
 

Anomalous Nonlocal Conductance as a Fingerprint of Chiral Majorana Edge States

Satoshi Ikegaya,1 Yasuhiro Asano,2,3 and Dirk Manske1
1Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany

2Department of Applied Physics, Hokkaido University, Sapporo 060-8628, Japan
3Center of Topological Science and Technology, Hokkaido University, Sapporo 060-8628, Japan

(Received 22 January 2019; revised manuscript received 22 May 2019; published 15 November 2019)

A chiral p-wave superconductor is the primary example of topological systems hosting chiral Majorana
edge states. Although candidate materials exist, the conclusive signature of chiral Majorana edge states has
not yet been observed in experiments. Here, we propose a smoking-gun experiment to detect the chiral
Majorana edge states on the basis of theoretical results for the nonlocal conductance in a device consisting
of a chiral p-wave superconductor and two ferromagnetic leads. The chiral nature of Majorana edge states
causes an anomalously long-range and chirality-sensitive nonlocal transport in these junctions. These two
drastic features enable us to identify the moving direction of chiral Majorana edge states in the single
experimental setup.
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Introduction and main idea.—Superconductors (SCs)
with spin-triplet chiral p-wave pairing symmetry have
attracted intensive attention for the past two decades
because they exhibit topologically protected chiral
Majorana edge states (CMESs) having great potential
applications to topological quantum computations [1,2].
According to a range of experimental [3–7] and theoretical
[8–10] evidence, the perovskite superconductor Sr2RuO4

is the most promising candidate for the spin-triplet chiral
p-wave SCs. At present, finding a smoking-gun signature
of CMESs in this compound is an ongoing and central
subject in both the physics of topological condensed matter
[11–13] and that of spin-triplet superconductivity [14–16].
There have been three standard directions for the

detection of CMESs. The first direction is by measurements
of internal magnetic fields due to the spontaneous edge
current [17–20]. However, the scanning superconducting
quantum interference device experiments for Sr2RuO4

did not detect the expected fields [21,22] because of either
the screening currents in the bulk [17] or for other reasons
[23–25]. The second direction is by use of phenomena
analogous to the quantum Hall effect in a two-dimensional
electron gas with applied magnetic fields [26,27]: the spin
quantum Hall effect [28] and thermal quantum Hall effect
[29]. However, these effects have not been observed yet
because of difficulties in spin and thermal transport
measurements. The third direction studies anomalies in
local charge transport of superconducting junctions, such as
a zero-bias conductance peak in tunneling spectroscopy
[30] and a low-temperature anomaly in Josephson currents
[31]. However, roughly speaking, these anomalies can be
induced by any type of midgap Andreev bound states and
are not unique to the CMESs. Therefore, unfortunately, the
zero-bias conductance peak observed in a planar tunneling

experiment for Sr2RuO4 [32] cannot be the conclusive
evidence for the CMESs.
To resolve this stalemate, in the present Letter, we propose

a novel experiment that provide a smoking-gun signature of
CMESs through charge transport measurements. The central
ingredient of our scheme is that we measure nonlocal charge
transport in the presence of CMESs [33]. Wewill use a setup
as shown in Fig. 1, where two ferromagnetic (FM) leads are
attached to an edge of a chiralp-wave SC [34]. The nonlocal
conductance in a similar device replacing the chiral p-wave
SC by a conventional s-wave SC has been already studied
[35,36]. In such a device, the nonlocal conductance is
governed by two distinctive nonlocal transport processes
yielding opposite contributions: an incident electron from
one lead is scattered into another lead as an electron (elastic

FIG. 1. Schematic image of the device consisting of a chiral p-
wave superconductor with two ferromagnetic leads. Figure
corresponds to the situation for measuring G21.
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cotunneling process) or a hole (crossed Andreev reflection
process). The exchange potential in the FM leads is a source
of finite nonlocal conductance because it generates the
imbalance between these two nonlocal transport processes
[35,36]. With conventional s-wave SC, the subgap nonlocal
conductance is strongly suppressed when the distance
between the two leads exceeds the superconducting coherent
length. This is because incident electrons must tunnel
from one lead to the other through evanescent waves of
Bogoliubov quasiparticles in the superconducting segment.
However, we expect that CMESs modify the situation
drastically such that the CMESs moving in the direction
from lead α to βmediate the nonlocal transport from lead α to
β insensible of the distance between the two leads, whereas
they do not assist the nonlocal transport from lead β to α
(see also Fig. 1). If we can capture such unusual anisotropy in
the nonlocal transport processes, it can be a smoking-gun
signature of the CMESs.
We calculate two types of nonlocal differential conduct-

ance, G21 ¼ dI2=dV1 and G12 ¼ dI1=dV2, by using the
lattice Green function technique. Here, Iα is the current
response in FM lead α due to the application of the bias
voltage Vβ to the electrode attached to FM lead β, where the
electrodes attached to FM lead α and the superconductor
are grounded. We will demonstrate that the spectra of G21

andG12 indeed exhibit the distinctive contrast reflecting the
chiral motion of CMESs. Namely, when the CMESs move
in the direction from lead α to β, the nonlocal conductance
Gβα becomes finite even when the distance between the FM
leads largely exceeds the superconducting coherent length,
whereas the nonlocal conductance Gαβ becomes almost
zero (see Fig. 2). We can measure bothG21 andG12 only by
changing the lead wire to which the bias voltage is applied.
Therefore, we can identify the moving direction of the
CMES in the single experimental setup. The remarkable
advantage of our proposal is that we only need the obvious
difference in G21 and G12, where one of them is finite
and the other is zero, to identify the CMESs in the chiral
p-wave superconductor conclusively.

Minimal model.—Let us consider the junction illustrated
in Fig. 1 on a two-dimensional tight-binding model with
lattice constant a0. A lattice site is indicated by a vector
r ¼ jxþmy, where x (y) is the vector in the x (y) direction
with jxj ¼ jyj ¼ a0. The chiral p-wave SC occupies j ≥ 1
and −Ms ≤ m ≤ Ms, where its width is given by
Ws=a0 ¼ 2Ms. In the y direction, we apply the hard-wall
boundary condition. FM lead 1 (FM lead 2) is placed on
j ≤ 0 and mf ≤ m ≤ Mf (−mf ≥ m ≥ −Mf ), where its
width is denoted by Wf=a0 ¼ Mf −mf. The distance
between the two FM leads is given by L=a0 ¼ 2mf. The
present device is described by the Bogoliubov–de Gennes
Hamiltonian H ¼ Hs þH1 þH2. In this Letter, we phe-
nomenologically describe the chiral p-wave SC by using
the standard minimal model

Hs ¼
1

2

X

r;r0
c†r

"
ξ̂sr;r0 Δ̂r;r0

−Δ̂�
r;r0 −ξ̂sr;r0

#
cr0 ; ð1Þ

where j, j0 > 0,

ξ̂sr;r0 ¼½−tsδjr−r0j;a0 þ ð4ts − μsÞδr;r0 �σ̂0;

Δ̂r;r0 ¼
Δ0

2
½iðδj;j0þ1 − δjþ1;j0 Þ

−χðδm;m0þ1 − δmþ1;m0 Þ�σ̂x;

and cr ¼ ½cr;↑; cr;↓; c†r;↑; c†r;↓�T, with c†r;σ (cr;σ) representing
the creation (annihilation) operator of an electron at site r
with spin σ (¼ ↑ or ↓). The Pauli matrices in spin space are
represented by σ̂i for i ¼ x, y, and z; and the 2 × 2 unit
matrix is denoted with σ̂0. ts and μs, respectively, denote the
nearest-neighbor hopping integral and the chemical poten-
tial in the superconductor. The amplitude and chirality of
the pair potential are represented by Δ0 and χ (¼ 1 or −1),
respectively. The pair potential for a spin-triplet pairing
symmetry in momentum space is generally described as
Δ̂ðkÞ ¼ dðkÞ · σ̂ðiσyÞ. In this Letter, we use the d vector of
dðkÞ ¼ Δ0ẑ½sinðkxa0Þ þ iχ sinðkya0Þ�, which is the most
probable one in Sr2RuO4 [8,9,14–16]. Here, kx (ky)
represents the wave number along the x (y) direction,
and ẑ represents the unit vector in the z direction corre-
sponding to the c axis of Sr2RuO4. FM lead α (¼ 1, 2) is
described by

Hα ¼
1

2

X

r;r0
c†r

"
ξ̂αr;r0 0

0 −ξ̂αr;r0

#
cr0 ; ð2Þ

where j ≤ 0,

ξ̂αr;r0 ¼ ½−tfδjr−r0j;a0 þ ð4tf − μfÞδr;r0 �σ̂0 þMα · σ̂δr;r0 :

The nearest-neighbor hopping integral and the chemical
potential in the FM leads are, respectively, denoted tf

FIG. 2. Nonlocal conductance (a)G21 and (b)G12 are plotted as
functions of the bias voltage and distance between the FM leads
L. We vary L from 0.2ξ0 to 40ξ0. The spectrum of G21 and that of
G12 are related to each other by changing the moving direction of
the chiral Majorana edge states.
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and μf . The exchange potential in FM lead α is given by
Mα ¼ Mαðcos θα sinφα; sin θα sinφα; cosφαÞ. In what fol-
lows, we fix several parameters as μf ¼ 1.0tf , ts ¼ 1.0tf ,
μs ¼ 2.0tf , Δ ¼ 0.1tf , and χ ¼ −1. In the tight-binding
model, the superconducting coherent length is given by ξ0 ¼
ðts=Δ0Þa0 [37]. With our parameter choice, we obtain
ξ0 ¼ 10a0. The chiral p-wave SC hosts two CMESs origi-
nated from the two different spin sectors. With χ ¼ −1, both
of them move along the edge at j ¼ 1 in the direction from
FM lead 1 to 2.
We are interested in the nonlocal differential conduc-

tances G21ðeV1Þ ¼ dI2=dV1 and G12ðeV2Þ ¼ dI1=dV2.
On the basis of the Blonder-Tinkham-Klapwijk (BTK)
formalism [38], the nonlocal conductance at zero temper-
ature is given by [35,36,39–44]

GβαðeVαÞ ¼
e2

h
½−REC

βα þ RCAR
βα �

eVα¼E
; ð3Þ

RECðCARÞ
βα ¼

X

ζ;η

jreeðheÞβα ðζ; ηÞj2; ð4Þ

with α ≠ β. The elastic cotunneling (EC) and crossed
Andreev reflection (CAR) coefficients at energy E are,
respectively, denoted by reeαβðζ; ηÞ and rheαβðζ; ηÞ, where the
index ζ (η) labels the outgoing (incoming) channel in FM
lead β (FM lead α). These reflection coefficients are obtained
by using the lattice Green function technique [45,46]
(see SupplementalMaterial [47] for the detailed calculation).
In the BTK formalism, we assume that all currents following
towards x ¼ þ∞ (x ¼ −∞) in the superconductor (FM lead
β) are absorbed into the ideal electrode, which is not
described in the Hamiltonian explicitly. We note that the
BTK formalism is quantitatively justified for bias voltages
well below the superconducting gap.
Results on nonlocal conductance.—We first focus on the

nonlocal conductance G21. In Fig. 2(a), we show G21 as a
function of the bias voltage and distance between the FM
leads L. We choose the parameters as Wf ¼ 20a0 and
Ws ¼ 500a0. We vary L from 0.2ξ0 to 40ξ0, where
ξ0 ¼ 10a0. For the FM leads, we consider the antiparallel
magnetization along the z axis, where M1ð2Þ ¼ þð−ÞMexẑ
with Mex ¼ 0.5tf . We find that G21 for eV ≪ Δ0 is almost
independent of L and is finite for L ≫ ξ0. Specifically, at
zero-bias voltage, we find G21 ≈ 0.79ðe2=hÞ, irrespective
of L. The anomalously long-range nonlocal transport in the
present junction suggests that wave functions in the two
different FM leads are mediated not by evanescent waves
but by the propagating waves of CMESs. We will later
confirm this statement by analyzing the wave functions in
the present junction. Next, we discuss the nonlocal con-
ductanceG12. In Fig. 2(b), we showG12 as a function of the
bias voltage and L, where the parameters are chosen as
same as those in Fig. 2(a). In contrast to G21, we find that
G12 with eV < Δ0 is almost zero for all L. This suggests

that the CMESs moving in the direction from leads 1 to 2
cannot assist the nonlocal transport processes from leads 2
to 1. In the BTK formalism, we assume that the CMESs
moving towards x ¼ þ∞ are absorbed into the ideal
electrode attached to the superconductor. To support this
assumption, we also calculate the reflection and trans-
mission probabilities at an ideal chiral p-wave SC/normal-
metal interface, and we confirm that the incident CMESs
are always scattered into the attached normal-metal
(see Supplemental Material [47] for the detailed calcula-
tion). We confirm that G21 (G12) for eV < Δ0 becomes
zero (finite) by changing the sign of chirality from
−1 to þ1. Thus, the distinctive contrast between G21

and G12 is indeed related with the moving direction of
the CMESs.We can measure bothG21 andG12 by changing
the FM lead wire to which the bias voltage is applied.
Therefore, by comparing G21 and G12, we can test the sign
of chirality, and therefore the moving direction of CMESs,
in the single experimental setup.
We now discuss the exchange potential dependence

of the nonlocal conductance. In Fig. 3(a), we show the
nonlocal conductanceG21 at zero-bias voltage as a function
of the exchange potential amplitude. We here consider
either parallel or antiparallel alignment of magnetization
along the z axis with M1 ¼ jMexjẑ and M2 ¼ Mexẑ. With
this representation, the parallel (antiparallel) alignments of
the magnetization are described with Mex > 0 (Mex < 0).
We choose the parameters asWf ¼ 20a0,Ws ¼ 500a0, and
L ¼ 300a0. For the antiparallel (parallel) magnetization,
G21 becomes positive (negative) finite, which leads to the
relation of REC

21 < RCAR
21 (REC

21 > RCAR
21 ). When the d vector

in the superconductor is parallel or antiparallel to the
magnetic moment in the FM leads, Andreev reflection
occurs between electron and hole states with opposite
spins, whereas normal reflection occurs between equal-
spin electrons [48–50]. Therefore, the antiparallel magneti-
zation in the FM leads suppresses the equal-spin scattering
process of EC, whereas it does not damage the CAR
process. On the other hand, the parallel magnetization in
the FM leads does not damage the EC process, whereas it
disturbs the spin flip in the CAR process. This roughly
explains the relation of REC

21 < RCAR
21 (REC

21 > RCAR
21 ) with

the antiparallel (parallel) magnetization. In the absence of
the exchange potential (Mex ¼ 0), the nonlocal conductance
G21 becomes zero due to the complete cancellation between
the contributions from the EC and CAR processes (i.e.,
REC
21 ¼ RCAR

21 ).When jMexj exceeds μf , only the spin-↓ states
remain at the Fermi level in FM lead 1 and the only spin-↑
(-↓) states remain at the Fermi level in FM lead 2 with the
antiparallel (parallel) alignment of magnetization. Within
such a half-metallic limit (jMexj > μf ), we obtain G21 ≈
þð−Þe2=h with the antiparallel (parallel) magnetization. In
Fig. 3(b), we show G21 at zero-bias voltage for various
directions of the magnetization. The exchange potentials
in FM lead 1 and FM lead 2 are, respectively, chosen as
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M1 ¼ Mexðsinφ1; 0; cosφ1Þ and M2 ¼ Mexð0; sinφ2;
cosφ2Þ with Mex ¼ 0.5tf . By changing φ1 and φ2, M1

andM2 are, respectively, rotated around the y and x axes.We
choose the parameters as Wf ¼ 20a0, Ws ¼ 300a0, and
L ¼ 160a0. Except for φ1 ¼ �π=2 and φ2 ¼ �π=2, we
obtain the finite nonlocal conductanceG21. The sign ofG21 is
determined by−sgnðMz

1ÞsgnðMz
2Þ, whereMz

α ¼ Mex cosφα.
The maximum magnitude of G21 is obtained when bothM1

andM2 are directed along eitherþẑ or −ẑ. We also confirm
that the nonlocal conductanceG12 is zero, irrespective of φ1

and φ2, for L ≫ ξ0. Therefore, we can find the distinctive
contrast in G21 and G12 for the various alignments of the
magnetization.
Majorana wave functions.—The anomalously long-

range nonlocal transport in the present junction implies
that an incident electron from one lead is transmitted
through the superconducting segment as the CMESs,
and it is scattered into other leads. To confirm this statement
directly, we here analyze the quasiparticle wave functions
contributing to the CAR process from FM leads 1 to 2.
Specifically, we calculate the wave function

ψηMðrÞ ¼ ½uηM;↑ðrÞ; uηM;↓ðrÞ; vηM;↑ðrÞ; vηM;↓ðrÞ�T

at zero energy, where ηM labels the incoming channel
having the largest contribution to RCAR

21 ; i.e., ηM has the
largest value of

X

ζ

jrhe21ðζ; ηÞj2

among all η. Details for the calculation are given in the
Supplemental Material [47]. To discuss the most compre-
hensible case, we assume the half-metallic ferromagnets
with the antiparallel magnetization along the z axis, where
M1ð2Þ ¼ þð−ÞMexẑ with Mex ¼ 1.5μf . With this specific
choice of magnetization, ψηMðrÞ consists of only a spin-↓
electron component uηM;↓ and a spin-↑ hole component
vηM;↑, whereas uηM;↑ ¼ vηM;↓ ¼ 0. Moreover, the local
Andreev reflection in FM lead 1 and the EC from FM
leads 1 to 2 are absent. In Figs. 4(a) and 4(b), we,

respectively, show the spatial profile of the electron
component amplitude juηM;↓j and that of the hole compo-
nent amplitude jvηM;↑j. We choose the parameters as
Wf ¼ 30a0, Ws ¼ 400a0, and L ¼ 200a0. In lead 1, we
find the finite juηM;↓j, which corresponds to the incident
electron wave and the normal-reflected electron wave. In
lead 2, we find the finite jvηM;↑j corresponding to the
crossed Andreev reflected hole wave. There are no propa-
gating hole (electron) waves in lead 1 (lead 2) due to the
absence of the local Andreev reflection (EC) process. For
the superconducting segment, most importantly, we find
that the wave function localized at the edge of the super-
conductor mediates the wave functions in the two different
FM leads. To examine this in more detail, in Fig. 4(c), we
show the ratio of R ¼ juηM;↓j=jvηM;↑j at the edge of the
superconductor (j ¼ 1).We find thatR ¼ 1.0 holds between
the two FM leads (−100 < m < 100). Therefore, the wave
function bridging the two FM leads indeed corresponds to
a Majorana edge excitation described by the superposition
of an electron wave and a hole wave with equal amplitude.
Discussion.—In the present junction, we can obtain the

nonlocal conductance as extremely insensitive to the
distance between two FM leads because the propagating

FIG. 3. (a) Nonlocal conductanceG21 at zero-bias voltage as a function of the exchange potentialMex. (b)G21 at zero-bias voltage as a
function of the angles of magnetic moments φ1 and φ2.

FIG. 4. Spatial profile of the wave function having the largest
contribution to RCAR

21 . In (a) and (b), we respectively show the
amplitude of electron component juηM;↓ðrÞj and that of hole
component jvηM;↑ðrÞj. In (c), the ratio of R ¼ juηM;↓j=jvηM;↑j at the
edge of the superconductor (j ¼ 1) is plotted as a function of y.
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CMESs mediating the nonlocal transport are irrelevant to
the limitation from the superconducting coherent length.
Here, we highlight the most significant advantage of our
proposal: that we can identify the CMESs thorough the
obvious difference in G21 and G12, where one of them is
finite and the other is zero. In real experiments, several
perturbations (such as the tilt of the d vector and the spin-
orbit coupling potentials in the vicinity of the junction
interface) may induce additional spin-flip scattering proc-
esses and may decrease the amplitude of the finite nonlocal
conductance. Even so, our proposal is still valid in the
presence of such perturbations because we only need the
contrast between the finite and the zero nonlocal conduc-
tances for detecting the CMESs. Actually, we have con-
firmed that the significant contrast between G21 and G12 is
preserved for the broad range of magnetization alignments,
as shown in Fig. 3(b). We also confirm that the substantial
contrast in the conductance spectra is obtained, even in the
presence of the next-nearest-neighbor pairing term in the pair
potential [24,25] (see also the Supplemental Material [47]).
In summary, the nonlocal conductance in a device

consisting of a chiral p-wave SC and two FM leads is
studied within the mean-field theory. The CMESs cause the
anomalously long-range and chirality-sensitive nonlocal
transport and generate the drastic contrast in G21 and G12.
On the basis of these numerical results, we have proposed
a smoking-gun experiment to detect the CMESs in chiral
p-wave superconductors and have discussed the advantage
of our proposal. We hope that our work will motivate
further experiments on nonlocal transport measurements
for recently fabricated ferromagnetic-SrRuO3=Sr2RuO4

hybrid systems [51].
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