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I. INTRODUCTION

The Josephson effect is the highlight of superconducting
phenomena.1 The gradient in the macroscopic phase of su-
perconductivity drives electric currents in equilibrium. A
considerable number of theoretical studies have revealed the
nature of the Josephson effect2 since a Josephson current
formula in superconductor/insulator/superconductor �SIS�
junctions was derived based on a microscopic theory.3

The Josephson current is also observed in superconductor/
diffusive-normal-metal/superconductor �SNS� junctions,
where the length of a normal metal is much larger than the
mean free path due to elastic impurity scatterings.2,4 In SNS
junctions, the Josephson effect is understood in terms of the
proximity effect; Cooper pairs penetrate into diffusive nor-
mal metals. In this sense, supercurrents flow as far as the
amplitudes of the Cooper pairs are finite in diffusive normal
metals. The applicability of these theories, however, is lim-
ited to superconducting junctions of conventional s-wave
pairing symmetry.

In recent years, transport phenomena in unconventional
superconductors have attracted considerable interest because
high-Tc superconductivity is characterized by d-wave pairing
symmetry.5–7 Contrary to s-wave symmetry, the pair poten-
tials in unconventional superconductors change their sign on
the Fermi surface. It is now known that the sign change of
pair potentials causes the formation of a midgap Andreev
resonant state �MARS� at the surface of superconductors8–12

because of the interference effect of a quasiparticle.13 The
MARS spatially localizes at a distance of �0= �vF /��0 from
the surface14 and energetically forms just on the Fermi en-
ergy, where �0 is the coherence length, vF= �kF /m is the
Fermi velocity, kF is the Fermi wave number, and m is the
mass of an electron. The low-temperature anomaly of the
Josephson current in SIS junctions of unconventional
superconductors15–25 is a consequence of the resonant tunnel-
ing of Cooper pairs through the MARS.

The sign change of pair potentials affects also the prox-
imity effect in diffusive normal metals. Suppression of the
proximity effect is usually expected because the wave func-
tion of a Cooper pair originating from the positive part of
pair potentials cancels that originating from the negative
part. In fact, one of authors has shown that the ensemble
average of the Josephson current vanishes in diffusive SNS
junctions for several unconventional superconductors.26,27

This phenomenon is now interpreted as the absence of the
proximity effect in diffusive normal metals.28,29 On the other
hand, two of us discussed anomalous enhancement of the
zero-bias tunneling conductance due to the proximity effect
in the presence of the MARS.30,31

In this paper, we study the ensemble average of the Jo-
sephson current in SNS junctions of unconventional super-
conductors. The Josephson current in a single sample is cal-
culated numerically by using the recursive Green function
method.32–34 After calculating the Josephson current for a
number of SNS junctions with different impurity configura-
tions, the ensemble average and the fluctuations are obtained.
We consider spin-singlet s- and d-wave and spin-triplet
p-wave pairing symmetries in superconductors. The Joseph-
son effect depends strongly on the pairing symmetries be-
cause the two interference effects �the formation of the
MARS and the proximity effect� are sensitive to pairing
symmetries. We show that a cooperative effect between the
midgap Andreev resonant states and the proximity effect
causes anomalous Josephson current in a p-wave symmetry.
A part of this paper has been already published elsewhere.35

This paper is organized as follows. In Sec. II, we discuss
a relation between the pairing symmetry of superconductiv-
ity and the two interference effects of quasiparticles: the
proximity effect and the MARS. The theoretical model and
the method of simulation are explained in Sec. III. Numerical
results of the Josephson current are discussed for four pairing
symmetries in Sec. IV. The origin of the anomalous Joseph-
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son effect in the px-wave symmetry is explained in Sec. IV.
In Sec. VI, we summarize the paper. Throughout this paper,
we take units of �=kB=1, where kB is the Boltzmann con-
stant.

II. PAIRING SYMMETRIES

We consider five pairing symmetries in two-dimensional
superconductors as follows:

�k
�s� = �0, �1�

�k
�dx2−y2� = �0�k̄x

2 − k̄y
2� , �2�

�k
�dxy� = �02k̄xk̄y , �3�

�k
�py� = �0k̄y , �4�

�k
�px� = �0k̄x, �5�

where k̄x=kx /kF and k̄y =ky /kF are the normalized wave num-
bers on the Fermi surface in the x and y directions, respec-
tively. In this section, we assume an isotropic Fermi surface

in two-dimensional electron systems. Thus the relation k̄x
2

+ k̄y
2=1 holds. The electric current is parallel to the x direc-

tion and the junction interface is parallel to the y direction as
shown in Fig. 1�a�. In Eqs. �1�–�5�, we only consider the
orbital part of the pair potentials. The spin part will be taken
into account later on. The pair potentials in momentum space
are illustrated in Fig. 1�b�. The pair potential �k

�dx2−y2� is real-
ized in high-Tc superconductor junctions in which the a axis
of high-Tc compound is set to be parallel to the x direction.
When the a axis is oriented by 45° from the x direction, the
pair potential is described by �k

�dxy�. The p-wave symmetry is
a possible candidate in organic superconductors,36–38

Sr2RuO4,39 and heavy-fermion superconductors.
The constructive interference of a quasiparticle enables

the formation of the MARS at junction interfaces when a
relation

�kx,ky
�−kx,ky

� 0 �6�

is satisfied.11,13 The pair potentials in Eqs. �3� and �5� satisfy
Eq. �6� for all wave numbers. Actually, the low-temperature
anomaly of the Josephson current has been reported15–18,24,25

in SIS junctions of these symmetries.
The absence of the proximity effect in diffusive normal

metals is described by a relation26–28

�kx,ky
= − �kx,−ky

. �7�

The pair potentials in Eqs. �3� and �4� satisfy Eq. �7�. In Fig.
1�b�, we classify the pairing symmetries into four groups by
the presence ��� or absence ��� of the two interference
effects.30,31 We note that s- and dx2−y2-wave symmetries be-
long to the same group.

III. MODEL

Let us consider superconductor/normal-metal/
superconductor junctions of the two-dimensional tight-

binding model as shown in Fig. 1�a�. A vector r= jx+my
points to a lattice site, where x and y are unit vectors in the
x and y directions, respectively. The junction consists of
three regions: a normal metal �i.e., 1� j�LN� and two su-
perconductors �i.e., −	 � j�0 and LN+1� j�	�. In the y
direction, we assume the periodic boundary condition. The
number of lattice sites in the y direction is W. Electronic
states in superconducting junctions are described by the
mean-field Hamiltonian

HBCS =
1

2�
r,r�

�c̃r
†hr,r�c̃r� − c̃r

thr,r�
* �c̃r�

† �t� +
1

2 �
r,r��S

�c̃r
†�̂r,r��c̃r�

† �t

− �c̃r�t�̂r,r�
* c̃r�� , �8�

hr,r� = − t
�r−r��=1 + ��r − � + 4t�
r,r�, �9�

�̂r,r� = ei
j � 	idr,r� · �̂�̂2: triplet,

idr,r��̂2: singlet,
�10�

FIG. 1. �Color online� A schematic figure of SNS junctions of
the tight-binding model is shown in �a�. We illustrate the pair po-
tentials in momentum space in �b�. In �c�, a propagation process in
a diffusive normal metal is illustrated, where solid circles represent
impurities.
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c̃r = 
cr,↑

cr,↓
� , �11�

where cr,�
† �cr,�� is the creation �annihilation� operator of an

electron at r with spin �= �↑ or ↓�, “S” in the summation
means superconductors, and �̂ j with j=1–3 are the Pauli
matrices. In superconductors, �r is taken to be zero. Macro-
scopic phases are given by 
 j =
L in the left superconductor
and by 
 j =
R in the right one. The hopping integral t is
considered among the nearest-neighbor sites. We assume that
t and the Fermi energy � are common in superconductors
and normal metals. In normal metals, the on-site potential is
given randomly in the range of −VI /2��r�VI /2. We also
introduce the insulating barrier at j=1 and j=LN, where �r is
given by VB. The pair potentials corresponding to Eqs.
�1�–�5� are defined in real space,

dr,r�
�s� = �
 j,j�
m,m�, �12�

d
r,r�

�dx2−y2�
=

�

2
�
�j−j��,1
m,m� − 
 j,j�
�m−m��,1� , �13�

dr,r�
�dxy� =

�

2
sgn�j − j�� sgn�m − m��
�r−r��,�2, �14�

dr,r�
�py� =

�

2
sgn�m − m��
�m−m��,1
 j,j�e , �15�

dr,r�
�px� =

�

2
sgn�j − j��
�j−j��,1
m,m�e , �16�

where e is a unit vector in the spin space. The amplitude of
the pair potential at a finite temperature is denoted by �. We
describe the dependence of � on temperatures by the BCS
theory. When we calculate the Josephson current, a macro-
scopic phase factor ei
L �ei
R� must be multiplied by Eqs.
�12�–�16� for a superconductor on the left- �right-� hand side.
In numerical simulations, we choose e=e3 in the p-wave
symmetries because the following argument is independent
of the spin directions of a Cooper pair.

The Hamiltonian is diagonalized by the Bogoliubov trans-
formation


 c̃r

�c̃r
†�t� = �

�

û��r� v̂�

*�r�

v̂��r� û�
*�r�

�
 �̃�

��̃�
†�t� , �17�

�̃� = 
��,↑

��,↓
� , �18�

where ��,�
† ���,�� is the creation �annihilation� operator of a

Bogoliubov quasiparticle. The wave functions, û� and v̂�,
satisfy the Bogoliubov–de Gennes �BdG� equation40

�
r�

hr,r��̂0 �̂r,r�

− �̂r,r�
* − hr,r�

*
�̂0
�
û��r��

v̂��r��
� = E�
û��r�

v̂��r�
� .

�19�

The eigenvalue E� is independent of spin channels because
we consider unitary states in superconductors. Here we
briefly explain the method to calculate the Josephson current
for the dx2−y2-wave symmetry. The application to other sym-
metries is straightforward. The BdG equation in Eq. �19� for
the dx2−y2-wave symmetry is decoupled into two equations

�
r�

 hr,r� d

r,r�

�dx2−y2�

�d
r,r�

�dx2−y2��* − hr,r�
* �
�u11���r��

�v21���r��
� = E�
�u11���r�

�v21���r� � ,

�20�

where uij �vij� represent elements of û �v̂� in Eq. �17�. We
omit 11 from u11 and 21 from v21 because �u21,v11�t obeys
essentially the same equation as Eq. �20�. The wave function
at the jth lattice sites in the x direction can be represented in
a column with 2W elements:

���j� =�
u��jx + 1y�

�
u��jx + Wy�
v��jx + 1y�

�
v��jx + Wy�

� . �21�

For instance, for j�−2, the wave function obeys the BdG
equation

� − t1̄
�

2
ei
L1̄

�

2
e−i
L1̄ t1̄ ����j + 1�

+ 
− E�1̄ + ĒS T̄S

T̄S
† − E�1̄ − ĒS

����j�

+� − t1̄
�

2
ei
L1̄

�

2
e−i
L1̄ t1̄ ����j − 1� = 0, �22�

T̄S = −
�

2
ei
Lh̄0, �23�

ĒS = �− � + 4t�1̄ − th̄0, �24�
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h̄0 =�
0 1 0 ¯ 1

1 0 1 ¯ 0

� � � � �
0 ¯ 1 0 1

1 0 ¯ 1 0
� , �25�

where ¯ denotes W�W matrices and 1̄ is the unit matrix.
To solve the BdG equation, we apply the recursive Green
function method32–34 and calculate the Matsubara Green
function in a 2W�2W matrix form

Ǧ�n
�j, j�� = �

�

���j��i�n − E��−1��
†�j�� . �26�

The Josephson current in the normal metal �1� j�LN−1� is
given by32,33

J�j� = − ietT�
�n

Tr�Ǧ�n
�j + 1, j� − Ǧ�n

�j, j + 1�� . �27�

We note that J�j� is independent of j when we consider the
direct-current Josephson effect.

In simulations, we first compute the Josephson current for
a single sample with a specific random potential configura-
tion. After calculating the Josephson current over a number
of samples with different random configurations, the en-
semble average of the Josephson current and its fluctuations
are obtained as

�J� =
1

Ns
�
i=1

Ns

Ji, �28�


J = ��J2� − �J�2, �29�

where Ji is the Josephson current in the ith sample and Ns is
a number of samples. Strictly speaking, Ns should be taken to
be infinity. In this paper, we increase Ns until a sufficient
convergence of �J� and 
J is obtained.

IV. RESULTS

A. Ballistic junctions

Before discussing the Josephson effect through diffusive
normal metals, the Josephson current through ballistic metals
should be briefly clarified. Throughout this paper, we fix the
parameters as LN=70, W=25, and �=2.0t. In Fig. 2, we
show current-phase relation �CPR� for the s-, dxy-, py-, and
px-wave symmetries, where �0=0.01t, T=0.001Tc, and 

=
L−
R. Impurity potentials are not considered in normal
metals �i.e., VI=0�, and Josephson currents are calculated for
several choices of potential barriers �VB�. In the absence of
potential barriers for VB=0, the CPR becomes J�
 �Refs. 41
and 42� for all pairing symmetries. The ballistic junctions are
rather close to the long limit because the coherence length
��0� estimated about at 50 lattice constant is slightly smaller
than LN.41,42 This CPR is a direct consequence of the mul-
tiple Andreev reflection43 in low temperatures. In general,
Josephson currents can be decomposed into a series of

J = �
n=1

	

Jnsin�n
� . �30�

The components of Jn for n�2 represent contributions of the
multiple Andreev reflection. Roughly speaking, Jn is propor-
tional to �TN�n, where TN is the transmission probability of a
quasiparticle from the left superconductor to the right super-
conductor through the normal segment �including two barri-
ers and a normal metal�.44 Thus the multiple Andreev reflec-
tion is negligible �i.e., J1�J2�J3�¯� for TN�1. On the
other hand, in the case of TN=1, the multiple Andreev reflec-
tion leads to the deviation of current-phase relations from the
sinusoidal function. It is noted at TN=1 that we obtain J
�
 and J�sin�
 /2� at zero temperature for LN��0 and
LN��0, respectively41,42,45 �see also Appendix B�. The re-
sults of the CPR are close to the sinusoidal function as the
increase of VB in the s- and py-wave junctions because TN is
suppressed by the potential barriers at j=1 and LN and con-
tributions of the multiple Andreev reflection become small in
the limit of large VB. On the other hand, in the dxy- and
px-wave symmetries, CPR’s remain unchanged from J�

even in the presence of potential barriers. The multiple An-
dreev reflection is not suppressed in these symmetries be-
cause a transmission probability of insulating barriers is kept
to unity due to the resonant tunneling through the MARS’s.

In ballistic SNS junctions, the characteristic behavior of
Josephson currents depends on the presence or absence of
the MARS as shown in Fig. 1�b�. We have confirmed that
calculated results of the CPR in the dx2−y2-symmetry show
qualitatively the same behavior as those in the s- and
py-wave symmetries.

B. Diffusive junctions

In Fig. 3, we show the CPR in disordered junctions at
VB=2t, where �0=0.01t and T=0.001Tc. At VI=2t, normal

FIG. 2. �Color online� Current-phase relations in ballistic SNS
junctions are shown for several choices of potential barriers �VB�,
where T /Tc=0.001 and �0 / t=0.01. Impurity potentials are fixed at
VI=0.
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metals are in the diffusive transport regime. The mean free
path is about ��6 lattice constants and the Thouless energy
ETh is calculated to be 1.6�10−3t. The amplitudes of Joseph-
son currents decrease with the increase of VI in the s-wave
junctions as shown in �a�. Impurity potentials decrease the
transmission probability of normal metals and therefore the
amplitude of Josephson current. The ensemble average of
Josephson currents for the dxy-wave symmetry rapidly de-
creases with the increase of VI and vanishes in the diffusive
limit. The same tendency can be seen in the py-wave sym-
metry. In the dxy- and py-wave symmetries, no Cooper pair
exists in normal metals because the proximity effect is absent
there.

In diffusive SNS junctions, it is reasonable to consider
that the proximity effect governs the characteristic behavior
of Josephson current. In the dxy- and py-wave symmetries, a
relation �J��0 is a natural consequence of the no proximity
effect in diffusive metals. Thus it may be also reasonable to
expect that the CPR in the px-wave symmetry would be close
to the sinusoidal function in the presence of impurity poten-
tials. The calculated results in �d�, however, show that the
CPR almost remains unchanged from J�
 even in the dif-
fusive limit. This implies that a quasiparticle is not scattered
by impurity potentials at all. In the next subsection, we dis-
cuss the anomalous properties of Josephson current in the
px-wave symmetry much further. Different from the s-wave
symmetry, the MARS exists in the px-wave junctions as dis-
cussed in Fig. 1�b�. The role of the MARS in the anomalous
Josephson effect is explained in Sec. V.

Before turning to the anomalous Josephson effect in the
px-wave symmetry, the fluctuations of Josephson current are
clarified. In Fig. 4�a�, we show the maximum amplitude of
�J� and 
J for the s- and px-wave symmetries are plotted,
where TB is the transmission probability of potential barrier
at interface in the normal state. Here we choose several val-
ues of the barrier potentials VB at j=1 and LN. For instance,

the resulting normal transmission probabilities of the barrier
TB are 1.0, 0.075, and 0.013 for VB / t=0, 6, and 15, respec-
tively. In the s-wave symmetry at TB=1, 
J is close to ana-
lytical results of fluctuations.46,47 The amplitudes of fluctua-
tions decrease with decreasing TB for both the s- and
px-wave junctions. For TB�1, �J� is close to 
J in the
s-wave symmetry, whereas �J� is sufficiently larger than 
J
in the px-wave symmetry. In �b�, we show 
J for the dxy- and
py-wave symmetries at 
=� /2. Since the proximity effect is
absent, we find a relation ��J� � �
J.48 This relation does not
mean the absence of Josephson current in a single sample
measured in experiments.27 After calculating the Josephson
current over a number of different samples, we find that
about 50% of them are 0 junctions and the rest of them
become � junctions. As a consequence ��J�� becomes much
smaller than 
J. Thus Josephson current flows in a single
sample although the direction of current depends on micro-
scopic configurations of impurities. In Fig. 4�b�, 
J repre-
sents the typical amplitude of Josephson current in a single
sample. When we compare 
J in the dxy-wave symmetry in
�b� and �J� in the s-wave symmetry in �a�, the amplitude of
Josephson current in a single dxy-wave junction is expected
to be much larger than that in an s-wave junction in the limit
of TB�1. This is because the MARS is forming at junction
interfaces.26 In diffusive SNS junctions, the Josephson effect
in the dxy-wave symmetry is distinguished from that in the
py-wave symmetry by the amplitude of fluctuations.

C. Anomalous Josephson effect in px-wave symmetry

At first we show that the maximum amplitudes of Joseph-
son currents in the px-wave symmetry Jc�px� become much
larger than those in the s-wave symmetry Jc�s�. In Fig. 5�a�,
the ratios Jc�px� /Jc�s� at �0=0.1t are plotted as a function of
temperature for several choices of TB. The ratios Jc�px� /Jc�s�
increase with decreasing T and amazingly become more than
100 in low temperatures for small TB. The amplitudes of
Josephson currents in the px-wave junctions are much larger
than those in the s-wave junctions. In Fig. 5�b�, JcRN normal-
ized by ��0 /e is plotted as a function of TB at T=0.001Tc,

FIG. 3. �Color online� Current-phase relations in disordered
SNS junctions are shown for several choices of impurity potentials
�VI�, where T /Tc=0.001 and �0 / t=0.01. The barrier potential is
fixed at VB=2t. At VI=2t, normal metals are in the diffusive trans-
port regime.

FIG. 4. �Color online� Ensemble average of Josephson current
�J� and their fluctuations 
J are plotted as a function of transmission
probability of potential barrier in the normal state TB. Results for
the s- and px-wave symmetries are shown in �a�. In �b�, only 
J for
the dxy- and py-wave symmetries are shown because �J� is much
smaller than 
J. Note that the scales of �a� and �b� are identical to
each other.
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where RN is the normal resistance of junctions. The results
show that JcRN in the s-wave symmetry decreases with de-
creasing TB, whereas that in the px-wave symmetry increases.
It is known that large values of Jc are desired in device
applications because JcRN limits the operation speeds of Jo-
sephson devices. Thus Fig. 5�b� implies high potentials of
p-wave junctions as coherent devices.

We next focus on the current-phase relations of the Jo-
sephson effect. In Fig. 6, Josephson currents are plotted as a
function of 
 for the px-wave symmetries at VB=0. Param-
eters are chosen as �0=0.01t and 0.0001t in �a� and �b�,
respectively. The CPR’s are almost a sinusoidal function at a
high temperature of T=0.5Tc. At T=0.001Tc, however, the
current-phase relations are close to J�
 and J�sin�
 /2� in
�a� and �b�, respectively. These are characteristic current-
phase relations in ballistic Josephson junctions in the s-wave
symmetry.41,42,45 The results imply large contributions of the
multiple Andreev reflection in low temperatures.

In Fig. 6, we also show the current-phase relations in the
s-wave symmetry at T=0.001Tc with a solid line. The
current-phase relation in the s-wave symmetry is described
almost by the sinusoidal function4,49 because impurity poten-
tials in normal metals suppress TN �transmission probability
of the normal segment in a superconducting state� and there-
fore multiple Andreev reflections. In the px-wave junctions,

the coherence length �0 is estimated to be about 50 lattice
constants in �a� and 5000 in �b�. Thus LN��0 and LN��0
are satisfied in �a� and �b�, respectively. The current-phase
relations such as J�sin�
 /2� in �b� and J�
 in �a� are uni-
versal properties of the px-wave junctions at low tempera-
tures because they are independent of the strength of the
barrier potentials and the degree of disorder in normal met-
als. The calculated results in Fig. 6 indicate TN=1 even in the
presence of impurity potentials. The large amplitudes of the
Josephson current in Fig. 5 are also explained by TN=1.

V. MARS IN NORMAL METALS

A. Quasiparticle density of states

The calculated results in Figs. 3�d�, 5, and 6 show the
specific properties of Josephson currents in the px-wave junc-
tions. In what follows, we analyze quasiparticle states in nor-
mal metals to understand the origin of the anomalous Joseph-
son effect. In Fig. 7, we show the local density of states in
normal metals for the s- and px-wave symmetries, where
�0=0.005t, �=0.05�0, and N0 denotes the normal density of
states. The local density of states is calculated from

N�E, j� = − Im Tr ǦE+i��j, j�/� , �31�

where E is measured from the Fermi energy and � is a small
imaginary part. At 
=0 in the s-wave junctions in �a�, the
local density of states for E�ETh�0.3�0 is suppressed be-
cause of the proximity effect. The suppression of the local
density of states indicates the conversion of quasiparticles to
Cooper pairs in normal metals. At 
=� in �b�, the local
density of states recovers its amplitude for E�ETh. The
wave functions of Cooper pairs from the left superconductor
and from the right one cancel each other around 
�� as
schematically illustrated in Fig. 8.

The local density of states is drastically changed in the
px-wave symmetry as shown in Fig. 8�c� and 8�d�. Zero-
energy peaks whose width is determined by � can be seen,
which means the formation of the midgap Andreev resonant
state in normal metals. Although the MARS originally local-
izes at junction interfaces,11 the MARS penetrates into nor-
mal metals in the presence of the proximity effect. Spatial
profiles of the local density of states depend remarkably on
the external phase difference as shown in Figs. 8�c� and 8�d�.
At 
=0, the zero-energy peak disappears at the center of
normal metals �j�35� because the wave functions of the
MARS from the left superconductors cancel out that from
the right one as shown schematically in a lower panel in Fig.
8�c�. On the other hand, in Fig. 8�d�, the wave functions of
the MARS in the two superconductors have the same sign
with each other. Thus the two MARS’s can penetrate deeply
into normal metals and the zero-energy peak can be seen
everywhere. We note that the penetration of the MARS is
possible only when the proximity effect is present in normal
metals. In fact, we have confirmed that no zero-energy peak
is found in normal metals in the dxy-wave symmetry as
shown in Fig. 8�a�, where the LDOS for dxy-wave and
py-wave symmetries are plotted for j=0–71 in Figs. 8�a� and
8�b�, respectively. In normal metals for j=1�70, the LDOS

FIG. 5. �Color online� The maximum amplitudes of Josephson
currents in the px-wave symmetry Jc�px� are compared with those in
the s-wave symmetry Jc�s� in �a�, where TB is the transmission
probability of potential barriers in the normal states. In �b�, Jc�px�
and Jc�s� are plotted as a function of TB at T=0.001Tc.

FIG. 6. �Color online� Current-phase relations for the px-wave
symmetry are shown for several temperatures at VB=0, where �0

=0.01t in �a� and �0=0.0001t in �b�. For comparison, results in the
s-wave junctions at T=0.001Tc are shown with a solid line in �a�
and �b�. The amplitude in the s-wave symmetry is multiplied by 5 in
�a�.
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becomes almost a flat structure around E�0 in both dxy- and
py-wave symmetries because the proximity effect is absent
there. In the dxy-wave symmetry, zero-energy peaks in LDOS
at j=0 and 71 indicate the formation of the MARS in super-
conductors and are responsible for the large fluctuations
shown in Fig. 4�b�. Figure 7 indicates that the proximity
effects bridges the two MARS’s in the two superconductors.

Thus TN=1 holds because of the resonant transmission
through the MARS in normal metals. The Josephson effect
specific to the px-wave symmetry discussed in Figs. 5 and 6
are a consequence of the diffusion of the MARS into normal
metals.50

B. Cooper pairs in diffusive normal metals

In normal metals, pair potentials are always zero because
of no pairing interaction. The proximity effect means finite
Cooper pair amplitudes in normal metals. When the Green
function in Eq. �26� is expressed by

Ǧ�n
�j, j�� = 
ā�n

�j, j�� b̄�n
�j, j��

c̄�n
�j, j�� d̄�n

�j, j��
� , �32�

pair amplitudes at j are calculated to be Tr b̄�n
�j , j�. In su-

perconductors, the pair amplitude is an even function of �n
irrespective of pairing symmetries. In the s-wave symmetry,
the pair amplitude in a diffusive normal metal is also an even
function of �n. In the px-wave symmetry, however, we con-
firmed that the pair amplitude becomes an odd function of �n

FIG. 7. �Color online� Local density of states
�LDOS� in normal metals �0� j�LN=71� is
shown for the s-wave and px-wave symmetries.
The left and right superconductors are attached at
j=0 and j=71, respectively. Note that ETh is
about 0.3�0. In schematic pictures, DNM and S
denote a diffusive normal metal and a supercon-
ductor, respectively. The local density of states
shown here is calculated in the absence of Jo-
sephson currents. We have confirmed that the re-
sults at 
=0.99� qualitatively show the same be-
havior as those at 
=�.

FIG. 8. �Color online� Local density of states at 
=0 in normal
metals are shown for the dxy-wave and py-wave symmetries in �a�
and �b�, respectively. In the dxy symmetry, zero-energy peaks at
j=0 and 71 correspond to the MARS.
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in a diffusive normal metal. Thus odd-frequency pairs carry
the anomalous Josephson current. This is a consequence of
Pauli’s principle in quantum mechanics. A general theory of
the odd-frequency pairs in proximity structures will be given
elsewhere.51

VI. CONCLUSION

We have numerically studied the Josephson current in
superconductor/diffusive-normal-metal/superconductor junc-
tions by using the recursive Green function method. In su-
perconductors, we assume s-, dxy-, py-, and px-wave pairing
symmetries. These pair potentials are classified into different
groups by the presence or absence of two interference ef-
fects: a midgap Andreev resonant state at junction interfaces
and the proximity effect in diffusive normal metals as shown
in Fig. 1�b�. In the dxy- and py-wave symmetries, the en-
semble average of the Josephson current vanishes �i.e.,
��J� � �
J� for all temperatures because the proximity effect
is absent in diffusive normal metals.

The Josephson current in the px-wave symmetry is much
larger than that in the s-wave in low temperatures. In the
px-wave symmetry, current-phase relations in low temp-
eratures are close to those in ballistic junctions such as
J�sin�
 /2� and J�
 independent of the strength of poten-
tial barriers at interfaces and the degree of disorder in normal
metals. This is a consequence of a cooperative effect be-
tween the MARS at junction interfaces and the proximity
effect in diffusive normal metals. The two midgap Andreev
resonant states penetrate deeply into normal metals and
causes the unusual Josephson effect in the px-wave supercon-
ducting junctions. The anomalous Josephson effect is a novel
feature of phase-sensitive transport in spin-triplet supercon-
ducting junctions.
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APPENDIX A: NORMAL CONDUCTANCE

In this appendix, the normal conductance in disordered
wires is summarized. We fix two parameters such as VI
=2.0t and �=2.0t. In Fig. 9, we show the conductance of the
normal segment at zero temperature as a function of LN by
using the usual recursive Green function method.34 When the
normal metals are in the quasi ballistic regime, �gN��LN� /W
is proportional to LN because �gN��Nc. Here Nc is the num-
ber of propagating channels, which is almost proportional to
W. When the normal metals are in the diffusive transport
regime, �gN��LN� /W becomes kF� /2 independent of LN,
where � is the elastic mean free path. When the normal met-
als are in the localization regime, �gN�LN /W decreases with

increasing LN like exp�−LN /�L�, where �L is the localization
length. Thus, in Fig. 9, the quasiballistic, the diffusive, and
the localization regimes correspond to LN�50, 60�LN
�110, and LN�110, respectively. In the diffusive regime,
all data in �a� should be close to a single curve irrespective of
W. The results, however, slightly depend on W because of
finite-size effects. Strictly speaking, Nc is not exactly propor-
tional to W. From the numerical results for W=25 in the
diffusive regime, we estimate the mean free path as ��6
lattice constants. When we fix LN at 70, the Thouless energy
ETh is estimated to be 1.6�10−3t.

APPENDIX B: CURRENT-PHASE RELATION AT T=0

The relation between the pairing symmetries and the
proximity effect can be understood by an analytical expres-
sion of the Josephson current.19,26,27 The Josephson current is
decomposed into a series as shown in Eq. �30�. The compo-
nents of Josephson current can be represented approximately
by a formula19

Jnsin�n
� = − 2e Im�
ky

��
ky

�T�
�n

Tr

� ��r̂eh�ky� · t̂ky,ky�
h · r̂he�ky�� · t̂ky�,ky

e �n� , �B1�

where r̂eh�ky� �r̂he�ky��� is the Andreev reflection coefficient43

from a hole to an electron at the left interface �from an elec-
tron to a hole at the right interface� and t̂e �t̂h� is the trans-
mission coefficient in a diffusive normal metal in the elec-
tron �hole� branch. The propagation process is schematically
illustrated in Fig. 1�c�. At the left �right� interface, ky �ky��
characterizes a transverse momentum �a transport channel�
on the Fermi surface. The summation �ky

� runs over wave
numbers ky on the Fermi surface with kx�0.

When we consider a 
-function potential barrier at the
interface, V�r�=V0
�r�, we obtain expressions of the An-
dreev reflection coefficients19

FIG. 9. The normal conductance versus the length of disordered
region is plotted, where VI=2.0t, �=2.0t, and VB=0.
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r̂eh�ky� = − ik̄x
2 tBK

�
��̂kei
L, �B2�

r̂he�ky� = − i
 tBK

�
��̂k�†

e−i
R, �B3�

K = ���n�2 + �k
2 − ��n� , �B4�

� = �k
2� + �1 − tB�K2, �B5�

�̂k = 	 i�k�̂2: singlet,

i�k�e · �̂��̂2: triplet,
�B6�

where tB= k̄x
2 / �z0

2+ k̄x
2� is the transmission probability of the

barrier for a wave number �k̄x , k̄y�, z0�V0 / �vF represents
the strength of the potential barrier, �̂ j with j=1–3 are the
Pauli matrices, and �k is given in Eqs. �1�–�5�. Here we
assume that �−kx,ky

=��kx,ky
with �= ±1. The pair potentials

in Eqs. �1�, �2�, and �4� belong to �=1, whereas Eqs. �3� and
�5� belong to �=−1. The spin part of Cooper pairs is taken
into account through a matrix representation of the pair po-
tential in Eq. �B6�.The transmission coefficients in normal
metals are spin diagonal �i.e., t̂e�h�= te�h��̂0� in the absence of
spin-flip scatterings, where �̂0 is the 2�2 unit matrix. The
ensemble average of tky�,ky

e tky,ky�
h can be represented by the

Cooperon propagator because the propagation paths of a hole
are the time-reversal propagation paths of an electron as
shown in Fig. 1�c�. In diffusive normal metals, the transmis-
sion coefficients after the ensemble average are calculated as

��tky�,ky

e tky,ky�
h �n� �

1

Nc
2 �gN�nLN��

��nLN�
sinh ��nLN�

, �B7�

��LN� =��n

�T

LN

�D
=�2�n

ETh
, �B8�

�gN�LN�� =
W

LN
�N0D0, �B9�

where �¯� denotes the ensemble average, Nc= �WkF /�� is
the number of propagating channels, N0 is the density of
states per unit area, and W is the width of junctions. In dif-
fusive normal metals, �D=�D0 /2�T is the coherence length
and �GN�= �2e2 /h��gN� is the ensemble average of the normal
conductance. After the ensemble average, the transmission
coefficients are independent of ky and ky�. We note that
� / sinh � represents a degree of phase coherence in normal
metals. The phase coherence in normal metals is perfect �i.e.,
� / sinh �=1� at zero temperature. The phase coherence is
suppressed in high temperatures such as �n�ETh.

After a small amount of algebra, we find

�J1� = 4eT�
�n

�gN�
�

sinh �
I1

2, �B10�

In =
1

Nc
�
ky

�	 tBK�

�
�k�n

, �B11�

where I1 corresponds to the Andreev reflection coefficient
averaged over all propagating channels. We find I1=0 for the

dxy- and py-wave symmetries because k̄x
2K /� is an even

function of ky and �k is an odd function of ky. Since �J1�
� I1

2, the ensemble average of J1 vanishes, which represents
the absence of the proximity effect. Even in unconventional
superconductor junctions, Cooper pairs penetrate into normal
metals. However, Cooper pairs in normal metals are charac-
terized not only by the amplitude but also by the sign degree
of freedom. When Eq. �7� holds, Cooper pairs with positive
sign and those with negative sign cancel each other out in
diffusive normal metals.

In the presence of the MARS, the expansion in Eq. �B1�
has less validity. The effects of the MARS on the Josephson
current, however, can be roughly understood with the follow-
ing argument. In the limit of �n→0 and tB�1, we find

tBK��k

�
→ �

tB

2

�k

��n
2 + �k

2
, � = 1,

tB�k

2��n� + tB��k�
, � = − 1.

�B12�

For �=−1, the Andreev reflection coefficient becomes unity
independent of tB in the limit of �n→0. The Josephson cur-
rent in the presence of the MARS is expected to be anoma-
lous at low temperatures because of the rapid increase of I1
with the decrease of �n�T.

In the case of s-wave symmetry, the characteristic CPR at
the zero temperature can be derived from Eq. �B1�. In bal-
listic junctions, transmission coefficients are approximately
given by

tky,ky�
h tky�,ky

e = 
ky�,ky
exp�− 2�nLN/vF� . �B13�

At T=0, tky,ky�
h tky�,ky

e corresponds to the transmission probabil-

ity in the normal segment and becomes unity �i.e., TN=1�.
Thus we obtain, at z0=0,

Jn = 4e�− 1�n+1T�
�n

�
ky

�e−2�nLNn/vF � 
��n
2 + �0

2 − ��n�
�0

�2n

.

�B14�

The summation of �n can be replaced by the integration at
T=0. We obtain

Jn = �Nc
2�− 1�n+1

n

evF

�LN
for �0 � LN,

Nc
8�− 1�n+1

�2n + 1��2n − 1��
e�0 for �0 � LN.

�B15�

The CPR are calculated as41,42,45
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J = �Nc
evF

LN




�
for �0 � LN,

Nce�0sin�
/2� for �0 � LN.

�B16�

When normal metals are in the diffusive limit,

Jn = 4e�− 1�n+1T�
�n

�gN�LN��
n

e−n�2�n/ETh

� 
��n
2 + �0

2 − ��n�
�0

�2n

�B17�

is obtained from Eqs. �B7�–�B9� at z0=0. For �0�ETh, we
find

Jn = 4e�gN�LN��
�0

�

2�− 1�n+1

�2n + 1��2n − 1�
. �B18�

The CPR

J =
4

�
e�0�gN�LN��cos�
/2�a tanh�sin�
/2�� �B19�

coincides with the previous results49 apart from a numerical
factor. In the same way, we obtain

J = eETh
4

�
�gN�LN���

n=1

	
�− 1�n+1

n3 sin�n
� �B20�

for �0�ETh. The results, however, do not coincide with
those in Ref. 4. Equation �B20� takes its maximum at

=0.58�. On the other hand, the results in Ref. 4 show the
maximum around 
=0.62� consistently with numerical
simulations.
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