /d3 /
T TVn ht—(zﬂ)6 p 4
1
X gott (07, ¢1)§ 1+

X fo (1= f)8(Ey — Ep), (C11)

with

Aare 14 cos?(6))
(Aa + 2e)? 2

N <Aa — Ac>2sin2(91)
Ao + e 4
Aake  cos(2¢;)sin®(6;)
(Ao +2c)? 2
VAahe(hg — Ae)

_ nym sin(6;) sin(26;),

&ott (Or, @1) =

(C12)

where the last term depends on 7, so that it vanishes under
the summation of all point nodes. After integrating Eq. (C11)
in terms of p, p’, we get Eq. (55).

4. Types (iii) and (iv)

We can calculate 1/7; for types (iii) and (iv) in a system
where the d vector and energy spectrum around the point node
are given by Eqgs. (24) and (25): type (iii) corresponds to the
case with |[N| = |M| and type (iv) to the case with |[N| # |M]|.
Since both E," and E,_ have the point nodes and dy, = 0, only
Up4+, Upy+, Upy—, and vp | _ are nonzero. They are given by

(C13a)

(C13b)
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(1

Vgt g = ﬁ 5(1 - 1%) (C13¢)
Py &

i = E(l_Ep>’ (C13d)

Substituting Eq. (C13) into Eq. (C1) and replacing the sum-
mation with the integral in terms of p, p’, we obtain

1
i } 2A2 /d3 /d3 /
Tl T ¥ hf(277,')6 p 4

[ sin?(6;)
X

2 2 2 2
(lugp+ 17 lup 417 + [v—prp4 " [v—pr+[7)

X f (L= FD8ES — Ef)

Sin24(91)(|’4p¢7|2|up’¢*|2 + vy Plvp - 1)
X fy (1= f)3(Ey — Ey)
+ H_#SZ(GI)WNJZWP’HF
X fif (1= f)8(E, — E)
+ H%Sz(mlv—pw—mv—ﬂ”z

X f (1= ]‘;’)(S(El;L —E, )]. (C14)
Since the first (second) line in Eq. (C14) only comprises
upr4+ and vpyy (upy— and vp_), the integral is replaced with
JoS D2(E)AE (" D*(E)dE). On the other hand, the last
two lines include the both contribution, so that the integral
is replaced with fooo D, (E)D_(E)dE. As a result, we obtain
Egs. (49) and (52)

5. 1/T; for (3,1, 1/2)

The gap structure of (n,J;, j.) = (3,1, 1/2) consists of
on-and off-axis Weyl point nodes, which induce a slightly
different 1/7). For off-axis Weyl point nodes, there are six
point nodes with |Q_| =1 [Eq. (B3)]. The calculation is
similar to the case of (2, 1, 1/2). When we take into account
the contribution from the six off-axis Weyl point nodes, 1/7;
yields

[3,1,4]

i—6n 2A2.D 02 TS Cl5
= Yo AntDofi 6, (C15)
with
B 7k A2 14 cos*(6r)
Off’gl 120vFvAvay ()\.2 + 4)\.2) 2

(C16)

N A7 —4x2 *sin2(6;)
A% 4 422 4 |

where the energy spectrum around the off-axis point nodes is
given by

Ey =[5+ 0,02 + T3, 2 (C17)

with  Day = 24 /A} + 162202/(A2 +422)  and Dy =
6A7Ac/ (A} + 4A%). Vanishing of ¢; dependent terms in
Eq. (C15) stems from the C3 symmetry.

On the other hand, the on-axis Weyl point nodes read a
different temperature dependence due to the g vector polarized
along the z axis. The eigenvalues and eigenstates expanded
around the point node to the leading order of p = k — k.. are

given by
E; = ,/vaZ +v347, (C18)
and
)\bﬁ— 1 ép
_ = -1+ ==, C19
=T 2( T E (C19a)
1
Up— = 5(1 + ;—p_), (Clgb)
)
A 1
=i MO8 g
2)\.apJ_ 2 Ep
Upy_ = _iP- S ), (C19d)
pL 2 Ep

where vy = 2|A.|. Thus, the low-energy forms of up,_ and
vps— are similar to Eq. (C5), while the energy spectrum change
from the quadratic dispersion to the linear dispersion. Substi-
tuting Eqs. (C18) and (C19) into Eq. (C1), we obtain

1

1 + cos?(6y) ABLY sin®(6;) _(3.1.1]
Fl =7T)/n2Aﬁf|:T T7 + TBon ? TS
(C20)
where
[3,1}] 9377,’2)\.2]{3
Aon P = 2b6F2’ (C21)
1512v5 v} A2
I 7k3
el — (C22)
120vFvA

The temperature dependence reads as (1/77) o< T’ and
(1/Ty); o< T>. Thus, we find y’ =2 in Eq. (41), which is
different from Eq. (42). The difference comes from the linear
dispersion around the point node.

In the coexistence of the on-axis and off-axis Weyl point
nodes, however, the contribution from the off-axis Weyl point
nodes becomes dominant. Thus, Eq. (C20) can be masked by
Eq. (C15). Accordingly, 1/T; oc T? is to be expected for any
direction of magnetic fields.

6. 1/T, for 3,1, 3/2)

A special type of nonunitary Dirac point nodes of type (iii)
appears in the case of (n,J;, j,) = (3,1, 3/2). The d vector
and q vector are described by

(3.1.3]

dy % = (ks + Mok, idoky — idpky, Acky),  (C23)

g = (=200 — Aak2, 0,202 —22)R2),  (C24)
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since the C3 symmetry allows the additional term propor-
tional to A., which rotate the ¢ vector in the xz plane.
The Chern number takes Q. = Q_ = 1(—1) at the north
(south) pole. It should be noted that Eq. (C24) preserves the
C; symmetry since the rotation operator in the pseudospin
space is proportional to an identity matrix. Interestingly, the
additional term makes the pseudospin structure nonaxially
symmetric, which causes a nonaxially symmetric pseudospin
response.

To evaluate 1/7;, we approximate ups, and vy, around the
point nodes up to the leading contribution of p, which are
summarized as

Upr+ =

/£2 2
N ] +f +/: 2<1+I§—">, (C25a)

P

S |1 &p
Upit =[5 1+E—p+ , (C25b)
Je |1 &p
=== 1+ ==) C25
Upt i\l E, (C25¢)
VETE+L ] £,
== = I (1+2=), (C25d
Up 1% > + E, ( )
(& +8)h+ &
1— C25
UPT+ KUAJ’,pJ_ < E+ ) ( e)
gz p+ p
Upl+ = — 1 = (C25f)
pLr Quatpl V J
gpy |1 ( & )
Vpro = ———— [—(1— (C25g)
PI™ 7 Qua pi |2 E, 8
T =8 )P+ |1
umzw —<1—§—"_), (C25h)
Qua-p1 |2 Ey
where the coefficients are defined as
fo = =2(ha — Ap)Aes (C26a)
fo =22 — 43). (C26b)
g5 =20+ p)[(ha — Ap)?
F(ha — Ap)y/ (o + 2p)2 +22],  (C260)

J

i 6,2
10086 _ os2(6))sin2@))

~[3,1,5]
017¢I
1.6

1.4
Iz 1.2
A A
}; 0.8

FIG. 4. Anisotropy of the normalized coefficient in Eq. (C27).

3.1,
Here, the normalization is defined in such a way that DL, ¢12] =1

in the unitary limit. The parameters are chosen to be A, = 1, A, =
0.51. =0.5.

gy = 2(ha 4+ Ap)[(ha + 2p)> + A7

F (kg — hp)y) Oa + Ap)% + 2], (C26d)
g5 =24 (e — Ap)?
F (kg — hp)y) Oa + Ap)? + 22], (C26e)

K* = 8[(A2 = A7) + (kg — Ap)?A2

(12 = 22)(a = 2y s+ 202+ 22]. (C26D)

Var = 20k + Ap) + A2

4 (hg — Ap)y) Qg + Ap)? + A2

Although Eq. (C25) has complex prefactors, their square and
the cross terms do not depend on p. Thus, we can take place
the integral in terms of p, p’ first. One yields

(C26g)

1 7k,
= Ay
T 240v7v3_ vi_
— 3,1, 3,1,
AD[ o, o)+ A*D[ or, )
Vit VA
3 3
+DE’_"2]<01,¢1>+D[_3'+"2](9,,¢,)]. (C27)

Each coefficient depends on 6; and ¢;. The anisotropy of coef-
ficient in terms of the nuclear spin direction, i.e., the magnetic
field direction, is visualized in Fig. 4. We explicitly show the
coefficients as follows:

D6, ¢y) = (

)Cﬂ%ﬁ+ﬁ+ﬁf
K4

(8:)%(g; + & >2>
+

4
K UA+

2
L sin’@) (VT2 + 1)+ L& +g)* + ()
4 K* K} |

(& V(g +4,)—

_ cos(¢r)sin(26)) (fx W2+ 1)

2

—ﬁWﬁ+ﬁ+m
4

g (g +8)
K4UA+ ’

(C28a)
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1 + cos(6;)?

3,13 .
D2, ) = < 5 — cos?(6;) sin®(6;)

> (ff WEHP+L)
K4

(&g — &)
K*vi

4 K*

| sin’(®) <(\/fx2 F2+£) + s G

¥+ (gh?
K*v}

Y —¢h)

2

 cos(gn)sin(26)) (foff TR L)

D"\, ¢+ D™ 0, )

- RVE+ 2+ 1) LG
4

—glgl g
K*v} ’

(C28b)

2

14 cos(6))? ((m+f1)4+f4

K4

(g7 + & (&) + (gf -

(g; +8,)°(&F — g + g;2<gj>2)

4
K*og v3,

2

+2cos?(6;) sin® ()

sin?(6;) (2(\/fszff + fz)zfx2
+ K +

K4

gj)z(gﬁ)

UA+UA+

((\/ff FAL)
K4 +

2

(& + & )&l —ghe: gt
VAt

4,2
K*vy

TR+ 1)

~ cos(gy)sin(26)) (2f3 R+ Z+f)

2
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K4
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