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The proximity effect from a spin-triplet px-wave superconductor to a dirty normal-metal has been shown
to result in various unusual electromagnetic properties, reflecting a cooperative relation between topologically
protected zero-energy quasiparticles and odd-frequency Cooper pairs. However, because of a lack of candidate
materials for spin-triplet px-wave superconductors, observing this effect has been difficult. In this paper, we
demonstrate that the anomalous proximity effect, which is essentially equivalent to that of a spin-triplet px-wave
superconductor, can occur in a semiconductor/high-Tc cuprate superconductor hybrid device in which two po-
tentials coexist: A spin-singlet d-wave pair potential and a spin-orbit coupling potential sustaining the persistent
spin-helix state. As a result, we propose an alternative and promising route to observe the anomalous proximity
effect related to the profound nature of topologically protected quasiparticles and odd-frequency Cooper pairs.
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I. INTRODUCTION

When a superconductor (SC) is attached to a normal-metal,
Cooper pairs (CPs) penetrate into the attached normal seg-
ment and modify the electromagnetic properties there. This
phenomenon is known as the proximity effect and has been
a central research subject in the field of superconductivity.
When we consider a conventional spin-singlet s-wave SC, the
attached normal-metal exhibits superconductinglike electro-
magnetic properties. However, the proximity effect from a
spin-triplet px-wave SC to a dirty normal-metal (DN) has been
shown to result in various counterintuitive transport proper-
ties such as the quantization of zero-bias conductance (ZBC)
in DN/SC junctions [1–5] and the fractional current-phase
relationship in Josephson currents of SC/DN/SC junctions
[6–8]. Moreover, although the spin-triplet px-wave SC shows
a diamagnetic response, the magnetic response in the attached
DN is reversed to paramagnetic [9]. Such a drastic proximity
effect of a spin-triplet px-wave SC has been referred to as an
anomalous proximity effect (APE) [10].

The APE of spin-triplet px-wave SCs has attracted inten-
sive attention because its mechanism is related to two particles
clad in novel concepts: A topologically-protected zero-energy
quasiparticle and an odd-frequency CP. The zero-energy states
(ZESs) originally located at a surface of a spin-triplet px-wave
SC [11–15] can penetrate into the attached DN while retaining
the high degree of degeneracy at zero energy [1,2,16–18],
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where the robustness of the penetrated ZESs is ensured by
topological protection [4,5]. The unusual transport properties
are a direct consequence of the resonant tunneling of quasi-
particles via such topologically protected ZESs in the DN.
Moreover, it has been shown that the ZESs penetrated from
a spin-triplet px wave are accompanied by odd-frequency
CPs [16–21], which are responsible for the paramagnetic
response in the DN [9,22–25]. The APE is a remarkable
phenomenon related to the intrinsic natures of topologically
protected zero-energy quasiparticles and odd-frequency CPs.
Thus, experimental observations of this effect are an important
topic in the physics of superconductivity.

The main difficulty in observing the APE is a serious lack
of candidate materials for spin-triplet px-wave SCs. Thus far,
several theoretical models for effective px-wave SCs have
been proposed, including models for semiconductor/s-wave
SC hybrids under magnetic fields [26–28] and helical p-wave
SCs (which are also rare) under magnetic fields [28–30]. How-
ever, experimentally realizing these models is also challenging
because strong Zeeman potentials that exceed the supercon-
ducting pair potentials are needed to induce effective px-wave
superconductivity. To resolve this stalemate, in this Letter, we
explore an alternative route to observing the APE.

A central component of our scheme is to demonstrate the
APE purely from spin-singlet SCs, whereas the spin-triplet
px-wave SCs have been speculated to be critical for realiz-
ing the APE [1–9,16–18]. Specifically, we demonstrate the
APE in a two-dimensional (2D) semiconductor fabricated
on an insulator/high-Tc cuprate SC junction, as shown in
Fig. 1. We assume a proximity-induced spin-singlet dxy-wave
pair potential for the segment above the high-Tc cuprate SC.
For the segment above the insulator, we assume a nonmag-
netic disorder potential that can be introduced, for example,
using a focused ion beam technique [31,32]. Consequently,
the 2D semiconductor becomes an effective DN/spin-singlet
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FIG. 1. Schematic of an effective dirty normal-metal (DN)/dxy-
wave superconductor (SC) junction in the presence of a PSH.

dxy-wave SC junction. In addition, we assume that the semi-
conductor hosts a persistent spin helix (PSH) state, which has
been studied intensively in the field of spintronics [33–36]. As
described in detail later, a spin-orbit coupling (SOC) potential
sustaining the PSH induces a spin-triplet px-wave pairing
correlation in the SC segment [37,38], whereas the pairing
correlation does not contribute to the superconducting gap
directly. The induced spin-triplet px-wave pairing correlation
in the SC segment is a source of robust odd-frequency spin-
triplet s-wave pairing correlation in the attached DN segment.
Moreover, on the basis of an Atiyah-Singer index theorem
[4,5,28,58], we will demonstrate the emergence of topologi-
cally protected ZESs in the DN segment only in the presence
of PSH. Remarkably, PSH states have been already realized in
a number of experiments using semiconductor quantum well
systems [39–42]. Furthermore, it has been recently shown that
the PSH is realized intrinsically in 2D ferroelectric materi-
als such as group-IV monochalcogenide monolayers [43–50].
Thus, the recent rapid progress in the physics of the PSH
provides a great potential for the realization of the proposed
experimental setup. Consequently, we report a promising
route to observing the APE.

II. MODEL

We describe the present system using a 2D tight-binding
model. A lattice site is indicated by a vector r = jx + my,
where x (y) is a unit vector in the x (y) direction. The system
comprises three segments: a semi-infinite lead wire (ballistic
semiconductor segment) for −∞ � j < 1, a DN segment
(dirty semiconductor segment) for 1 � j � L, and a semi-
infinite SC segment (ballistic semiconductor segment with a
proximity-induced pair potential) for L < j < ∞. In the y di-
rection, the number of lattice sites is given by W and a periodic
boundary condition is applied. The Bogoliubov–de Gennes
(BdG) Hamiltonian reads H = Hkin + HPSH + H� + Hv. The
kinetic energy is given by

Hkin = −t
∑
〈r,r′〉

∑
σ=↑,↓

(c†
r,σ cr′,σ + c†

r′,σ cr,σ )

+ (4t − μ)
∑
r,σ

c†
r,σ cr,σ , (1)

where c†
r,σ (cr,σ ) is the creation (annihilation) operator for an

electron at r with spin σ ; t and μ denote the nearest-neighbor
hopping integral and chemical potential, respectively. The
PSH is characterized by a unidirectional SOC potential

given by

HPSH = iλ

2

∑
r,σ

sσ (c†
r+y,σ cr,σ − c†

r,σ cr+y,σ ), (2)

where s↑(↓) = +1(−1). The SOC potential in Eq. (2) de-
scribes a Dresselhaus [110] SOC potential realized in
zinc-blende III–V semiconductor quantum wells grown along
the [110] direction [33,34,42]. The equivalent SOC poten-
tials can also be obtained in quantum wells in which Rashba
and Dresselhaus [100] SOC potentials have equal amplitudes
[33,34,39–41] and in ferroelectric thin-film materials [43–50].
The proximity-induced spin-singlet dxy-wave pair potential is
given by

H� = �

4

∞∑
j=L+1

W∑
m=1

(c†
r+x+y,↑c†

r,↓ + c†
r,↑c†

r+x+y,↓

− c†
r+x−y,↑c†

r,↓ − c†
r,↑c†

r+x−y,↓) + H.c., (3)

where � denotes the amplitude of the pair potential. The
disorder potential in the DN segment is described by

Hv =
L∑

j=1

W∑
m=1

∑
σ

v(r)c†
r,σ cr,σ , (4)

where v(r) is given randomly in the range −X � v(r) � X .
In the following numerical calculations, we fix the param-

eters as μ = t , λ = 0.5t , � = 0.1t , L = 50, and W = 50. For
simplicity, we assume that t , μ, and λ are uniform in the entire
system. For the ensemble average, 500 samples are used.
To observe the APE experimentally, the thermal coherence
length ξT = √

h̄D/2πkBT must be longer than the length of
the DN segment, where T and D represent the temperature
and the diffusion constant in the DN segment, respectively.
For simplicity, we assume zero temperature in the following
calculations.

III. RESULTS

A. Anomalous proximity effect

We first focus on the differential conductance in the
present device. Within the Blonder-Tinkham-Klapwijk for-
malism [51–53], the differential conductance is calculated by

GNS(eV ) = e2

h

∑
ζ ,ζ ′

[
δζ ,ζ ′ − ∣∣ree

ζ ,ζ ′
∣∣2 + ∣∣rhe

ζ ,ζ ′
∣∣2]

E=eV , (5)

where ree
ζ ,ζ ′ and rhe

ζ ,ζ ′ denote a normal and an Andreev reflection
coefficient at energy E , respectively. The indexes ζ and ζ ′
label an outgoing and incoming channel in the lead wire,
respectively. These reflection coefficients are calculated using
recursive Green’s function techniques [54,55]. In Fig. 2(a), we
show the ZBC, i.e., GNS(eV = 0) as a function of the normal
resistance RN = G−1

N (eV = 0), where the normal conductance
GN(eV ) is calculated by setting � = 0. We vary the value
of RN by changing the magnitude of the disorder potential,
X . The dotted black line denotes the result corresponding to
the absence of the PSH (i.e., λ = 0). In this case, the ZBC
decreases to zero with increasing resistance in the normal
segment RN . Nevertheless, as shown by the solid red line,
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FIG. 2. (a) ZBC as a function of the normal resistance RN .
(b) Differential conductance at RN = 0.55(h/e2 ) as a function of
the bias voltage. The solid red (dotted black) line denotes the result
corresponding to the presence (absence) of the PSH with λ = 0.5t
(λ = 0).

the ZBC in the presence of the PSH shows saturation with
increasing resistance and shows a quantization in the dirty
limit as

lim
RN →∞

GNS(eV = 0) = 2e2

h
|Z|, (6)

where |Z| = 6 in the case of the present parameters. In
Fig. 2(b), we also show GNS at RN = 0.55(h/e2) as a function
of the bias voltage. The results clearly show that only the
conductance spectrum in the presence of the PSH exhibits a
sharp ZBC peak. The quantization of the ZBC in the dirty
limit is a representative manifestation of the APE [1,2,4,5].
The integer number of Z, which characterizes the strength of
the APE, will later be derived analytically.

We now discuss the local density of states (LDOS) in the
DN segment. The LDOS averaged over the lattice sites in the
y direction is calculated by

ρNS( j, E ) = − 1

πW

W∑
m=1

Tr[Im{Ǧ(r, r, E + iδ)}], (7)

where Ǧ(r, r′, E ) represents the Green’s function, δ is a small
imaginary component added to the energy, E , and Tr de-
notes the trace in spin and Nambu spaces. Figure 3(a) shows
ρNS( j, E ) at the center of the DN segment (i.e., j = L/2) as a
function of the energy. We chose X = 2t and δ = 10−4�. The
result is normalized by the LDOS in the normal states ρN cal-
culated by setting � = 0. When the PSH is present, the LDOS
exhibits a sharp zero-energy peak (solid red line), whereas the
peak is not observed when the PSH is absent (dotted black
line). The zero-energy peak in the LDOS suggests that ZESs
originally located at the junction interface penetrate into the
DN segment, which is responsible for the quantization of the
conductance minimum in Eqs. (6) [1,2,4,5].

Here, we discuss the odd-frequency CPs in the DN seg-
ment. SOC potentials have been shown to induce spin-triplet
pairing correlations in spin-singlet SCs [37,38], whereas the
pairing correlation does not contribute to the superconducting
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FIG. 3. (a) LDOS at the center of the DN segment as a function
of the energy. (b) Pair amplitudes for the odd-frequency spin-singlet
s-wave component at the center of the DN segment as a function of
the Matsubara frequency.

gap directly. According to the analysis in Ref. [38], the SOC
potential in Eq. (2), which sustains the PSH, generates an
even-frequency spin-triplet px-wave correlation in the spin-
singlet dxy-wave SC (see also the Supplemental Material [56]).
Therefore, as in the case of pure DN/px-wave SC junctions
[21,38], we can reasonably expect that the even-frequency
spin-triplet px-wave pairing correlations induced in the SC
segment can function as the source of odd-frequency spin-
triplet s-wave correlations in the attached DN segment. We
here focus only on the odd-frequency spin-triplet s-wave CPs,
whose pair amplitude is evaluated by

F odd
Sz=0( j, ω) = 1√

2W

W∑
m=1

[F odd
↑,↓ (r, ω) + F odd

↓,↑ (r, ω)], (8)

F odd
σ,σ ′ (r, ω) = [Fσ,σ ′ (r, r, ω) − Fσ,σ ′ (r, r,−ω)]/2, (9)

where Fσ,σ ′ (r, r′, ω) represents the anomalous part of the
Matsubara Green’s function. We also confirm that other com-
ponents of the odd-frequency spin-triplet s-wave CPs,

F odd
Sz=1(−1)( j, ω) =

∑
m

F odd
↑,↑(↓,↓)(r, ω)/W,

are absent in the present junction. Figure 3(b), shows the real
part of F odd

Sz=0 at the center of the DN segment as a function of
the Matsubara frequency ω, where the imaginary part of F odd

Sz=0

is also found to be zero identically. As expected, F odd
Sz=0 in the

DN segment becomes finite in the presence of the PSH (solid
red line), whereas in the absence of the PSH (dotted black
line), F odd

Sz=0 = 0. As a result, we confirm the formation of the
odd-frequency spin-triplet s-wave CPs in the DN, which is an
important aspect of the APE.

B. Index theorem

We here discuss an Atiyah-Singer index theorem that char-
acterizes the APE in the present junction. To evaluate the
topological property of the SC segment, we remove the DN
segment from the system and apply a periodic boundary in the
x direction. Moreover, for simplicity, we describe the present
SC in continuous space. Consequently, the BdG Hamiltonian
in momentum space is given by

H (k) = ξ (k)σ0τz + λkyσ̂zτ0 − �(k)σyτy, (10)
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where ξ (k) = (h̄2k2/2m) − μ with m representing the ef-
fective mass of an electron, �(k) = �(kxky/k2

F ) with kF =√
2mμ/h̄ representing the Fermi wave number, σα (τα) for

α = x, y, z are the Pauli matrices acting on spin (Nambu)
space, and σ0 (τ0) is the unit matrix in spin (Nambu) space.
The BdG Hamiltonian H (k) intrinsically preserves particle-
hole symmetry as CH (k)C−1 = −H (−k), where C = τxK
with K representing the complex conjugation operator. We
also find time-reversal symmetry as T−H (k)T −1

− = H (−k)
with T− = iσyτ0K. Because C2 = +1 and T 2

− = −1, the
BdG Hamiltonian belongs to the DIII symmetry class [57].
Importantly, because of the nature of the PSH [33], the
BdG Hamiltonian preserves spin-rotation symmetry along
the z axis even in the presence of the SOC potential:
RzH (k)R−1

z = H (k) with Rz = σzτz. By combining T− and
Rz, we obtain T+H (k)T −1

+ = H (−k), where T+ = RzT− rep-
resents an additional time-reversal symmetry obeying T 2

+ =
+1. Because C2 = +1 and T 2

+ = +1, we find that H (k) can
be simultaneously classified into the BDI symmetry class
[57]. The energy spectrum of H (k) is given by Esσ

(k) =
±√{ξ (k) + sσ λky}2 + �2(k). The branch of Esσ

(k) exhibits
four superconducting gap nodes at (kx, ky ) = (±kF , 0) and
(0,±kλ − sσ λ̄), where

kλ =
√

k2
F + λ̄2, λ̄ = mλ/h̄2. (11)

On the basis of the Atiyah-Singer index theorem [4,5,28,58],
a topological index that characterizes the number of zero-
energy states at a dirty surface of a nodal SC is given by

Z =
∑

ky

′
wBDI(ky), (12)

wBDI(ky) = i

4π

∫
dkxTr[S+{H (k)}−1∂kx H (k)], (13)

where S+ = iT+C = −σxτy represents the chiral symmetry
operator with respect to the BDI symmetry class and

∑′
ky

de-
notes a summation over ky excluding the nodal points. Using
Eq. (13), we obtain

wBDI(ky) =
{

1 for kλ − λ̄ < |ky| < kλ + λ̄

0 otherwise
, (14)

and therefore Z = ∑
kλ−λ̄<|ky|<kλ+λ̄. When the momentum ky

is assumed to be a continuous variable, the discrete summation
of ky is replaced with the integration as

∑
ky

→ W

2π

∫
dky. (15)

Using Eq. (15), we obtain

Z = [(λkF /2μ)Nc]G, (16)

where [· · · ]G is the Gauss symbol giving the integer part
of the argument, and Nc = 2W kF /π , where [Nc]G repre-
sents the number of propagating channels. The index Z
becomes finite only in the presence of the PSH (λ 
= 0).
According to the Atiyah-Singer index theorem [4,5,28,58],
the |Z| ZESs can robustly remain at zero-energy even in the
presence of potential disorders; they can therefore penetrate
into the attached DN while retaining their |Z|-fold degen-
eracy [4,5]. In the presence of the chiral symmetry of S+,
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FIG. 4. ZBC as a function of the strength of the Rashba SOC
potential. We chose X = 2t .

each ZES can form a perfect Andreev reflection channel at
zero-energy [5,59], which explains the ZBC quantization in
Eq. (6).

We here note that the number of stable ZESs in typical
fully gapped topological SCs is limited to a few. However, the
present hybrid system can host the ZESs with a high degree
of degeneracy at zero energy. For instance, when we assume
that μ = 2 meV, λ = 10 meVnm, and m = 0.07me, where me

is the electron rest mass, we obtain Z ≈ [0.128Nc]G, which
means that approximately 10% of the propagating channels
contribute to the resonant transmission. We can, therefore,
reasonably expect a drastic signature of the APE, which
should be easily detectable in experiments.

IV. DISCUSSION

We briefly discuss an effect of a perturbative Rashba SOC
potential described by HR(k) = λR(kyσxτ0 − kxσyτz ). Because
the Rashba SOC breaks the chiral symmetry of S+, the in-
dex Z in Eq. (12) can no longer be defined. Therefore, in
the presence of Rashba SOC, the ZESs cannot retain their
high degree of degeneracy at zero energy. Figure 4 shows
the ZBC as a function of the strength of the Rashba SOC
λR. The ZBC is substantially increased in the vicinity of
the PSH state (i.e., λR = 0). In principle, the amplitude of
Rashba SOC potentials can be tuned experimentally by ap-
plying gate voltages or pressures. Therefore, in experiments,
a sudden enhancement in the ZBC as the strength of the
Rashba SOC is varied is a possible observable signature of the
APE.

In summary, we demonstrate that a spin-singlet dxy-wave
SC in the presence of PSH exhibits the APE. The proposed
experimental setup can be fabricated by interfacing existing
materials. Our proposal therefore represents a promising ap-
proach to observing the APE.
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