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Proximity effect in a ferromagnetic semiconductor with spin-orbit interactions
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We study theoretically the proximity effect in a ferromagnetic semiconductor with the Rashba spin-orbit
interaction. The interplay between the exchange potential and the spin-orbit interactions enriches the symmetry
variety of Cooper pairs depending on degree of disorder in a ferromagnet. In the ballistic limit, spin-singlet
s-wave Cooper pairs are the most dominant in the presence of strong spin-orbit interaction because the
spin-momentum locking stabilizes a Cooper pair consisting of two electrons of time-reversal partner to each
other. We will show that the spin-orbit interactions generate equal-spin-triplet p-wave pairs. In the dirty regime,
on the other hand, equal-spin-triplet s-wave pairs are dominant because random impurity potentials release the
locking. The exchange splitting in the conduction band causes the imbalance between two equal-spin pairing
components. In a half-metallic ferromagnet, only an equal-spin pairing component survives and carries the
spin-polarized supercurrent. We discuss the effects of the spin-orbit interaction on the Josephson current.
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I. INTRODUCTION

The proximity effect into a ferromagnetic metal has been
a central issue in physics of superconductivity [1–3]. The
exchange potential in a ferromagnet enriches the symme-
try variety of Copper pairs. The uniform exchange poten-
tial generates an opposite-spin-triplet Cooper pair from a
spin-singlet s-wave Cooper pair. The pairing function of
such opposite-spin pairs oscillates and decays spatially in
the ferromagnet, which is the source of 0-π transition in a
superconductor/ferromagnet/superconductor (SFS) junction
[4–6]. The inhomogeneity in the magnetic moments near
the junction interface induces equal-spin-triplet Cooper pairs
which carries the long-range Josephson current in a SFS
junction [3,7–11]. When the ferromagnet is in the diffusive
transport regime, all the spin-triplet components belong to
odd-frequency symmetry class [3,12–15].

An SFS junction consists of a ferromagnetic semiconduc-
tor may be a testing ground of spin-triplet Cooper pairs [16]
because of its controllability of magnetic moments by doping.
A long-range phase coherent effect is expected in such a high
mobility two-dimensional electron gas on a semiconductor
[17,18]. Indeed, an experiment has observed supercurrents
flowing through a Nb/(In,Fe)As/Nb junction [19,20]. In ad-
dition, the spin configuration can be changed after fabricating
the SFS junction through the Rashba spin-orbit interactions
tuned by gating the ferromagnetic segment. It has been well
established that the Rashba spin-orbit interaction generates
the variation of spin structure in momentum space.

So far, the interplay between the exchange potential and
the spin-orbit interaction in the proximity effect has been
discussed in a number of theoretical studies [21–36]. This
research area has attracted much attention since the proposal
of topologically nontrivial superconducting nanowire [37,38].
A half-metallic quasi-one-dimensional nanowire can host Ma-
jorana fermions in its superconducting phase in the presence
of spin-orbit interaction. The proximity effect of such a topo-

logically nontrivial nanowire junction is simple. Namely, an
odd-frequency equal-spin s-wave Cooper pair always plays a
key role in the proximity effect of a material attached to the
nontrivial nanowire [24]. In proximity structures consisting
of a topologically trivial superconductor, on the other hand,
symmetry of a Cooper pair can depend sensitively on the
exchange potential, the spin-orbit potential, and the degree of
disorder. The present paper addresses this issue.

In this paper, we study theoretically the symmetries of
Cooper pairs in a two-dimensional ferromagnetic semicon-
ductor with the Rashba spin-orbit interaction. The pair-
ing function is calculated numerically by using the lattice
Green’s function technique on an SFS junction. The theoret-
ical method can be applied to an SFS junction for arbitrary
strength of the exchange potential, the spin-orbit interaction,
and the interactions to random impurity potential. These po-
tentials change the symmetry of a Cooper pair in a ferromag-
net from spin-singlet s-wave symmetry in a superconductor.
In the ballistic limit, spin-singlet s-wave Cooper pairs are the
most dominant in the strong spin-orbit interaction because the
spin-momentum locking stabilizes a Cooper pair consisting
of two electrons of time-reversal partner to each other. We
also find that the spin-orbit interactions generate equal-spin-
triplet Cooper pairs belonging to odd-parity symmetry. The
analytical results by solving the Eilenberger equation explains
well the numerical results of pairing functions. In the pres-
ence of random impurities, equal-spin-triplet s-wave pairs are
dominant in a diffusive ferromagnet. This conclusion remains
unchanged even when the exchange potential is large enough
to make a ferromagnet be half metallic. We also discuss effects
of the spin-orbit interaction on the 0-π transition in an SFS
junction.

This paper is organized as follows. In Sec. II, we explain
the theoretical model of an SFS junction. The numerical
results in the clean limit and those in a dirty regime are shown
in Secs. III and IV, respectively. The conclusion is given in
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FIG. 1. SFS junction on two-dimensional tight-binding model.

Sec. V. We use the units of h̄ = c = kB = 1 throughout this
paper, where c is the speed of light and kB is the Boltzmann
constant.

II. MODEL

Let us consider an SFS junction on two-dimensional tight-
binding lattice as shown in Fig. 1, where L is the length of the
ferromagnetic semiconductor, W is the width of the junction
in units of the lattice constant, x (y) is the unit vector in
the x (y) direction, r = jx + my points to a lattice site. The
Hamiltonian of the junction is given by

H =
∑
r,r′

�†(r)

[
ĤN(r, r′) �̂(r, r′)

−�̂∗(r, r′) −Ĥ∗
N(r, r′)

]
�(r′), (1)

�(r) =[ψ↑(r), ψ↓(r), ψ†
↑(r), ψ†

↓(r)]T, (2)

where ψα (r) is the annihilation operator of an electron with
spin α at r. The normal state Hamiltonian consists of four
terms,

ĤN = Ĥk + Ĥso + Ĥh + V̂i, (3)

Ĥk(r, r′) = −t (δr,r′+x + δr+x,r′ )σ̂0 − t (δr,r′+y + δr+y,r′ )σ̂0

+ (4t − εF )δr,r′ σ̂0, (4)

Ĥso(r, r′) = i(λ/2)[{δr,r′+x − δr+x,r′ }σ̂2

−{δr,r′+y − δr+y,r′ }σ̂1]�( j) �(L − j), (5)

Ĥh(r, r′) = − h · σ δr,r′ �( j) �(L + 1 − j), (6)

Ĥi(r, r′) = vr σ0 δr,r′ �( j) �(L + 1 − j), (7)

�̂(r, r′) = �δr,r′ i σ̂2[�(− j + 1)eiϕL + �( j − L)eiϕR ], (8)

�( j) =
{

1 : j > 1

0 : j � 0,
(9)

where t is the hopping integral among the nearest-neighbor
lattice sites, εF is the Fermi energy, σ̂ j for j = 1 − 3 and σ̂0

are the Pauli’s matrix and unit matrix in spin space, respec-
tively. In the ferromagnet (1 � j � L), λ is the amplitude of
the spin-orbit interaction, h represents the uniform exchange
potential, and vr represents random impurity potential. In
the two superconductors, � is the amplitude of the pair
potential of spin-singlet s-wave symmetry, and ϕL(ϕR) is
the superconducting phase in the left (right) superconductor.

The Hamiltonian in continuum is also given in Eq. (A1) in
Appendix A.

We solve the Gor’kov equation,[
iωnτ̂0σ̂0 −

∑
r1

(
ĤN(r, r1) �̂(r, r1)

−�̂∗(r, r1) −Ĥ∗
N(r, r1)

)]

× Ǧωn (r1, r′) = τ̂0σ̂0δ(r − r′), (10)

Ǧωn (r, r′) =
[

Ĝωn (r, r′) F̂ωn (r, r′)

−F̂ ∗
ωn

(r, r′) −Ĝ∗
ωn

(r, r′)

]
, (11)

by applying the lattice Green’s function technique [39,40],
where τ0 is the unit matrix in particle-hole space, ωn =
(2n + 1)πT is the fermionic Matsubara frequency, and T is
a temperature. The Josephson current in a ferromagnet 1 <

j < L expressed as

J ( j) = − ie

2
T

∑
ωn

W∑
m=1

Tr[τ̂3Ť+ Ǧωn (r, r + x)

− τ̂3Ť− Ǧωn (r + x, r)], (12)

Ť± =
[
−t σ̂0 ∓ i(λ/2)σ̂2 0

0 t σ̂0 ± i(λ/2)σ̂2

]
, (13)

is independent of j.
The pairing function with s-wave symmetry is decomposed

into four components,

1

W

W∑
m=1

F̂ωn (r, r) =
3∑

ν=0

fν ( j)σ̂ν iσ̂2, (14)

where f0 is the spin-singlet component and f j with j = 1 − 3
are the spin-triplet components. In the clean limit, we also
calculate pairing function with an odd-parity symmetry

1

2W

W∑
m=1

F̂ωn (r + x, r) − F̂ωn (r − x, r) =
3∑

ν=0

fν ( j)σ̂ν iσ̂2.

(15)

Throughout this paper, we fix several parameters as
W = 20, εF = 2t , � = 0.005t , and T/Tc = 0.1. The ex-
change field is always in the perpendicular direction to
the two-dimensional plane h = hz. We do not consider
self-consistency in the pair potential. In an experiment
[20], the two-dimensional electron gas on a semiconductor
is connected to the superconducting condensate in three-
dimensional large superconductors. Thus, the superconduct-
ing order can be rigid in the superconductors independent of
disordered potential and magnetic potentials in the semicon-
ductor.

III. CLEAN LIMIT

A. Josephson current

We first discuss the numerical results of the Josephson
current plotted as a function of the length of a ferromagnet
L in Fig. 2, where we fix the phase difference at ϕ = ϕL −
ϕR = π/2. Figures 2(a) and 2(b) show the results in the
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FIG. 2. The Josephson current versus the length of a normal
segment L in the clean limit. (a) An SNS junction at h = 0. (b) An
SFS junction at h = 0.5t .

absence of exchange potential h = 0 and in the presence of
an exchange potential h = 0.5t , respectively. The Josephson
current is normalized to J0 = e� throughout this paper. The
amplitude of the Josephson current slightly decreases with
the increase of L because the pairing functions decay as
e−x/ξC

T with ξC
T = vF /2πT for all pairing symmetry [41]. The

spin-orbit interaction affects the Josephson current in two
different manners: The generation of spin-triplet Cooper pairs
and the modification of normal conductance due to the band
structure as shown in Fig. 6. In this paper, we mainly focus
on the former effect which happens only when the spin-orbit
interaction and the exchange potential coexist as shown in
Sec. III C. Since h = 0 in Fig. 2(a), spin-triplet Cooper pairs
are absent in a superconductor/normal-metal/superconductor
(SNS) junction. The spin-orbit interactions modify the band
structure as shown in Fig. 6 and decrease the transmission
probability at the NS interface. The results in Fig. 2(a),
however, demonstrate that such band effects on the normal
conductance and on the Josephson current are very weak for
λ/t < 0.5. On the other hand, in Fig. 2(b), the Josephson
current oscillates as a function of L because of the exchange
potential. The period of the oscillations is described by ξC

h =
vF /2h in weak spin-orbit interactions. When the spin-orbit
interaction increases, the amplitude of the oscillations de-
creases. At λ = 0.5t , the Josephson current is always pos-
itive at ϕ = π/2. In the present calculation at T/Tc = 0.1,
the current-phase relationship (CPR) deviates slightly from
sinusoidal function as

J = J1 sin(ϕ) − J2 sin(2ϕ), (16)

with J2 > 0. When J1 > 0 (J1 < 0), the junction is called
0 (π ) junction. Roughly speaking, the spin-orbit interaction
stabilizes the 0 state rather than the π state.

This conclusion can be confirmed by the results displayed
in Fig. 3, where we show a phase diagram of the Josephson
current at ϕ = 0.5π and L = 50. The horizontal (vertical) axis
indicates the amplitude of the spin-orbit interaction (exchange
potential). The junction is in the 0 state for J > 0 and is in the
π state for J < 0. At λ = 0, the Josephson current changes its
sign with the increase of h, which indicates the 0-π transition
by the exchange potential. When we introduce the spin-orbit
interaction, the 0-π transition is suppressed [7,21,42] and
the Josephson current is always positive at ϕ = π/2. The
π state tends to disappear for λ > h. We will discuss the

π

π

π

π

π

0

FIG. 3. The Josephson current at ϕ = 0.5π and L = 50 is plotted
as a function of h and λ in the clean limit.

reasons for the disappearing π state under the strong spin-
orbit interactions in Sec. III C.

B. Current-phase relationship

Before discussing the symmetry of a Cooper pair, the rela-
tion between the symmetry of the Hamiltonian and the CPR
of the Josephson current should be clarified. The Hamiltonian
of an SFS junction is described in continuum as shown in
Eqs. (A1)–(A9) in Appendix A. The energy of a junction E
depends on the phase difference between the two supercon-
ductors ϕ = ϕL − ϕR. The Josephson current is calculated by
the relation J (ϕ) = e∂ϕE (ϕ). In the lowest order Josephson
coupling, generally speaking, the current is expressed as

J = J1 sin(ϕ − ϕ0), (17)

where ϕ0 is a phase shift. When a relation E (ϕ) = E (−ϕ)
is satisfied, the Josephson current is an odd function of ϕ,
(i.e., J (0) = 0). As a result, ϕ0 is either 0 or π . It is well
known that an SNS (SIS) junction consisting of a conventional
normal-metal (insulator) is always the 0 junction (ϕ0 = 0). An
SFS junction consisting of a uniform metallic ferromagnet (F)
can be either 0 junction or π junction (ϕ0 = π ), depending on
the length of a ferromagnet and the amplitude of the exchange
potential [1,4]. The ϕ0 junction is the Josephson junction with
ϕ0 being neither 0 nor π . It has been known that such a ϕ0

state is realized in an SFS junction consisting of a ferromagnet
with inhomogeneous magnetic moments [13,43,44] and a
ferromagnet with spin-orbit interactions [22,29]. Although
spin-orbit interaction is present in the ferromagnet in our
study, ϕ0 in Fig. 3 it is limited to be either 0 or π . We explain
the reasons in what follows.

The transformation of ϕ → −ϕ is realized by applying
the complex conjugation to the Hamiltonian in Eq. (A2).
Therefore, the junction energy satisfies E (ϕ) = E (−ϕ) when

Hp = H∗
p , (18)
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where we consider Hi = 0 in the ballistic limit and the mag-
netic moment is in the z direction hσ̂3. The potentials in this
paper are represented as

Hp = hσ̂3 − iλ∂yσ1 + iλ∂xσ2, (19)

H∗
p = hσ̂3 + iλ∂yσ1 + iλ∂xσ2. (20)

Although the second term changes it sign under the complex
conjugation, the additional transformation y → −y cancels
the sign changing. Therefore the Hamiltonian preserves

H∗
p (x,−y) = Hp(x, y). (21)

In this transformation, the space coordinate is trans-
formed as (x, y, z) → (x,−y, z) and spin is transformed as
(σ1, σ2, σ3) → (σ1,−σ2, σ3). The invariance of the Hamil-
tonian under such transformation is called magnetic mirror
reflection (MMR) symmetry with respect to the xz plane [35].
Thus, E (ϕ) in our junction is an even function of ϕ and the
junction is either 0 or π state as shown in Appendix A. The
previous papers [23,29] demonstrated that the Zeeman filed
in the y direction generates the phase shift ϕ0. In these cases,
H ′

h = hyσ̂2 changes its sign under the complex conjugation.
Breaking MMR symmetry by hy explains the mechanism of
the tunable feature of ϕ0. The previous papers [28,45] explain
such phase shifts in terms of SU(2) magnetic field. In Fig. 3,
the magnetic moment is in the z direction. The paper in Ref.
[29] also showed that ϕ0 is either 0 or π when the Zeeman
field is in the x direction. The Zeeman field in the xz plane
does not cause the phase shift because it preserves MMR
symmetry.

C. Pairing functions

To analyze the characteristic behavior of the Josephson cur-
rent, we solve the Eilenberger equation [46] in a ferromagnet:

ivF k̂ · ∇rǧ + [Ȟ0 + �̌, ǧ]− = 0, (22)

Ȟ0 = (iωn − h · σ̂)τ̂3 − λ × σ̂ · k̂, (23)

�̌ = i�̂τ̂1. (24)

In the Bogoliubov-de Gennes (BdG) Hamiltonian, the spin-
orbit interaction is described by

HSO = λ̃ × σ̂ · (−i∇). (25)

We apply the quasiclassical approximation to this term and
derive the second term in Eq. (23), where λ is a vector with the
energy dimension and k̂ is the unit vector on the Fermi surface.
Generally speaking, the quasiclassical approximation is valid
when the Fermi energy is much larger than other energy scales
such as �, |h|, and |λ|. To solve the Eilenberger equation, we
apply the Riccati parametrization,

ǧ =
(

N̂ 0̂

0̂ N̂

)(
sωn (1 − ââ) 2â

2â −sωn (1 − ââ)

)
, (26)

where sωn = sgn(ωn) and N̂ = (1 + â â)−1. The two Ric-
cati parameters are related to each other by â(r, k̂, iωn) =
σ̂2â∗(r,−k̂, iωn)σ̂2. Here we show the relation between the

Ricatti parameter in Eq. (26) and anomalous Green’s function
F̂ in the Gor’kov equation [47]:

f̂ (r, k̂, iωn) = i

π

∫
dξkF̂ (r, k, iωn), (27)

= i2N̂ (r, k̂, iωn) â(r, k̂, iωn)σ̂2, (28)

â(r, k̂, iωn) =
3∑

ν=0

aν (r, k̂, iωn)σ̂ν . (29)

The spin-singlet component satisfies

a0(r, k̂, iωn) = a0(r,−k̂,−iωn), (30)

and the three spin-triplet components satisfy

a j (r, k̂, iωn) = −a j (r,−k̂,−iωn) (31)

for j = 1 − 3. The Riccati parameter obeys

ivF k̂ · ∇â + 2iωnâ − h · σ̂â − âσ̂ · h − k̂ × λ · σ̂â

+ âk̂ × λ · σ̂ − i� + iâ�â = 0. (32)

In what follows, we solve Eq. (32) in a ferromagnet of a SF
junction, where a ferromagnet (x > 0) is attached a supercon-
ductor at x = 0. We assume that the junction is translational
invariant in the y direction. Since � = 0 in the ferromagnet, it
is possible to have an analytic solution of â(r, k̂, iωn).

For h = hz and λ = λz, we obtain the solution in two
dimensions,

a0 = A0

V 2

[
h2 cos

(
2V

vFx

x

)
+ λ2

]
e
− 2ωn

vFx
x
, (33)

a↑↑ = a1 − ia2, (34)

= A0hλ

V 2
(k̂y + ik̂x )

[
1 − cos

(
2V

vFx

x

)]
e
− 2ωn

vFx
x
, (35)

a↓↓ = a1 + ia2, (36)

= A0hλ

V 2
(−k̂y + ik̂x )

[
1 − cos

(
2V

vFx

x

)]
e
− 2ωn

vFx
x
, (37)

a3 = i
A0h

V
sin

(
2V

vFx

x

)
e
− 2ωn

vFx
x
, (38)

where V = √
h2 + λ2, vFx = kx/m and A0 = �/(|ωn| +√

ω2
n + �2) is the solution in a uniform superconductor. At

the interface of a superconductor and a ferromagnet (x = 0),
we imposed a boundary condition of a0 = A0 and a j = 0
for j = 1 − 3. The decay length of all the components is
basically given by the thermal coherence in the clean limit
ξC

T = vF /2πT . The spin-singlet component a0 has two contri-
butions: An oscillating term due to the exchange potential and
a constant term due to the spin-orbit interaction. Equations
(33)–(38) suggest that only a spin-singlet pair stays in an SNS
junction with h = 0. Thus the spin-orbit interaction does not
affect the Josephson current so much as shown in Fig. 2(a).
As shown in Eq. (38), the exchange potential generates the
opposite-spin-triplet component a3 which oscillates in real
space. The equal-spin pairing components a↑↑ and a↓↓ be-
come finite when the spin-orbit interaction and the exchange
potential coexist. Although aσ,σ components osculate in real
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FIG. 4. The spatial profile of the pairing functions at L = 50 and
h = 0.3t in the clean limit. The results for an s-wave symmetry in
Eq. (14) are presented. (a) Spin-singlet f0, (b) opposite-spin-triplet
f3, (c) equal-spin-triplet f↑↑, and (d) equal-spin-triplet f↓↓.

space, they do not change their signs as shown in Eqs. (35)
and (37).

In Fig. 4, we show the numerical results of pairing function
in the ferromagnet of an SFS junction on the tight-binding
model, where L = 50, ϕ = 0, h = 0.3t , and ωn = 0.02�. The
pairing function is normalized to fB, which is the amplitude of
the anomalous Green’s function in the uniform superconduc-
tor. We first display the spatial profile of s-wave components
defined in Eq. (14) for several choices of λ. The spin-singlet
s-wave component f0 in Fig. 4(a) oscillates and changes its
sign in real space at λ = 0. However, the spin-orbit interaction
suppresses the sign change. As a result, f0 is positive every-
where for λ = 0.3t . The opposite-spin-triplet component f3 in
Fig. 4(b) always changes its sign but is strongly suppressed
by the spin-orbit interactions. We note that f3 belongs to
odd-frequency spin-triplet even-parity (OTE) symmetry class.
The two equal-spin-triplet components in Figs. 4(c) and 4(d)
are absent irrespective of λ. The analytical results of the
Eilenberger equation in Eqs. (33)–(38) predict these behaviors
well. A previous paper [36] has discussed the similar effect
in a SFS junction with the spin-orbit interaction working at
the thin ferromagnetic layer. Namely, the amplitude of all
OTE components are much smaller than that of spin-singlet s-
wave component in the presence of the spin-orbit interaction.
However, little attention has been given to odd-parity pairing
correlations. The generation of odd-parity components is an
essential effect of the spin-orbit interaction as shown in Fig. 5,
where we display the spatial profile of the odd-parity compo-
nents in Eq. (15) for several choices of λ. Odd-parity opposite-
spin Cooper pairs are generated in the clean junction because
the exchange potential breaks inversion symmetry locally at
the junction interface. The spin-singlet p-wave component f0

in Fig. 5(a) oscillates and changes its sign in real space at
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FIG. 5. The results for an odd-parity symmetry in Eq. (15). The
parameters are the same with those in Fig. 4. (a) Spin-singlet f0,
(b) opposite-spin-triplet f3, (c) equal-spin-triplet f↑↑, and (d) equal-
spin-triplet f↓↓.

λ = 0. The spin-orbit interaction drastically suppresses such
an odd-frequency spin-singlet odd-parity component. The
opposite-spin-triplet component f3 in Fig. 5(b) belonging to
even-frequency spin-triplet odd-parity class shows the similar
behavior to f0. Finally, the spin-orbit interactions generate
two equal-spin-triplet components f↑↑ and f↓↓ as shown in
Figs. 5(c) and 5(d), respectively. They oscillate slightly in real
space but do not change their sign. Together with Eqs. (35) and
(37), equal-spin pairs generated by the spin-orbit interaction
belong to p-wave symmetry. Together with Figs. 4(c) and
4(d), we conclude that equal-spin Cooper pairs belong to
p-wave symmetry in a ballistic junction. The amplitude of
such odd-parity equal-spin components first increases with the
increase of λ, then decrease in agreement with the analytical
results in Eqs. (35) and (37). We will explain the reasons of
the reentrant behavior in what follows.

Figure 6 shows the schematic spin structure on the Fermi
surface. When the exchange potential is much larger than
the spin-orbit interactions, spin of an electron aligns in each
spin band. The spin-orbit interactions twist the spin structure
as shown in the upper middle figure. The strong spin-orbit
interactions cause the spin-momentum locking as shown in
the upper right figure. The spin configuration in the two limits
are shown in the lower figure. The wave number k± in the
figure are k± = kF ± h/vF in the limit of h 	 λ on the left
and k± = kF ± λ/vF in the limit of h 
 λ on the right. At
h 	 λ, a spin-singlet pair and an opposite-spin-triplet pair
have a center-of-mass-momentum of k+ + (−k−) = 2h/vF on
the Fermi surface. As a result, these components oscillate and
change their signs in real space [48,49]. On the other hand,
equal-spin-triplet components f↑↑ ( f↓↓) do not have a center-
of-mass-momentum because they consist of two electrons
at ±k+ (±k−). Thus equal-spin-triplet components do not
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FIG. 6. Schematic picture of spin configuration on the Fermi
surface. In the upper figure, the spin of an electron is twisted by
the spin-orbit interaction on the Fermi surface. The strong spin-orbit
interaction fells the spin down to the two-dimensional plane. In the
lower figure, spin configuration on the two Fermi surfaces are shown
for the two limits: h 	 λ on the left panel and h 
 λ on the right
panel.

change signs as shown in the results for λ = 0.1t in Figs. 5(c)
and 5(d).

In the opposite limit of h 
 λ, a spin-singlet Cooper pair
does not have a center-of-mass-momentum in this case. The
spin-momentum locking due to strong spin-orbit interactions
stabilizes such a Cooper pair consisting of two electrons of
the time-reversal partner. Thus f0 does not change its sign
as shown in the results for λ = 0.3t in Fig. 4(a). Equal-
spin-triplet pairs, on the other hand, have the center-of-mass-
momentum 2λ/vF . In Figs. 5(c) and 5(d), fσσ for λ = 0.1t
oscillates in real space. Since the spatial oscillations cost the
energy, fσσ for λ = 0.3t is smaller than that for λ = 0.1t . All
the dominant pairing components do not change their sign.
Therefore, the 0 state is more stable than the π state for λ > h
as shown in Fig. 3.

IV. DIRTY REGIME

In the dirty limit, we switch on the random impurity
potential in Eq. (7) in a ferromagnet, where the potential
is given randomly in the range of −Vimp/2 � vr � Vimp/2.
In the numerical simulation, we set Vimp = 2t , which results
in the mean-free path � about five lattice constants. Since
� 
 L, a ferromagnet is in the diffusive transport regime.
The coherence length ξ0 = vF /π� is estimated as 20 lattice
constants at � = 0.005t . Thus the junction is in the dirty
regime because of � < ξ0. The Josephson current is first
calculated for a single sample with a specific random impurity
configuration. Then the results are averaged over Ns samples
with different impurity configurations:

〈J〉 = 1

Ns

Ns∑
i=1

Ji. (39)

-5.0

-2.5
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 5.0

 4  10  20  30  40  50
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 5.0

 4  10  20  30  40  50

(a) (b)

FIG. 7. The Josephson current versus the length of a normal
segment L in the dirty limit. (a) An SNS junction at h = 0. (b) An
SFS junction at h = 0.5t . The parameters here are the same as those
in Fig. 2.

In this paper, we choose Ns as 100–500 in numerical sim-
ulation. We confirmed that the CPR of ensemble averaged
Josephson current is sinusoidal and the shift ϕ0 in Eq. (17)
is either 0 or π . We will discuss the details of the CPR in
Sec. IV B.

A. Josephson current

In Fig. 7, we show the ensemble average of the Josephson
current as a function of the length of the ferromagnet, where
we fix ϕ = π/2, the exchange potential is absent in Fig. 7(a)
and the exchange potential is h = 0.5t in Fig. 7(b). The decay
length of the Josephson current in Fig. 7(a) is shorter than that
in the clean limit in Fig. 2(a). It is well known in a diffusive
normal metal that the penetration length of a Cooper pairs is
limited by ξD

T = √
D/2πT . In the absence of the exchange

potential, spin-triplet pairs are absent in a SNS junction.
The spin-orbit interactions only modify the band structure as
shown in Fig. 6, which decreases the transmission probability
at the junction and the amplitude of Josephson current. The
Josephson current in Fig. 7(a) is almost independent of λ. The
results suggest that the impurity scatterings wash out such
band effect for λ/t < 0.5. The results of an SFS junction in
Fig. 7(b) show the oscillations and the sign change of the
Josephson current at λ = 0.1t . The large spin-orbit interaction
suppresses the sign change of the Josephson current as show
in the result for λ = 0.3t .

In Fig. 8, we plot the ensemble average of Josephson
current at ϕ = π/2 as a function of h and λ. The results
should be compared with those in Fig. 3. The amplitude of the
Josephson current is suppressed by the impurity scatterings.
Although the 0-π transition can be seen at λ = 0, the spin-
orbit interaction suppresses the 0-π transition. Although such
tendency is common at the results in the clean limit in Figs. 3
and those at a dirty regime in Fig. 8, symmetries of Cooper
pairs carrying the Josephson current are different in the two
cases. We will address this issue in Sec. IV C.

B. Current-phase relationship

Before discussing symmetry of Cooper pairs, we briefly
explain an unusual property of CPR in the dirty regime. As
already mentioned in Sec. III B, the phase shift ϕ0 is either 0 or
π in the clean limit because of MMR symmetry described by
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π

π

π

π

0

FIG. 8. The Josephson current is plotted as a function of h and λ

in the dirty regime. The parameters are the same as those in Fig. 3.

the relation Eq. (21). In the presence of impurities, the random
impurity potential Hi enters HP in Eq. (A6). In such case,
the relation Eq. (21) does not hold true because the random
potential should be

Hi(x,−y) = Hi(x, y). (40)

Namely, impurity potential breaks MMR symmetry, which
results in a phase shift ϕi in the Josephson current in a single
sample:

Ji = J1,i sin(ϕ − ϕi ). (41)

The shift ϕi is not predictable because it depends on a mi-
croscopic configuration of random impurities. The numerical
results of the CPR for several samples are shown in Fig. 11 in
Appendix B with broken lines, where h = 0.5t and λ = 0.5t .
The results show that the phase shift ϕi can be either positive
or negative depending on random distribution. However, the
ensemble average of the results shows the phase shift is zero
as plotted with a thick line in Fig. 11. The ensemble average
of the impurity potential 〈Hi (r)〉 is independent of r. Thus the
Hamiltonian after averaging recovers MMR symmetry.

Here we briefly discuss a relation between the Josephson
current in theories and that in experiments. In experiments,
the Josephson current is measured in a specific sample of SFS
junction. Since the Josephson effect is a result of the phase
coherence of a quasiparticle in a ferromagnet, the Josephson
current is not a self-averaged quantity. Therefore, the Joseph-
son current calculated theoretically at a single sample Ji cor-
responds to that measured experimentally at a single junction.
When 〈J〉 and Ji show qualitatively different behavior from
each other, 〈J〉 cannot predict a Josephson current measured
in experiments [40]. A previous paper [23] has discussed the
phase shift ϕ0 due to the Zeeman field in the y direction. In
a specific junction in an experiment, an extra phase shift due
to random potential in the junction may damage the controlla-
bility of ϕ0 value. The numerical results in Fig. 11, however,
show that ϕi is much smaller than π and that the amplitude
of the Josephson current in a single sample is described well
by the amplitude after averaging. The Josephson current has
such property in a wide parameter range of exchange potential
and the spin-orbit interaction. In the dirty limit, therefore, the
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FIG. 9. The spatial profile of the ensemble average of pairing
function in the dirty regime. Only an s-wave component remains
finite in the dirty regime. The parameters are the same as those in
Fig. 4.

results presented in previous papers [28,32,45] could predict
the amplitude of the Josephson current.

C. Pairing functions

Although the ensemble average of the Josephson current
in theories cannot predict the CPR measured in a real sam-
ple, the ensemble average of the pairing functions tells us
characteristic features of the proximity effect. In Fig. 9, we
show the spatial profile of the pairing functions in dirty
regime, where ϕ = 0, hz = 0.5t and L = 50. The parameters
here are the same as those in Fig. 4. The singlet component
〈 f0〉 oscillates and changes its sign at λ = 0 as shown in
Fig. 9(a). At λ = 0.5t , the spin-orbit interaction suppress the
amplitude of oscillations. The similar tendency can be found
in the opposite-spin-triplet component 〈 f3〉 in Fig. 9(b). The
equal-spin-triplet components 〈 fσσ 〉 are zero at λ = 0. The
amplitudes of such OTE pairs become finite and spatially
uniform in the dirty regime as shown in Figs. 9(c) and 9(d).
The presence of odd-frequency pairs causes the enhancement
of the local density of states at zero energy, which was
confirmed by the previous papers [30,32] and is the source
of the orbital paramagnetic response [50,51]. Such character-
istic features in the pairing functions can be seen also in a
single sample shown in Fig. 12 in Appendix B. Although the
results in a single sample show aperiodic oscillations due to
random impurity potential, fσσ in a single sample are positive
everywhere as shown in Figs. 12(c) and 12(d).

In the clean limit, the spin-momentum locking suppresses
the equal-spin-triplet components as shown in Figs. 5(c) and
5(d). Actually, fσσ first increases with the increase of λ, then
decreases. In the dirty regime, however, the random impurity
scatterings release the spin-momentum locking because the
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FIG. 10. The pairing functions at the center of a ferromagnet j =
25 are shown as a function of λ. (a) A strong ferromagnet at h = 0.5t .
(b) A half-metallic ferromagnet at h = 2.5t .

momentum is not a good quantum number. As a result, the
spin-orbit interactions flip the spin of 〈 f3〉 component and
generates 〈 fσσ 〉 component without changing its parity. The
resulting equal-spin Cooper pairs belong to odd-frequency
equal-spin-triplet s-wave (OTE) symmetry class and have the
long-range property in the ferromagnet [3]. At λ > h, the
results in Fig. 9 show that equal-spin pairs are much more
dominant than opposite-spin pairs.

We fix j = 25 in Fig. 9 at a center of a ferromagnet and
calculate the pairing functions as a function of λ. The results
are presented in Fig. 10, where we choose h = 0.5t as a strong
ferromagnet in Fig. 10(a) and h = 2.5t as a half-metal in
Fig. 10(b). The pairing functions of opposite-spin pair 〈 f0〉
and 〈 f3〉 are insensitive to λ. The amplitude of equal-spin
pairs 〈 fσσ 〉 increases with the increase of λ and saturate
for λ > 0.2t in Fig. 10(a) as suggested already by previous
papers [26,32]. These papers predicted the presence of an odd-
frequency equal-spin s-wave pairs in a strong ferromagnet
based on the solution of the quasiclassical Usadel equation.
Since the applicability of the Usadel equation is limited to
weak ferromagnets, we confirm their prediction by the numer-
ical simulation beyond the quasiclassical approximation.

When we increase the exchange potential to h = 2.5t in
Fig. 10(b), a ferromagnet becomes half metallic. Namely, the
ferromagnet is metallic for a spin-↑ electron and is insulating
for a spin-↓ electron. Equal-spin Cooper pairs in Fig. 9 are
formed in two steps under the coexistence of the exchange
potential, the spin-orbit interaction and impurities. At the
first step, the magnetic moment generates an opposite-spin-
triplet s-wave Cooper pair from a spin-singlet s-wave pair.
At the second step, the spin-orbit interaction flips spin of
an opposite-spin-triplet pair and converts it to an equal-spin-
triplet s-wave pair in the dirty case. However, it has been
unclear if the spin-orbit interaction would be able to generate
an equal-spin pair in a half metal because neither a spin-
singlet pair nor an opposite-spin triplet pair can penetrate into
it. The results in Fig. 10(b) show clearly the existence of an
odd-frequency equal-spin Cooper pair 〈 f↑↑〉 in a half metal.
The almost linear relationship between λ and 〈 f↑↑〉 suggests
that the amplitude of odd-frequency pairs is controllable by
tuning λ in experiments.

The presence of an equal-spin pair for only one spin-
direction is a characteristic feature of the proximity effect
in a half metal [3,8–14]. The spin-orbit interactions generate

an equal-spin pair in the theoretical model in this paper,
whereas inhomogeneous magnetic configuration at the junc-
tion interface generate an equal-spin pair in real half-metallic
SFS junctions [3,8,9]. In these SFS junctions, 〈 f↑↑〉 com-
ponent carries the usual Josephson current characterized by
the sinusoidal CPR. In a topologically nontrivial nanowire
junction [37,38], 〈 f↑↑〉 component in a half-metallic nanowire
causes the anomalous Josephson effect characterized by
the fractional CPR at a low temperature [24]. The dependence
of 〈 f↑↑〉 on the Matsubara frequency is qualitatively different
in the two cases. Namely, 〈 f↑↑〉 is analytic at ωn = 0 in
the present junction, whereas it is singular like ω−1

n in the
topologically nontrivial junction. Tuning ωn dependence of
〈 f↑↑〉 would be a next issue toward controlling Majorana
bound states.

V. CONCLUSION

We theoretically study the proximity effect at a ferromag-
netic semiconductor with the Rashba spin-orbit interaction
by solving the Gor’kov equation on a two-dimensional tight-
binding lattice. The Green’s function is obtained numerically
by using the lattice Green’s function technique. The exchange
potential in a ferromagnet converts a spin-singlet Cooper
pair to an opposite-spin-triplet Cooper pair. The spin-orbit
interactions generate an equal-spin-triplet Cooper pair from
an opposite-spin-triplet Cooper pair. The relative amplitudes
of the four spin-pairing components depend on the ampli-
tude of spin-orbit interaction and the transport regime in a
ferromagnet. In the presence of strong spin-orbit interaction,
the spin-momentum locking stabilizes a conventional spin-
singlet s-wave Cooper pair in the ballistic limit. Under the
weak spin-orbit interaction, equal-spin-triplet p-wave Cooper
pairs appear as a subdominant pairing correlation. In the dirty
regime, on the other hand, the most dominant Cooper pair in
a ferromagnet belongs to an odd-frequency equal-spin-triplet
s-wave symmetry class. The impurity scatterings release the
spin-momentum locking in the dirty regime. We also numer-
ically confirm the existence of an equal-spin-triplet in a dirty
half-metallic ferromagnet.
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APPENDIX A: MAGNETIC MIRROR
REFLECTION SYMMETRY

The Hamiltonian of a SFS junction is represented in con-
tinuum as

Ȟ (r, ϕ) = Ȟ0(r, ϕ) + ȞP(r), (A1)
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Ȟ0(r, ϕ) =
[

ξrσ̂0 �̂r

−�̂∗
r −ξrσ̂0

]
, (A2)

ȞP(r) =
[

Ĥp(r) 0

0 −Ĥ∗
p (r)

]
, (A3)

ξr = −∇2

2m
− εF , (A4)

�̂r = [eiϕL �(−x) + eiϕR�(x − L)]�iσ̂2, (A5)

Ĥp = Ĥh + Ĥso + Ĥi, (A6)

Ĥh(r) = −h · σ̂ �(x) �(L − x), (A7)

Ĥso(r) = − iλ(∂yσ̂1 − ∂xσ̂2)�(x) �(L − x), (A8)

Hi(r) =
∑

ri

vri σ̂0δ(r − ri ). (A9)

The BdG equation reads

[Ȟ0(r, ϕ) + ȞP(r)] f (r, ϕ) = E (ϕ) f (r, ϕ), (A10)

where E is the eigenenergy depending on the phase difference
between the two superconductors ϕ = ϕL − ϕR and f (r, ϕ)
is the eigenfunction. The Josephson current is calculated by
J (ϕ) = e∂ϕE (ϕ). The transformation of ϕ → −ϕ is realized
by applying the complex conjugation to the Hamiltonian. The
BdG equation becomes

[Ȟ0(r,−ϕ) + Ȟ∗
P (r)] f ∗(r, ϕ) = E (ϕ) f ∗(r, ϕ). (A11)

When the potential satisfies

ĤP(r) = Ĥ∗
P (r), (A12)

we find that E (ϕ) = E (−ϕ) and that f ∗(r, ϕ) is the eigenfunc-
tion belonging to E (−ϕ). The phase shift of such junction is
limited to be either ϕ0 = 0 or π because the Josephson current
is an odd function of ϕ.

The potentials in this paper are represented as

Hp = hzσ̂3 − iλ∂yσ1 + iλ∂xσ2 + Hi (r), (A13)

H∗
p = hzσ̂3 + iλ∂yσ1 + iλ∂xσ2 + Hi(r). (A14)

Although the second term changes it sign under the complex
conjugation, the additional transformation y → −y cancels
the sign changing:

H∗
p (x,−y) = hzσ̂3 − iλ∂yσ1 + iλ∂xσ2 + Hi(x,−y). (A15)

In the absence of impurity potential Ĥi(r) = 0,

Ĥ∗
P (x,−y) = ĤP(x, y) (A16)

is satisfied. Such symmetry of the Hamiltonian is called MMR
symmetry with respect to the xz plane. The BdG equation in
such case,

Ȟ (r,−ϕ) f ∗(x,−y, ϕ) = E (ϕ) f ∗(x,−y, ϕ), (A17)

indicates that f ∗(x,−y, ϕ) is the eigenfunction belonging to
E (−ϕ) and that E (ϕ) = E (−ϕ) holds true. As a result, the
phase shift ϕ0 in Eq. (17) is either 0 or π in the presence of
MMR symmetry. This conclusion, however, depends on the
direction of magnetic moments. It is easy to confirm that the
magnetic moment in the x direction hxσ̂1 in Eq. (A7) preserves
MMR symmetry, whereas that in the y direction hyσ̂2 breaks
MMR symmetry. Indeed, a paper [29] demonstrated that the
junction with the Zeeman filed in the y direction is responsible
for ϕ0 phase shift in Eq. (17) even in the ballistic limit.

The impurity potential breaks MMR symmetry because of
Hi(x,−y) = Hi(x, y) due to its random nature. In the presence
of impurities, therefore, the energy of a junction becomes
E (ϕ) = E (−ϕ). Thus we conclude that a Josephson junction
with a particular impurity configuration is the ϕ0 junction
and the phase shift ϕ0 depends on the microscopic potential
configuration. When we average the Josephson current over
a number of samples with different random configuration,
the ϕ0 in the averaged Josephson current 〈J (ϕ)〉 becomes
zero. The average of the junction energy satisfies 〈E (ϕ)〉 =
〈E (−ϕ)〉 because 〈Hi(r)〉 is independent of r. Namely, the en-
semble average of the Hamiltonian recovers MMR symmetry.

At the end of this section, we discuss an incomplete point in
the argument above. It is possible to show that the ϕ0 is either
0 or π when Eq. (A12) is satisfied. However, the relation

ĤP(r) = Ĥ∗
P (r) (A18)

is only a necessary condition for the ϕ0-junction. In the case
of a SFS junction consisting of a uniform ferromagnet, for
instance, ĤP = hσ̂2 is not equal to its complex conjugation.
But it is well known that such an SFS junction is either 0-
or π -junction. By applying a unitary transformation rotating
spin space, the Hamiltonian is transformed to ĤP = hσ̂3 which
satisfies Eq. (A12). Thus our argument may depend on the
gauge choice. Only we know that the sign change of the
second term in Eq. (A14) cannot be removed by any rotation
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FIG. 11. The current-phase relationships are shown for several
samples with different impurity configuration at h = 0.5t and λ =
0.5t . The Josephson current after ensemble averaging are plotted by
a thick line.
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in spin space. Moreover, the argument cannot be applied
straightforwardly to superconductors breaking time-reversal
symmetry and odd-parity spin-triplet superconductors.

APPENDIX B: NUMERICAL RESULTS FOR
A SINGLE SAMPLE

In the dirty regime, calculated results for a single sample
can be different from those of ensemble average. Here we
present several results before ensemble averaging.

In Fig. 11, we show the CPR at h = 0.5t and λ = 0.5t .
The broken lines are the results calculated for several samples
with different random configuration and deviate the sinusoidal
function. A thick line corresponds to the ensemble average
and is sinusoidal.

Figure 12 shows the spatial profile of the pairing function
at hz = 0.5t . The results of ensemble average are shown in
Fig. 9. All the components oscillate aperiodically in real
space due to the random impurity potential. The opposite-
spin components f0 and f3 change their sign, whereas the
equal-spin components fσ,σ do not change their sign. Thus,
the results suggest the stability of equal-spin pairs in a single
sample.
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FIG. 12. The spatial profile of the pairing function in a single
sample.
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