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Superconductivity in Cu-doped Bi2Se3 with potential disorder

Takumi Sato 1 and Yasuhiro Asano 1,2

1Department of Applied Physics, Hokkaido University, Sapporo 060-8628, Japan
2Center of Topological Science & Technology, Hokkaido University, Sapporo 060-8628, Japan

(Received 21 April 2020; revised 1 July 2020; accepted 7 July 2020; published 17 July 2020)

We study the effects of random nonmagnetic impurities on superconducting transition temperature Tc in a Cu-
doped Bi2Se3, for which four types of pair potentials have been proposed. Although all the candidates belong to
s-wave symmetry, two orbital degrees of freedom in electronic structures enrich the symmetry variety of a Cooper
pair such as even-orbital-parity and odd-orbital-parity. We consider realistic electronic structures of Cu-doped
Bi2Se3 by using a tight-binding Hamiltonian on a hexagonal lattice and consider effects of impurity scatterings
through the self-energy of the Green’s function within the Born approximation. We find that even-orbital-parity
spin-singlet superconductivity is basically robust even in the presence of impurities. The degree of the robustness
depends on the electronic structures in the normal state and on the pairing symmetry in orbital space. On the other
hand, two odd-orbital-parity spin-triplet order parameters are always fragile in the presence of potential disorder.
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I. INTRODUCTION

The robustness of superconductivity in the presence of
nonmagnetic impurities depends on symmetry of the pair
potential. The transition temperature Tc is insensitive to the
impurity concentration in a spin-singlet s-wave superconduc-
tor [1–3]. In a cuprate superconductor, on the other hand,
Tc of a spin-singlet d-wave superconductivity is suppressed
drastically by the impurity scatterings [4]. The pair potential
of an unconventional superconductor changes its sign on the
Fermi surface depending on the direction of a quasiparticle’s
momenta. The random impurity scatterings make the mo-
tion of a quasiparticle isotropic in both real and momentum
spaces. Such a diffused quasiparticle feels the pair potential
averaged over the directions of momenta. The resulting pair
potential is finite for an s-wave symmetry, whereas it is zero
for unconventional pairing symmetries. Thus, unconventional
superconductivity is fragile under the potential disorder.

Previous papers [5–10] showed that s-wave superconduc-
tivity is not always robust against the nonmagnetic impu-
rity scatterings in multiband (multiorbital) superconductors.
The interorbital impurity scatterings decrease Tc, which is
a common conclusion of theoretical studies. The two-band
models considered in these papers, however, are too simple
to discuss the effects of impurities on Tc in real materials such
as iron pnictides [11,12], MgB2 [13,14], and Cu-doped Bi2Se3

[15,16]. The robustness of multiband superconductivity under
the potential disorder may depend on electronic structures
near the Fermi level. In iron pnictides and MgB2, two elec-
trons in the same conduction band form a Cooper pair [12,14].
The impurity effect on such an intraband pair has been studied
by taking realistic electronic structures into account [17]. In
the case of Cu-doped Bi2Se3, four types of pair potentials
�1 − �4 have been proposed as a promising candidate of
order parameters [16]. Among them, an interorbital pairing
order has attracted much attention as a topologically nontriv-
ial superconductivity [16,18]. Unfortunately, the possibility

of such a topological superconductivity under the potential
disorder hasn’t been studied yet. We address this issue.

In this paper, we study the effects of impurities on Tc of
Cu-doped Bi2Se3. We describe electronic structures near the
Fermi level by taking into account two p orbitals in Bi2Se3

and the hybridization between them [19,20]. According to the
theoretical proposal [16], we consider four types of s-wave
pair potentials on such orbital-based electronic structures. The
effects of impurities on Tc are estimated through the impurity
self-energy within the Born approximation. The transition
temperature is calculated by solving the gap equation numer-
ically and is plotted as a function of impurity concentration
nimp. We will show that the relation between Tc and nimp

depends sensitively on the types of pair potentials. Supercon-
ductivity with an intraorbital pair potential �1 is robust even
in the dirty regime. This conclusion is consistent with that
at a limiting case of previous studies [6–9]. There are two
kinds of interorbital pairing order: even-orbital symmetry and
odd-orbital symmetry. We find that Tc of an even-interorbital
superconductivity �3 decreases slowly with the increase of
nimp and vanishes in the dirty limit. The results for �3 disagree
with those in a simple two-band model [10] because the
robustness of �3 depends sensitively on electronic structures.
Finally, the odd-interorbital pairing orders (�2 and �4) vanish
at a critical value of the impurity concentration, which agrees
well with the results of an idealistic two-band model [10].
Thus we conclude that odd-orbital pair potential is fragile
irrespective of electronic structures.

This paper is organized as follows. In Sec. II, we describe
the effective Hamiltonian near the Fermi level in Cu-doped
Bi2Se3 and four types of pair potentials in its superconducting
state. The anomalous Green’s function and the gap equation
for each pair potential in the clean limit are obtained by solv-
ing the Gor’kov equation. In Sec. III, we introduce the random
impurity potential and discuss the effects of impurities on Tc

within the Born approximation. The conclusion is given in
Sec. IV. Throughout this paper, we use units of kB = h̄ = 1,
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FIG. 1. The simplified lattice structure of a Cu-doped Bi2Se3.
The arrow indicates the hopping.

where kB is the Boltzmann constant. The symbols ¯· · ·, ˇ· · ·, and
ˆ· · · represent 8 × 8, 4 × 4, and 2 × 2 matrices, respectively.

II. CLEAN LIMIT

A. Model

For constructing an effective model of the normal state,
we start with the tight-binding Hamiltonian on a hexago-
nal lattice as shown in Fig. 1 [21]. Strictly speaking, the
crystal structure of Bi2Se3 is rhombohedral [19,20]. The
simplification does not affect the low-energy physics. We
assume that an intercalated copper atom supplies electrons
and makes topological insulator Bi2Se3 be metallic [22].
In the hexagonal lattice, the primitive lattice vectors are
(
√

3a/2, a/2, 0), (0, a, 0), (0, 0, c), where a and c are the
lattice constants in the xy plane and along the z axis,
respectively. We define the nearest-neighbor vectors a1 =
(
√

3a/2, a/2, 0), a2 = (0, a, 0), a3 = (−√
3a/2, a/2, 0), and

a4 = (0, 0, c). The tight-binding Hamiltonian in real space
can be written as [21,23]

HN =
∑

R

ψ†
Rε̌ψR +

∑
R,i

ψ†
RťaiψR+ai

+ H.c., (1)

ψR = [ψ+,↑(R) , ψ−,↑(R) , ψ+,↓(R) , ψ−,↓(R)]T, (2)

where ψ†
σ,s (ψσ,s) is the creation (annihilation) operator of an

electron at the orbital σ (= + or −) with spin s (=↑ or ↓). We
consider only the nearest-neighbor hopping on the hexagonal
lattice in the xy plane and that along the z axis. An orbital +
(−) mainly consists of pz orbital of a Bi (Se) atom. The matrix
element of hopping ťai (i = 1 − 4) is described as

〈R, σ, s| H |R + ai, σ
′, s′〉 . (3)

The nearest-neighbor hopping elements are illustrated in
Fig. 1. In momentum space, the tight-binding Hamiltonian is

described as

ȞN (k) = ε̌ +
∑

i

ťai e
ik·ai + H.c. (4)

The matrix structures of ťai are given in Appendix A. The
tight-binding Hamiltonian can be written as

ȞN (k) = ck ŝ0σ̂0 + mk ŝ0σ̂3 + Vzŝ0σ̂2 + (Vyŝ1 − Vxŝ2)σ̂1, (5)

ck = −μ + c1α1(k) + c2α2(k), (6)

mk = m0 + m1α1(k) + m2α2(k), (7)

Vx,y = vαx,y(k), (8)

Vz = vzαz(k), (9)

where αi(k) (i = 1, 2, x, y, z) is

α1(k) = 2

c2
(1 − cos kzc), (10)

α2(k) = 4

3a2

(
3 − 2 cos

√
3kxa

2
cos

kya

2
− cos kya

)
, (11)

αx(k) = 2√
3a

sin

√
3kxa

2
cos

kya

2
, (12)

αy(k) = 2

3a

(
cos

√
3kxa

2
sin

kya

2
+ sin kya

)
, (13)

αz(k) = 1

c
sin kzc. (14)

We define Pauli matrices ŝ j in spin space, σ̂ j in orbital space,
and τ̂ j in particle-hole space for j = 1 − 3. The unit matrix
in these spaces are ŝ0, σ̂0, and τ̂0. In Eq. (5), the hopping in
the z direction (ťa4 ) causes the orbital hybridization term Vz

and the hopping in the xy plane (ťa1 , ťa2 , ťa3 ) causes the spin-
orbit interaction term Vx,y. When we expand the trigonometric
functions around the � point, the tight-binding Hamiltonian
ȞN (k) corresponds to k · p Hamiltonian of Bi2Se3 [19,20].

The superconducting state in CuxBi2Se3 is described by a
Hamiltonian

H(0) =
∑

k

�†(k)H̄ (0)
k �(k), �(k) =

[
ψe(k)
ψh(k)

]
, (15)

ψe(k) =

⎡
⎢⎣

ψ+,↑(k)
ψ−,↑(k)
ψ+,↓(k)
ψ−,↓(k)

⎤
⎥⎦, ψh(k) =

⎡
⎢⎢⎢⎣

ψ
†
+,↑(−k)

ψ
†
−,↑(−k)

ψ
†
+,↓(−k)

ψ
†
−,↓(−k)

⎤
⎥⎥⎥⎦, (16)

H̄ (0)
k =

(
ȞN (k) �̌λ

�̌
†
λ −Ȟ∗

N (−k)

)
. (17)

According to the previous proposal [16], we consider four
types of momentum-independent pair potential defined by

�1 = g1

N

∑
k

〈ψ+,↑(k)ψ+,↓(−k)〉

= g1

N

∑
k

〈ψ−,↑(k)ψ−,↓(−k)〉, (18)
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�2 = g2

N

∑
k

〈ψ+,↑(k)ψ−,↓(−k)〉

= −g2

N

∑
k

〈ψ−,↑(k)ψ+,↓(−k)〉, (19)

�3 = g3

N

∑
k

〈ψ+,↑(k)ψ−,↓(−k)〉

= g3

N

∑
k

〈ψ−,↑(k)ψ+,↓(−k)〉, (20)

�4 = g4

N

∑
k

〈ψ+,↑(k)ψ−,↑(−k)〉

= −g4

N

∑
k

〈ψ−,↑(k)ψ+,↑(−k)〉, (21)

where gλ > 0 (λ = 1 − 4) represents the attractive interaction
between two electrons. Generally speaking, the pair correla-
tion function can be represented as

fs,σ ;s′,σ ′ (k) = 〈ψs,σ (k) ψs′,σ ′ (−k)〉, (22)

where we assume a spatially uniform equal-time Cooper pair.
The momentum-symmetry is even-parity s-wave symmetry,
which is a common property among the four candidates in
a Cu-doped Bi2Se3. Because of the Fermi-Dirac statistics of
electrons, the pairing correlation obeys

fs,σ ;s′,σ ′ (k) = − fs′,σ ′;s,σ (k). (23)

The remaining symmetry options of the pairing function are
orbitals and spins of a Cooper pair. Therefore, the pairing
function must be either antisymmetric under s ↔ s′ or anti-
symmetric under σ ↔ σ ′.

Both Eqs. (18) and (20) belong to spin-singlet symmetry.
Thus the pairing functions belong to even-orbital parity. In
Eq. (20), a Cooper pair consists of two electrons in the
different orbitals (interorbital pair): one electron is in + orbital
and the other is in − orbital. In Eq. (18), on the other hand,
a Cooper pair consists of two electrons in the same orbital
(intraorbital pair). The pair potential in the + orbital and that
in the − orbital have the same amplitude and the same sign.

Both Eqs. (19) and (21) represent the spin-triplet interor-
bital pairing correlations. In these cases, the pair correlation
belongs to odd-orbital-parity symmetry. In addition to the
symmetry options for Cooper pairing, the pair potentials
are classified by the irreducible representation of D3d point
group. �2 and �4 can be distinguished from each other
by the irreducible representation. The matrix form of pair
potentials, the irreducible representation, spin symmetry, and
orbital-parity of the pair potentials are summarized in Table I.
Although Fu and Berg [16] proposed a pair potential of
�(iŝ2)σ̂3, it is unitary equivalent to Eq. (18) as long as the
Hamiltonian H̄ (0)

k preserves time-reversal symmetry [9]. (See
Appendix B for details.) They also considered a pair potential
of �ŝ0(iσ̂2) independently of Eq. (21). However, the behavior
of Tc under the potential disorder in the two pair potentials
are the same as each other. Thus, in this paper, we discuss
effects of random impurity scatterings on superconducting
states described by Eqs. (18)–(21). We note that the orbital
parity and the momentum parity are independent symmetry
options of each other. The former represents symmetry of

TABLE I. Symmetry classification of pair potentials. Equal-time
pairing order parameter belongs to even-frequency symmetry. A
spin-singlet component is described by iŝ2. An opposite-spin-triplet
and an equal-spin-triplet components are indicated by ŝ1 and ŝ3,
respectively.

Matrix Rep. Frequency Spin Momentum parity Orbital parity

�1(iŝ2)σ̂0 A1g Even Singlet Even Even (Intra)
�2 ŝ1(iσ̂2) A1u Even Triplet Even Odd (Inter)
�3(iŝ2)σ̂1 A2u Even Singlet Even Even (Inter)
�4ŝ3(iσ̂2) Eu Even Triplet Even Odd (Inter)

correlation functions under the commutation of two orbitals.
The latter is derived from inversion symmetry of the lattice
structure.

In addition to the pair potentials in Eqs. (18)–(21), gen-
erally speaking, the mean-field Hamiltonian contains the in-
terorbital Cooper pair scattering terms described as

g′
λ〈ψ†

σ ′,s′ (−k′)ψ†
γ ′,s(k

′)〉ψγ,s(k)ψσ,s′ (−k), (24)

with γ 
= γ ′ and σ 
= σ ′ [24]. We do not consider these
terms because they only renormalize the amplitude of the pair
potential as

�λ → �λ

(
1 + P

g′
λ

gλ

)
, (25)

and do not change main conclusions of this paper, where P is
1 (−1) for the even- (odd-) orbital-parity superconductivity.

B. Gor’kov equation

The Matsubara Green’s function is obtained by solving the
Gor’kov equation,

[iωn − Ȟ (0)(k)]Ḡ(0)(k, iωn) = 1, (26)

Ḡ(0)(k, iωn) =
(

Ǧ (0)(k, iωn) F̌ (0)
λ (k, iωn)

−F̌ (0)∗
λ (−k, iωn) −Ǧ (0)∗(−k, iωn)

)
,

(27)

where ωn = (2n + 1)πT is a fermionic Matsubara frequency
and T is a temperature. To discuss the transition temperature,
we need to find the solutions of Eq. (26) within the first order
of �. The results of the normal part

Ǧ (0)(k, iωn) = 1

X
[(iωn − ck) ŝ0σ̂0 + mk ŝ0σ̂3 + Vz ŝ0σ̂2

+ (Vyŝ1 − Vxŝ2) σ̂1], (28)

X (k, iωn) = (iωn − ck)2 − m2
k − V 2

x − V 2
y − V 2

z , (29)

are common for all the pair potentials because the normal
Green’s function does not include the pair potential at the
lowest order. The results of the anomalous Green’s function
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are given by

F̌ (0)
1 (k, iωn) = �1

Z

[ − i
(
ω2

n + c2
k + m2

k + V 2
x + V 2

y + V 2
z

)
ŝ2σ̂0 + 2ickmk ŝ2σ̂3 + 2ickVz ŝ2σ̂2 − 2ckVy ŝ3σ̂1 − 2ickVx ŝ0σ̂1

]
,

(30)

F̌ (0)
2 (k, iωn) = �2

Z

[ − i
(
ω2

n + c2
k − m2

k + V 2
x + V 2

y + V 2
z

)
ŝ1σ̂2 + 2mkVy ŝ0σ̂0 − 2ckVy ŝ0σ̂3 + 2imkVx ŝ3σ̂0 − 2ickVx ŝ3σ̂3

+ 2ickVz ŝ1σ̂0 − 2imkVz ŝ1σ̂3 + 2iωnmk ŝ1σ̂1
]
, (31)

F̌ (0)
3 (k, iωn) = �3

Z

[ − i
(
ω2

n + c2
k − m2

k + V 2
x + V 2

y − V 2
z )

)
ŝ2σ̂1 + 2iVxVz ŝ0σ̂2 + 2VyVz ŝ3σ̂2 − 2ickVx ŝ0σ̂0 + 2imkVx ŝ0σ̂3

−2ckVy ŝ3σ̂0 + 2mkVy ŝ3σ̂3 − 2iωnmk ŝ2σ̂2 + 2iωnVz ŝ2σ̂3
]
, (32)

F̌ (0)
4 (k, iωn) = �4

Z

[ − i
(
ω2

n + c2
k − m2

k + V 2
x − V 2

y + V 2
z

)
ŝ3σ̂2 − 2VxVy ŝ0σ̂2 − 2imk Vxŝ1σ̂0 + 2ickVx ŝ1σ̂3 + 2ickVz ŝ3σ̂0

−2imkVz ŝ3σ̂3 − 2VyVz ŝ2σ̂1 + 2iωnmk ŝ3σ̂1 − 2ωnVy ŝ2σ̂3
]
, (33)

with Z (k, iωn) = |X (k, iωn)|2. The ŝ2σ̂0 component in Eq. (30), the ŝ1σ̂2 component in Eq. (31), the ŝ2σ̂1 component in Eq. (32),
and the ŝ3σ̂2 component in Eq. (33) are linked to the pair potentials �1, �2, �3, and �4, respectively. Therefore, the gap
equations in the linear regime result in

�1 = −g1T
∑
ωn

1

N

∑
k

Tr

[
F̌ (0)

1 (k, iωn)
(−iŝ2)σ̂0

4

]
= g1T

∑
ωn

1

N

∑
k

�1

Z (k, iωn)

[
ω2

n + c2
k + m2

k + V 2
x + V 2

y + V 2
z

]
, (34)

�2 = −g2T
∑
ωn

1

N

∑
k

Tr

[
F̌ (0)

2 (k, iωn)
ŝ1(−iσ̂2)

4

]
= g2T

∑
ωn

1

N

∑
k

�2

Z (k, iωn)

[
ω2

n + c2
k − m2

k + V 2
x + V 2

y + V 2
z

]
, (35)

�3 = −g3T
∑
ωn

1

N

∑
k

Tr

[
F̌ (0)

3 (k, iωn)
(−iŝ2)σ̂1

4

]
= g3T

∑
ωn

1

N

∑
k

�3

Z (k, iωn)

[
ω2

n + c2
k − m2

k + V 2
x + V 2

y − V 2
z

]
, (36)

�4 = −g4T
∑
ωn

1

N

∑
k

Tr

[
F̌ (0)

4 (k, iωn)
ŝ3(−iσ̂2)

4

]
= g4T

∑
ωn

1

N

∑
k

�4

Z (k, iωn)

[
ω2

n + c2
k − m2

k + V 2
x − V 2

y + V 2
z

]
. (37)

Equations (30)–(33) show that the orbital hybridization (Vz), the spin-orbit interaction (Vx,y), and the asymmetry between the
two orbitals (mk) generate various paring correlations which belong to different symmetry classes from that of the pair potential
[25,26]. Especially, we discuss briefly a role of odd-frequency pairing correlation in the gap equation. For instance, the pairing
correlation F̌ (0)

2 includes 2iωnmk ŝ1σ̂1 which describes a spin-triplet even-orbital-parity component. Such a component must be
odd-frequency symmetry because the pairing correlation function must be antisymmetric under the permutation of two electrons.
In the gap equation, the odd-frequency pairing component decreases the numerator as shown in −m2

k in Eq. (35). It has been
pointed out that an odd-frequency pair decreases the transition temperature [26]. If we would be able to tune the parameters to
delete more of the odd-frequency components, the gap equation results in higher Tc.

III. EFFECTS OF DISORDER

We consider the random nonmagnetic impurities described by

H̄imp(R) = Vimp(R) τ̂3ŝ0(σ̂0 + σ̂1). (38)

The schematic picture of potential disorder in a CuxBi2Se3 is shown in Fig. 2. We assume the impurity potential satisfies the
following properties:

Vimp(R) = 0, (39)

Vimp(R)Vimp(R′) = nimpv
2
impδR,R′ , (40)

where · · · means the ensemble average, nimp is the density of the impurities, and vimp is the strength of the impurity potential. We
also assume that the attractive interactions between two electrons are insensitive to the impurity potentials [3]. We calculate the
Green’s function in the presence of the impurity potentials within the Born approximation. The Green’s function is expanded up
to the second order of the impurity potential:

Ḡ(R − R′, ωn) ≈ Ḡ(0)(R − R′, ωn) +
∑
R1

Ḡ(0)(R − R1, ωn)H̄imp(R1)Ḡ(0)(R1 − R′, ωn) +
∑

R1,R2

Ḡ(0)(R − R1, ωn)

×H̄imp(R1)Ḡ(0)(R1 − R2, ωn)H̄imp(R2)Ḡ(R2 − R′, ωn), (41)
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≈ Ḡ(0)(R − R′, ωn) + nimpv
2
imp

∑
R1

Ḡ(0)(R − R1, ωn) τ̂3 ŝ0 σ̂0Ḡ(0)(0, ωn) τ̂3 ŝ0 σ̂0Ḡ(R1 − R′, ωn)

+nimpv
2
imp

∑
R1

Ḡ(0)(R − R1, ωn) τ̂3 ŝ0 σ̂1Ḡ(0)(0, ωn) τ̂3 ŝ0 σ̂1Ḡ(R1 − R′, ωn). (42)

We transform Eq. (41) to (42) by using the properties in
Eqs. (39) and (40). In momentum space, Eq. (42) becomes

Ḡ(k, iωn) = Ḡ(0)(k, iωn) + Ḡ(0)(k, iωn)�̄impḠ(k, iωn),
(43)

�̄imp = �̄intra + �̄inter, (44)

�̄intra = nimpv
2
impτ̂3ŝ0σ̂0

1

N

∑
k

Ḡ(0)(k, iωn)τ̂3ŝ0σ̂0, (45)

�̄inter = nimpv
2
impτ̂3ŝ0σ̂1

1

N

∑
k

Ḡ(0)(k, iωn)τ̂3ŝ0σ̂1, (46)

where �̄intra and �̄inter are the self-energy due to the intraor-
bital impurity scatterings and that of the interorbital impurity
scatterings, respectively. We describe the total self-energy as
follows:

�̄imp = �̄intra + �̄inter =
[

�̌g �̌ fλ

−�̌∗
fλ

−�̌∗
g

]
, (47)

�̌g = nimpv
2
imp[ǧ(0) + ŝ0σ̂1ǧ(0)ŝ0σ̂1], (48)

�̌ fλ = −nimpv
2
imp

[
f̌ (0)
λ + ŝ0σ̂1 f̌ (0)

λ ŝ0σ̂1
]
, (49)

where we denote the momentum summation of the
Green’s function as 1/N

∑
k Ǧ (0)(k, iωn) = ǧ(0) and

1/N
∑

k F̌ (0)(k, iωn) = f̌ (0). Therefore, the Gor’kov equation
in the presence of the impurity potential is described by

[iωn − H̄0(k) − �̄imp]Ḡ(k, iωn) = 1, (50)

FIG. 2. A model of the random potential in a CuxBi2Se3. The
cross mark denotes an impurity.

Ḡ(k, iωn) =
(

Ǧ(k, iωn) F̌λ(k, iωn)

−F̌∗
λ (−k, iωn) −Ǧ∗(−k, iωn)

)
. (51)

The normal part of self-energy (�̌g) is calculated as follows:

�̌g =[−iωnηn + In] ŝ0σ̂0, (52)

ηn =nimpv
2
imp

1

N

∑
k

2

Z

[
ω2

n + c2
k + m2

k + V 2
x + V 2

y + V 2
z

]
,

(53)

In =nimpv
2
imp

1

N

∑
k

−2ck

Z

[
ω2

n + c2
k − m2

k − V 2
x − V 2

y − V 2
z

]
.

(54)

Within the first order of �, the normal Green’s function
becomes

Ǧ(k, iωn) = Ǧ (0)(k, iω̃n)|μ→μ̃, (55)

ω̃n = ωn(1 + ηn), (56)

μ̃ = μ − In. (57)

The imaginary (real) part of the self-energy renormalizes the
Matsubara frequency (chemical potential). The anomalous
Green’s function after summing up the momenta is described
as

f̌ (0)
1 = 1

N

∑
k

�1

Z

[ − i
(
ω2

n + c2
k + m2

k + V 2
x + V 2

y + V 2
z

)
ŝ2σ̂0

+ 2ickmk ŝ2σ̂3
]
, (58)

f̌ (0)
2 = 1

N

∑
k

�2

Z

[−i
(
ω2

n + c2
k − m2

k + V 2
x + V 2

y + V 2
z

)
ŝ1σ̂2

+ 2iωnmk ŝ1σ̂1
]
, (59)

f̌ (0)
3 = 1

N

∑
k

�3

Z

[−i
(
ω2

n + c2
k − m2

k + V 2
x + V 2

y − V 2
z

)
ŝ2σ̂1

−2iωnmk ŝ2σ̂2
]
, (60)

f̌ (0)
4 = 1

N

∑
k

�4

Z

[−i
(
ω2

n + c2
k − m2

k + V 2
x − V 2

y + V 2
z

)
ŝ3σ̂2

+2iωnmk ŝ3σ̂1
]
. (61)

By substituting these expressions into Eq. (49), we obtain the
anomalous part of the self-energy for each pair potential:

�̌ f1 = �1(iŝ2)σ̂0 · ηn, (62)

�̌ f2 = �2ŝ1σ̂1 · (−iωn)Jn, (63)

�̌ f3 = �3(iŝ2)σ̂1 · η′
n, (64)

024516-5



TAKUMI SATO AND YASUHIRO ASANO PHYSICAL REVIEW B 102, 024516 (2020)

�̌ f4 = �4ŝ3σ̂1 · (−iωn)Jn, (65)

η′
n = nimpv

2
imp

1

N

∑
k

2

Z

[
ω2

n + c2
k − m2

k + V 2
x + V 2

y − V 2
z

]
,

(66)

Jn = nimpv
2
imp

1

N

∑
k

4mk

Z
. (67)

Before demonstrating Tc under the potential disorder, we
briefly summarize a relation between the self-energy and the
pair potential in the four cases. The results in Eq. (62) show
that �̌ f1 has the same matrix structure with the pair potential
as shown in Table I. Namely, �̌ f1 renormalizes the pair
potential �1 which belongs to even-frequency spin-singlet
even-momentum-parity even-orbital-parity pairing symmetry.
We will show that this fact explains the robustness of �1 in the
presence of impurity scatterings. The same feature can be seen
in �̌ f3 in Eq. (64), which implies the robustness of �3. On
the other hand, �̌ f2 and �̌ f4 have different matrix structures
from their pair potentials shown in Table. I. In other words, the
impurity self-energy leaves the pair potentials as they are. The
previous studies suggested that the superconductivity in such
cases can be fragile. We also note that �̌ f2 and �̌ f4 enhance
the pair correlation belonging to odd-frequency spin-triplet
even-momentum-parity even-orbital-parity symmetry. In what
follows, we discuss the characteristic behavior of Tc as a
function of impurity concentration case by case.

1. �1

The gap equation for �1 results in

�1 = g1T
∑
ωn

1

N

∑
k

�̃1

Z̃

[
ω̃2

n + c̃2
k + m2

k + V 2
x + V 2

y + V 2
z

]
.

(68)
By comparing with the gap equation in the clean limit in
Eq. (34), the renormalized values are defined as

�̃1 = �1(1 + ηn), (69)

Z̃ (k, iωn) = Z (k, iω̃n)|μ→μ̃, (70)

c̃k = ck|μ→μ̃. (71)

The impurity self-energy renormalizes the pair potential and
the Matsubara frequency in the same manner as �1 → �̃1 and
ωn → ω̃n [1]. We solve the gap equation numerically and plot
the transition temperature Tc of �1 as a function of ξ0/� in
Fig. 3. Here T0 is the transition temperature in the clean limit,
ξ0 = vF /(2πT0) is the superconducting coherence length, vF

is the Fermi velocity, � = vF τimp is the mean-free path due to
impurity scatterings, and τimp is the lifetime of a quasiparticle.
We found that the normal part of self-energy �̌g is nearly
independent of the Matsubara frequency in the low-energy
region for ωn � ωc. Here ωc = 103T0 is the cutoff energy of
the Matsubara frequency. Therefore, we estimate τimp from the
imaginary part of �̌g as

1

τimp
= −2Tr

[
1

4
Im �̌g

]
∼ 2π × nimpv

2
imp × 10−2 [eV].

(72)

0
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c
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FIG. 3. The superconducting transition temperature Tc is plotted
as a function of ξ0/�. The vertical axis is normalized to the transition
temperature in the clean limit T0. We fix T0 for all pair potentials.

The horizontal axis ξ0/� in Fig. 3 is proportional to the
impurity concentration nimp. The results in Fig. 3 show that Tc

of �1 is almost independent of the impurity concentration as
shown with filled circles. Such behavior agrees well with Tc in
a limiting case of idealistic models. The previous papers [6–9]
considered two-band superconductivity with the intraband
pairing order parameters (say D1 and D2) on idealistic two-
band electronic structures and demonstrated that Tc is inde-
pendent of impurity concentration at D1 = D2. The interband
impurity scatterings disappear in such a symmetric situation,
which explains the unchanged Tc. The superconducting state
in Cu-doped Bi2Se3 with �1 corresponds to the symmetric
intraband pairing state in the previous studies. In this paper,
we confirmed that the conclusions of the previous papers on
idealistic band structures are valid even if we calculate Tc

on a realistic electronic structure. In Fig. 3, the results for
�1 show the oscillating behavior. Although it is not easy to
specify the reasons for the oscillations, such behavior comes
from a realistic band structure. In the Born approximation,
we conclude that Tc of �1 is insensitive to the impurity
scatterings.

2. �3

The gap equation for �3 becomes

�3 = g3T
∑
ωn

1

N

∑
k

�′
3

Z̃

[
ω̃2

n+c̃2
k−m2

k + V 2
x + V 2

y − V 2
z

]
,

(73)

�′
3 = �3(1 + η′

n). (74)

The pair potential is renormalized by the impurity self-energy
as �3 → �′

3 in Eq. (73) in a slightly different way from
the relation ωn → ω̃n. By solving Eq. (73), we plot Tc of
�3 as a function of ξ0/� in Fig. 3. The results show that
Tc of the spin-singlet interorbital pairing order is suppressed
slowly with the increase of ξ0/� and goes to zero in the
dirty limit. A previous paper [10], however, demonstrated
on an idealistic two-band structure that Tc of a spin-singlet
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s-wave interband pairing order is independent of the impurity
concentration. Thus �3 in a Cu-doped Bi2Se3 is more fragile
than that in an idealistic two-band model. The difference
between the results in the two models can be explained by
the enhancement of odd-frequency pairing components due to
the realistic electronic structures. The odd-frequency pairing
correlation is absent in an idealistic band structure [10]. As a
result, the impurity self-energy renormalizes the pair potential
and the Matsubara frequency in the same manner, which leads
to unchanged Tc versus ξ0/�. In Cu-doped Bi2Se3, on the
other hand, the asymmetry between two-orbitals (mk) and
the orbital hybridization (Vz) generate the odd-frequency pair-
ing correlations as described in Eq. (32). These correlations
contribute negatively to the numerator of the renormalization
factor of the pair potential 1 + η′

n as shown in −m2
k and

−V 2
z in Eq. (66). As a consequence, the reduction of the pair

potential by odd-frequency pairs causes the suppression of Tc

in the dirty regime. We conclude that the robustness of the
spin-singlet s-wave interorbital pairing order depends on band
structures.

3. �2 and �4

The gap equations for �2 and �4 result in

�2 = g2T
∑
ωn

1

N

∑
k

�2

Z̃

[
ω̃2

n + c̃2
k − m2

k

+ V 2
x + V 2

y + V 2
z − 2Jnωnω̃nmk

]
, (75)

�4 = g4T
∑
ωn

1

N

∑
k

�4

Z̃

[
ω̃2

n + c̃2
k − m2

k

+ V 2
x − V 2

y + V 2
z − 2Jnωnω̃nmk

]
. (76)

Both �2 and �4 represent spin-triplet interorbital pairing
order antisymmetric under the permutation of two orbitals.
The numerical results in Fig. 3 indicate that Tc of �2 and
that of �4 decrease rapidly with the increase of ξ0/� and
vanish around ξ0/� ≈ 0.3. The impurity self-energy renor-
malizes the Matsubara frequency as ωn → ω̃n. However, it
leaves the pair potentials unchanged as shown in Eqs. (75)
and (76). Therefore, �2 and �4 are fragile in the presence of
impurities. The obtained results of Tc for a Cu-doped Bi2Se3

agree even quantitatively with those calculated in an idealistic
band structure [10]. The interorbital impurity scatterings mix
the electronic states in the two orbitals and average the pair
potentials over the two orbital degree of freedom. As a result,
the impurity scatterings wash out the sign of the pair potential
in Eq. (17), which leads to the suppression of odd-orbital
symmetric superconductivity. We confirmed that this physical
interpretation is valid independent of band structures.

Several experiments have indicated nematic superconduc-
tivity in Cu-doped Bi2Se3 [27–29]. Such superconductivity
can be realized when the pair potential belongs to the Eu

representation of the D3d point group [30]. The corresponding
pair potential is described as

�̌nematic = �(Axŝ3(iσ̂2) + Ayŝ0(iσ̂2)), (77)

where coefficients Ax,y determine a nematic direction. �4 cor-
responds to the specific case [(Ax, Ay) = (1, 0)] of the nematic

superconductivity. The nematic is considered to be fragile in
the presence of potential disorder because the nematic order
belongs to odd-orbital symmetry as well as �2 and �4.

Finally, we compare our results in the present paper with
those in a recent study [31]. The authors of Ref. [31] formu-
lated the random impurity scatterings based on the two-band
picture in momentum space, which is obtained by diagonaliz-
ing the normal state Hamiltonian in the absence of impurities
[32]. They mapped a Hamiltonian for an interorbital s-wave
superconductor with random impurities to a Hamiltonian for
a single-band unconventional superconductor with random
impurities. As a result, they concluded that �2, �3, and �4

are fragile under the potential disorder. Their conclusion for
�3 does not agree with ours obtained by applying the standard
method [1]. The difference in the theoretical methods causes
the discrepancy. An earlier [33] and a recent [34] analysis
also contradict our results. A key point might be the self-
energy due to interorbital impurity scatterings. Actually, all
of the previous papers [6–10] suggested an importance of the
interorbital/interband impurity scatterings on Tc. References
[31,33,34], on the other hand, do not consider the interorbital
impurity scatterings.

IV. CONCLUSION

We studied the effects of random nonmagnetic impurities
on the superconducting transition temperature Tc in Cu-doped
Bi2Se3. We consider four types of momentum-independent
pair potentials, which include the intraorbital pairing (�1),
the interorbital-even-parity pairing (�3), and the interorbital-
odd-parity pairings (�2 and �4). The effects of the impu-
rity scatterings are considered through the self-energy of the
Green’s function within the Born approximation. Tc of �1 is
insensitive to the impurity concentration, which is consistent
with previous theories. We find that �1 with the electronic
structure of a Cu-doped Bi2Se3 corresponds to a limiting case
of idealistic models [6–9]. Tc of �3 decreases moderately
with the increase of impurity concentration and vanishes in
the dirty limit, which does not agree well with the results on
an idealistic model [10]. The presence of the odd-frequency
pairing correlations explain the discrepancy. Tc of �2 and �4

decrease rapidly with the increase of the impurity concen-
tration. Superconductivity vanishes at a critical value of the
impurity concentration. The results are consistent with those
in an idealistic model even quantitatively [10].

We found that the robustness of the even-orbital-parity
order parameters depends on the details of the band structures
and that the odd-orbital-parity order parameters are fragile
irrespective of the band structures.
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APPENDIX A: RESTRICTION OF HOPPING MATRIX IN TIGHT-BINDING HAMILTONIAN

The crystal structure of Bi2Se3 preserves discrete symmetries [19,20] such as threefold rotation R3 along the z direction,
twofold rotation R2 along the x direction, and inversion P. In addition, both the normal and superconducting states preserve
time-reversal T symmetry. With the basis of (|+,↑〉, |−,↑〉, |+,↓〉, |−,↓〉), these symmetry operations can be represented as
Ř3 = exp(i π

3 ŝ3σ̂0), Ř2 = iŝ1σ̂3, P̌ = ŝ0σ̂3, and Ť = iŝ2σ̂0K, respectively. Here K represents the complex conjugation.
Under threefold rotation symmetry, the relation

〈R, σ, s| H |R + ai, σ
′, s′〉 = exp

(
i
π

3
(s′

3 − s3)

)
〈R, σ, s| H |R + a j, σ

′, s′〉 , (A1)

is satisfied for (ai, a j ) = (a1,−a2), (a2,−a3), and (a3, a1). Under twofold rotation symmetry, the relation

〈R, σ, s| H |R + ai, σ
′, s′〉 = σ ′

3σ3 〈R, σ, s| H |R + a j, σ
′, s′〉 (A2)

holds true for (ai, a j ) = (a1,−a3), (a2,−a2), and (a3,−a1). As a result of inversion symmetry, we find the relation of

〈R, σ, s| H |R + ai, σ
′, s′〉 = σ ′

3σ3 〈R, σ, s| H |R − ai, σ
′, s′〉 . (A3)

Finally, time-reversal symmetry is described as

〈R, σ, s| H |R + ai, σ
′, s′〉 = s′

3s3 〈R, σ ′, s′| H |R − ai, σ, s〉 . (A4)

We have used the notation of

σ3 =
{+1 (σ = +)
−1 (σ = −), s3 =

{+1 (s =↑)
−1 (s =↓), (A5)

σ =
{− (σ = +)
+ (σ = −), s =

{↓ (s =↑)
↑ (s =↓). (A6)

According to the conditions in Eqs. (A1)–(A4), the hopping matrices can be reduced as [21,23]

ťa1 =

⎛
⎜⎝

t11 t12 0 t14

−t12 t22 t14 0
0 −t∗

14 t11 t12

−t∗
14 0 −t12 t22

⎞
⎟⎠, ť−a1 =

⎛
⎜⎝

t11 −t12 0 −t14

t12 t22 −t14 0
0 t∗

14 t11 −t12

t∗
14 0 t12 t22

⎞
⎟⎠, (A7)

ťa2 =

⎛
⎜⎜⎝

t11 −t12 0 −ei2π/3t14

t12 t22 −ei2π/3t14 0
0 −ei2π/3t14 t11 −t12

−ei2π/3t14 0 t12 t22

⎞
⎟⎟⎠, ť−a2 =

⎛
⎜⎜⎝

t11 t12 0 ei2π/3t14

−t12 t22 ei2π/3t14 0
0 ei2π/3t14 t11 t12

ei2π/3t14 0 −t12 t22

⎞
⎟⎟⎠, (A8)

ťa3 =

⎛
⎜⎝

t11 t12 0 −t∗
14−t12 t22 −t∗

14 0
0 t14 t11 t12

t14 0 −t12 t22

⎞
⎟⎠, ť−a3 =

⎛
⎜⎝

t11 −t12 0 t∗
14

t12 t22 t∗
14 0

0 −t14 t11 −t12

−t14 0 t12 t22

⎞
⎟⎠, (A9)

ťa4 =

⎛
⎜⎝

t ′
11 t ′

12 0 0
−t ′

12 t ′
22 0 0

0 0 t ′
11 t ′

12
0 0 −t ′

12 t ′
22

⎞
⎟⎠, ť−a4 =

⎛
⎜⎝

t ′
11 −t ′

12 0 0
t ′
12 t ′

22 0 0
0 0 t ′

11 −t ′
12

0 0 t ′
12 t ′

22

⎞
⎟⎠. (A10)

In momentum space, the tight-binding Hamiltonian becomes

ȞN (k) =

⎛
⎜⎝

ck + mk −i(v3α3(k) + vzαz(k)) 0 v(αy(k) + iαx(k))
i(v3α3(k) + vzαz(k)) ck − mk v(αy(k) + iαx(k)) 0

0 v(αy(k) − iαx(k)) ck + mk −i(v3α3(k) + vzαz(k))
v(αy(k) − iαx(k)) 0 i(v3α3(k) + vzαz(k)) ck − mk

⎞
⎟⎠, (A11)
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with

ck = −μ + c1α1(k) + c2α2(k), mk = m0 + m1α1(k) + m2α2(k), (A12)

c1 = −c2

2
(t ′

11 + t ′
22), c2 = −3a2

4
(t11 + t22), μ = −3(t11 + t22) − (t ′

11 + t ′
22) − ε, (A13)

m1 = −c2

2
(t ′

11 − t ′
22), m2 = −3a2

4
(t11 − t22), m0 = 3(t11 − t22) + t ′

11 − t ′
22, (A14)

v = −3iei2π/3at14, vz = −2ct ′
12, v3 = 3a3

4
t12. (A15)

Here α1(k), α2(k), αx(k), αy(k), and αz(k), are defined in Eqs. (10)–(14). We also define α3(k) = − 8
3a3 (2 cos

√
3

2 kxa sin 1
2 kya −

sin kya). In this paper, we set the parameters as follows [21,35]: a = 4.14 Å, c = 28.7 Å, μ = 0.5 eV, c2 = 30.4 eVÅ2, m0 =
−0.28 eV, m2 = 44.5 eVÅ2, v = 3.33 eVÅ, c1/c2 = 0.024 eV, m1/c2 = 0.20 eV, and vz/c = 0.32 eV. We choose v3 = 0 for
simplicity [19,20].

APPENDIX B: UNITARY EQUIVALENCE OF THE HAMILTONIAN WITH INTRAORBITAL PAIRING ORDER

The superconducting state with s-wave spin-singlet intraorbital pairing order is described by the following Bogoliubov-de
Gennes Hamiltonian [9]:

H̄ (0)
k (θ, ϕ1, ϕ2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ1 −iVzeiθ 0 Veiθ 0 0 �+ 0
iVze−iθ ξ2 Ve−iθ 0 0 0 0 �−

0 V ∗eiθ ξ1 −iVzeiθ −�+ 0 0 0
V ∗e−iθ 0 iVze−iθ ξ2 0 −�− 0 0

0 0 −�∗
+ 0 −ξ1 iVze−iθ 0 V ∗e−iθ

0 0 0 −�∗
− −iVzeiθ −ξ2 V ∗eiθ 0

�∗
+ 0 0 0 0 Ve−iθ −ξ1 iVze−iθ

0 �∗
− 0 0 Veiθ 0 −iVzeiθ −ξ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B1)

ξ1 = ck + mk, ξ2 = ck − mk, V = v(αy(k) + iαx(k)), Vz = vzαz(k), (B2)

�+ = g+
N

∑
k

〈ψ+,↑(k)ψ+,↓(−k)〉 = |�+|eiϕ1 , (B3)

�− = g−
N

∑
k

〈ψ−,↑(k)ψ−,↓(−k)〉 = |�−|eiϕ2 , (B4)

where gσ > 0 represents the attractive interaction between two electrons in the orbital σ and θ denotes the phase of the
hybridization in the normal state. We obtain the normal part of H̄ (0)

k (θ, ϕ1, ϕ2) from Eq. (5) by choosing ψ+,s → ψ+,seiθ/2 and
ψ−,s → ψ−,se−iθ/2. Although the phase factor eiθ does not affect the physics in the normal state, such a gauge transformation
affects the relative phase difference between the order parameters ϕ1 − ϕ2 [9].

Time-reversal symmetry of H̄ (0)
k is represented by

T̄ H̄ (0)
k T̄ −1 = H̄ (0)

−k , T̄ = τ̂0(iŝ2)σ̂0K. (B5)

If we find a transformation Ū which eliminates all the phase factors in Eq. (B1), it is possible to show time-reversal symmetry
of H̄ (0)

k [9]. By applying the unitary transformation,

Ū = diag[e−iϕ1/2, e−iϕ2/2, e−iϕ1/2, e−iϕ2/2, eiϕ1/2, eiϕ2/2, eiϕ1/2, eiϕ2/2], (B6)

the Hamiltonian is transformed into

Ū H̄ (0)
k (θ, ϕ1, ϕ2)Ū † = H̄ (0)

k

(
θ − ϕ1 − ϕ2

2
, 0, 0

)
. (B7)

Therefore, the three phases must satisfy a relation

2θ − ϕ1 + ϕ2 = 2πn, (B8)

with n being an integer for the Hamiltonian to preserve time-reversal symmetry. By tuning θ = 0 at n = 0, the two pair potentials
have the same sign as each other because of ϕ1 − ϕ2 = 0. By tuning θ = π/2, on the other hand, H̄ (0)

k (π/2, 0, π ) describes a
state where two pair potentials have the opposite sign as each other. It is easy to show that H̄ (0)

k (π/2, 0, π ) and H̄ (0)
k (0, 0, 0) are

unitary equivalent to each other. We set g+ = g− = g1 and �+ = �− = �1 in Sec. II. Under the condition, �1(iŝ2)σ̂3 is unitary
equivalent to �̌1 = �1(iŝ2)σ̂0.
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