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Josephson interferometer in a ring topology as a proof of the symmetry of SRuO,
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The Josephson effect is theoretically studied in two types of SQUIDs consisteg/a¥e superconductor
and SgRuQ,. Results show various response of the critical Josephson current to applied magnetic fields
depending on the type of SQUID and on the pairing symmetries. In the casp,efig, wave symmetry, the
critical current in a corner SQUID becomes an asymmetric function of magnetic fields near the critical
temperatures. Our results well explain a recent experimental fifitlielgonet al., Science306, 1151(2004)].
We also discuss effects of chiral domains on the critical current.
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I. INTRODUCTION conductor and a spin-triplep-wave superconductor. The

One of the important developments for unconventionalMismatch of the angular mome(giarity) and of spin quan-
superconductivity after the the discovery of high- tUm number on the two sides of a Josephson junction seems
superconductivity, has been the series of so-called phaseat first sight inhibit the lowest order Josephson effect so that
sensitive experiments which test for the symmetry of theonly a coupling in second order would be allowed. This
Cooper pair wave function. These are the SQUID-type ofwould indeed be fatal for phase sensitive tests based on the
interference experiments? the observation of spontaneous Josephson effect. It has, however, been shown that the pres-
half-flux quantization in frustrated loopsnd the measure- ence of spin-orbit coupling saves the situation since only the
ment of zero-bias peaks in quasiparticle tunneling spectréotal angular momentum has to be conserved. Thus under
indicating subgap quasiparticle states at the sampl#ell-defined conditions, the lowest order betweersaand a
surface’-1! This set of experiments, technically rather di- p-wave superconductor is possife3°The conditions leave
verse, is based on the same concept, the unconventiondlcertain arbitrariness concerning the sign of the Josephson
phase structure of the superconducting condensate, and ha&eupling which can be important for interference effects.
uniquely proven that the Cooper pairs have the spin-singlethis can be illustrated, if we consider the definition of the
d-y2 wave symmetry. A further unconventional supercon-lowest order matrix element which can be derived from a
ductor whose pairing symmetry has been established witRimple microscopic tunneling model:
high confidence is SRuQ,.*? This is a spin tripletp-wave
superconducté?° with a gap function of the formd(k) Wk} (k X n) - d(k)es, (1)
= 2(pyipy),*o1" a so-called chirap-wave state with whose where the average runs over the Fermi surfaceraigithe
Cooper pairs possess an angular momentum componeimterface normal vector. The arbitrariness appears in the ori-
along thez axis. Tunneling experiments have shown theentation of the normal vector, into or out of tpewave su-
presence of subgap surface stadfe'$.Moreover, the anoma- perconductor. This has been recently demonstrated by Asano
lous temperature dependence of the critical current irand co-worker® for a model where the spin-orbit coupling
Pb/SpRuQ,/Pb Josephson junction arrangeni@ias been of the interface potential was taken into account for this ma-
interpreted in terms of an interference effécg3 A direct  trix element whose sign then depends on the shape of the
experiment of the type of a SQUID-interference or frustratednterface potential. Thus details of the spin-orbit coupling
loop is difficult here for many technical reasons and has noand the interface potential, e.g., the way the parity is broken
been performed until very recent. at the interface, matter for the Josephson phase relation. The

In this paper we would like to analyze some issues whickarrangement suggested by Geshkentstial. relies on the
have to be taken into account in the interpretation of theassumption that all interfaces treat parity the same3rsye
SQUID-type experiments for §RuQ,. The basic principle will follow this assumption here too.
had been designed long ago by Geshkenbein and We discuss now two basic forms of SQUID-interference
co-workers?®> One of the problems lies in the Josephsondevices built from ars- and ap-wave superconductor. The
junctions between a conventional spin-singlatave super- first type in Fig. 1a) is the symmetric SQUID as proposed
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vector parallel to thez axis!’ Moreover, p,=p,/pr
Left =cosd(p,=p,/pe=sin 6) is the normalized momentum com-
ponent on the Fermi surface in th€y) direction with pg
being the Fermi momentum of thewave superconductor.
Assuming a cylindrical symmetric Fermi surface, we can
represent this gap function also simply to the angjlen the
Fermi surface, reflecting best its internal phase structure. The

Bottom

(a) Symmetric SQUID (b) Corner SQUID gap function of thes-wave superconductor is given hy;
y =iAd,. Without any loss of generality, we may take the gap
SRO magnitudes identical in both superconductdrsOn the ba-
s @n@ ptip sis of the current-phase relatiéfr?° the Josephson current
for the lowest two orders derived from a microscopic calcu-
(c) single junction lation close toT2° can be written as
Ip,ip, = J1C0L @ + 6) = SN2 + 6r)), (5)
(OPX
A A
) J=T (—)—, 6
1~ Qs 2T ) A, (6)
(d) P, :Symmetric (e) P, :Symmetric () Py :Corner AN3A
=T5 —=| —, (7)
2T) Ag

FIG. 1. Schematic pictures of two types of Josephson junction
are shown in(@) and (b). The singly connected Josephson junction where 6, is the angle of the junction normal vector in the
is given in(c). In (d)—(), the SQUID ofp, andp, symmetries are  pjane relative to the axis, T denotes the transmission prob-
shown. The Josephson effect in the corner SQUIpoSymmetry  apjlity of a Cooper pair ands is a measure for the strength
is identical to that of thep, symmetry. of the spin orbit coupling. Note that it can have either sign

, o depending on the junction. The Josephson curdaéstmea-
by Geshkenbein and co-workétand the second in Fig()  gyred in units okAN./%, whereA, is the amplitude of the
is the corner-SQUID anglogous to the one us_ed for Aigh- gap function atT=0 andN, is the number of propagating
superconductors. Thp,+ip, phase of SRUQ, introduces  channels on the Fermi surface. Constant coefficients of the
an additional problem. This phase is twofold degenerate, i.eqqer of unity have been omitted in EG). From Eq.(1) it
Px+ipy andp,—ipy are equivalent and would in general form is clear that the coupling betwesavave andp,+ip,-wave
O s - lioube s o oo iy SupecoRctor for 8 rcton Rdiecion (=0 ges v
on the interference experiment. Similar problems appear fo:g)hheaspé g?m[;g_w;\}é \c/)\/rzearss;g;ange??g gsiif\f[\éhdegrgef;verall
other chiral superconducting phase as we will discuss below,o p, component. Thus, in lowest order the current-phase

This paper is organized as follows. In Sec. Il, the Josephyg|ation is proportional to casrather than sig, in Eq. (5).
son effect in two types of SQUID is discussed [-ipy, py In the first step, we consider the interference pattern of the

and Py pgiring symmetries. Effects .of the chirallc_iomain are o basic SQUID's in Figs. () and Xb). We assume that all
?rfliﬂlaegr:ir;aslg;nlclil.t k'}g fr?i(r:é;\(/,v;\(/eeilsrcnuriz ttrri‘eescfl'_tr'lcea:ji‘;‘g&g?tjunctions are of the same in the sense, that the normal vector
y : n in Eqg. (1) is pointing a definite direction, say towards the

sion and the conclusion are given in Secs. V and XI, respecg yaye superconductor. In the symmetric SQUID, the Jo-
tively. sephson current of the left and right junction are given by

Il. JOSEPHSON CURRENT J.(¢) = J1c08p — J,sin 20, (8)

Before discussing the SQUID-experiment, the basics of .
the Josephson current-phase relation betweeave super- Jr(¢) == J;c08p — Jpsin 2. (9
conductor and SRuQ, (SRO in Fig. 1(c) has to be ad- The relative sign change between the first-order terms on
dressed. We describe the gap function ofRIO, by'®3* both sides is due to the the correspondifgvhich differ by
7. The Josephson current in the symmetric SQUID is then

A= i(nPet 1yPy)2 - 6, (2)  expressed B
=iA(py£ipy)2 - &, 3) Is(@, @) =J (¢ + ¢p) + Ir(¢ ~ ), (10
SiA€?%Z- 60, (4) =—2J;sing sin ¢

whereg; with j=1, 2 and 3 are the Pauli matrices, and 7, ™ 235N 2 COS 2, (19
are the two complex order parameters ansltaken as a unit where ¢pg=7®/ P, and ®y=277c/e. In the corner SQUID,
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(a)Symmeh’icé 3,/3,=10 (b) Comer 1/1,=10 () Symmetric é—pxﬁpy(p,)
- : : L3, /3,=0.1 i---p
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FIG. 2. The Josephson critical current is plotted as a function of FIG. 3. The Josephson critical current is plotted as a function of
@ in the symmetric SQUID ina) with J;/J,=10. The calculated & for J;/J,=0.1.
results for the corner SQUID are shown(in).

. o 3, () = = Jpsin 20, (16)
the Josephson current in the bottom junctions is given by

Ja(¢) = = Jssing + Jpsin 2, (12 3, (¢) = Jising — J;sin 2. 17

where the current-phase relation is derived from Ggwith , ,
9,=m/2. The Josephson current in the corner SQUID is ex0r thep, componentn parallel tox), there is no contribu-

pressed in the same way, tion due_to spin-orbit coupling, in contrast to tp§compo-
_ nent which has such a term proportional togsimn the p,
Je(e, @) = J1co8 ¢ + ¢pg) = JiSin(¢ — p) symmetry. . N
— 2J,C0S 2p Sin 2¢g. (13) In the symmetric SQUID of the, type, the critical cur-

rent has the period oby/2 as shown in Fig. @) because
Note that for the corner SQUID it matters which state isthere is only the second-order contribution in the Josephson
realized. For Eq.(12) we assumed that the stapg+ip,,  coupling. On the other hand, tipg type behaves identical to
while for p,—ip, would yield a sign change of the first term. the p,+ip, type. For the corner SQUID configuration tpg

In Fig. 2, the critical Josephson current in the symmetricsymmetry(and equivalently for th@, symmetry has again a
SQUID and that in the corner SQUID are shown as a func®,/2-periodic interference pattern of the critical current.

tion of ®. A parameted,/J,=10 is realized in high tempera- If we assume thal; < J, due to weak spin-orbit coupling,
tures neaiT,. SinceJ;>J,, we find the features of the interference pattern are significantly modi-
fied. In Fig. 3, the critical Josephson current is plotted as a
maxJg(®)| = 2J; sin<w2) (14)  function of & for J;=0.1J,. For J;<J,, we actually find
dy/ |’
P
® maxJg(P)| = 2J,|co 2773 , (18)
maxJc(®)| = 23, sin( T— % —) ‘ (15) 0
b, 4
The odd parity symmetry immediately results in a minimum _ . ( 2)
of the critical current atb=0 in the symmetric SQUIBS MaXJe(®)] = 23,  sin 277(130 ’ (19

which is connected with the opposite sign of Josephson cou-
pling on the two junctions according to E®). Note that this  for the p,+ip, symmetry. The period o, is given by®d,/2
pattern is not dependent on which of the two degeneratbecause the Josephson current proportional to gins?
p-wave state is realized. Actually for the symmetric SQUID dominant. The critical current in the symmetric SQUID takes
any p-wave pairing state gives the same qualitative behavioits maxima atb =0 because sin@remains unchanged under
and does not depend on the detailed symmetry, such as brtite 7= phase shift. On the other hand in the corner SQUID,
ken time reversal symmetry, as long as the first-order Joseplthe critical current takes its minima dt=0. This is due to
son coupling induced by spin-orbit effects is dominant. Thisthe sign change of sin2under thew/2 phase shift in the
is different for the corner SQUID which leads to a distinction p,+ip, symmetry. The critical current in thg  and p, sym-
between differenp-wave states. metries can be described by E@8) irrespective of types of
The change to the corner SQUID configuration yields aSQUID as shown in the Fig. 3. Thus the minimadat 0 in
phase shift by 4r/2 for p,+ip,. As a consequence, the gos the corner SQUID directly suggests the+ip, symmetry in
current-phase relation can be exchanged by &m the bot- SRO when the period of the oscillationsdg/2.
tom junction. For comparison, the results for thg and In Fig. 4, the critical current for the,+ip, symmetry is
py-wave states are depicted in Fig. 2 with the correspondinghown for several choices df/J,. In the vertical axis, suc-
device illustrations in Figs.(#)—1(f). The Josephson current- cessive plots have been offset. The critical current is always
phase relation in the single junctions can for fixed gauge beymmetric with respect td in the symmetric SQUID. The
given by?033 current maxima at®, for J;/J,=0.1 is changed to the
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@ symmc; p,+ip, (b) Corner p.+ip to_ thg analysis of the above_SQUID_ cor_lfigurations whi.ch we
5nin=01 i 5/5,=01 ’ will discuss here for a few simple situations as shown in Fig.
~ ) 5, under the assumptiah > J,.
Iy 23 +, s\ The presence ofiorizontal domain walls in Fig. 5, i.e.,
= '\/\/"\/\/‘ Z /\/‘1\/\/*\ nlly, implies that the two chiral domains have eithgy
i~ 2 ?é +ipy or —p,+ip, form. According to our previous discussion,
g ,-/10\/—/\ g /\2/—/\/—— no qualitative change of the interference pattern is expected.
/\/\/ Thus the critical current in Fig.(d) remains unchanged even
L L L L L in the presence of the horizontal domain walls in the sym-

1.0 05 0.0 0.5 1.0 -1.0 -05 0.0 0.5 1.0 . . .
/0, ®/0, metric SQUID. On the other hand, the vertical domain walls

give rise to domains withp,+ip, and p,—ip, form. In this
FIG. 4. The Josephson critical current is plotted as a function o£ase the number for domain walls between the two junctions
@ for py+ipy. matters since each domain wall switches the phasg,of
entering the first-order term of the Josephson couplingzby
Thus the interference pattern would look different for an odd

minima as increase @ /J,. In the corner SQUID, the asym- )
or even number of domain walls:

metry in the critical current gradually disappears with de-
creasing ofl;/J,.

23y[sin(7g-)|  Npyw even,
maxJs(P)| = o (20
lll. CHIRAL DOMAINS 23y|coq75-)| Npw odd,

We have assumed so far that SRO is a single domain of

the p,+ip, symmetry. Real materials, however, may havewhereNDW is the number of the vertical domain walls. If the
muItiéomg\in structures of the,+ip aﬁd thep —i’p sym- number of walls is an even integer, the critical current takes
X y X y

metries. Here we discuss effects of chiral domains on thdS Minimum at®=0 as shown in Fig. @. However, the

Josephson current. We consider a simple model of such chfitical current has its maximum &t=0 when the number of
ral domains as shown in Fig. 5, wheteand | indicate do- domaln Walls_|s an odd integer. Thus _the existence of the
mains of the different chiral states. The size of domaind/ertical domain walls can change drastically the characteris-
should be much larger than the thickness of domain walldiC feature of the critical current in the symmetric SQUID.
which is typically given by the coherence length of super- In'the corner SQQID, }he current_—phase relation in the two
conductors. The structure of domain walls has been investiUnctions as shown in Fig.() are given by

gated based on Ginzburg-Landau theoffeSor a domain

wall with normal vectom, the p-wave component parallel to J.(¢) = J;cosp — J,sin 20, (21

n, p;, keeps its phase, while the component perpendicular,

p,, changes the phase by This has important implication

Ja(@) = £ J4Sing + J,sin 20, (22
Left Right where the sign of the first-order term of the bottom junction
Ay ¥ is determined by the chirality of the last domain at the bot-
tom. The number of domain walls is irrelevant here. Still the
Aopiin Aiptip asymmetry of the interf(_arence pattern indicate_s the broken
v ip:;p ' ’p”_ipy time reversal symmetry in any case as shown in Fig).6
. x 'y x Yy
horizontal domain walls vertical domain walls
(a) Symmetric SQUID IV. OTHER CHIRAL SUPERCONDUCTING PHASES
Left gl The chirality of superconductivity reflects the internal an-
v A:p+ ip, gular momenta of a Cooper pair. Also other superconducting
) V: —ptin phases besides th_e china_ﬂwave phase can be found with
3 S this property. In this section, we compare the Josephson ef-
Bottom fect of the p,+ip,-wave phase with those of other chiral
phase ofd- and f-wave origin.
(b) Corner SQUID A chiral phase in the case of spin-singtetvave symme-

try can be composed of thk._2 and thed,, state, when they

FIG. 5. A simple model of chiral domains is illustrated in the &€ degenerate, yieldingdge-y2+id,,. This gap function was
symmetric SQUID(a) and the corner SQUIDb). Across the do-  discussed as the surface states of Higltuparate® where
main wall with a normal vecton, the p-wave component parallel to the degeneracy is not given, but one of the components is
n keeps its phase, while the component perpendiculardbanges ~ subdominant. The other example is,8a0,-yH,0.2 Thus
the phase byr. we consider the gap function
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(a) Symmetric: Vertical Domain Walls .
-

[ N, even  [chiral

DWW’

N
T

FIG. 6. The critical current in the presence of
domain walls forJ;/J,=10. In the symmetric
SQUID, the results for the chirg@ wave symme-
try in the presence of the vertical domain walls
are shown in(@). In (b), the critical current for the
chiral p wave symmetry in the corner SQUID is
shown. The solidbroken line denote the results
when the chirality of the last domain at the bot-

max J /(J,+ Jz)
max J /(J,+ J2)

N 1 N 1 N 1 N N 1 N 1 N 1 N . . . .
%0 05 00 05 10 40 05 00 05 10 tom is p+ipy(=py+ipy) in (b).
fI)/(I)o /0,
A(d):{ﬂx(ﬁf—ﬁs)’“ 7,2Px0y)i 52 (23) given by Eq.(5). In both the symmetric and the corner

SQUID, the characteristic behavior of the critical current for
e a o n the chiralp wave symmetry discussed in Secs. Il and Il are
_ _= _ Apti20

=A(P;~ Py +i2Ppy)id, = A" iG,. (24) 4156 valid for the chiralf wave symmetry. In the limit of
Here the coupling to the-wave superconductor is simpler, J1/J2>1, the critical current in the symmetric SQUID take
since it is not relying on spin-orbit coupling. Thus the currentthe minima atb=0 and that in the corner SQUID shows the

phase relation is dominated by the first-order coupling, ~ Phase shift bym/4 in the absence of the domain walls. In
_ addition, there are no differences in effects of domain walls
() = Igsin(¢ + 26,), (25 on the critical current between the chiralwave and the
chiral f one. To distinguish the chirg wave symmetry from
_ AN A the chiralf wave, we should design SQUID’s with=/3
Ja=Tg oT A_o ' (26) or 277/3.3° The critical current fof waves becomes symmet-

ric function of ® and takes its minimuntmaximun) at ®
Concerning the domain wall structure of this state, the=0 in the SQUID witha=/3(a=21/3),%° as shown in Fig.

two order parameter components behave in the same way @s On the other hand, the critical current faf J,>1 in the
in the p-wave case. Thus only the component perpendiculaghiral p wave results in
to the domain wall normal vector changes sign. Thus, for
nlix the componenty(d,,) changes sign whilelz_,» keeps c05< N 7_T> ‘

. X . T , (28)
the phase. Thus, irrespective of the domain wall number for P, 6
the vertical domain wall case, the maximum of the critical
current in the symmetric SQUID would be &=0. Thus, d 7
domain walls could not lead to an interference pattern like in MaXJgz2ms(P)| = 23, COS( oo 5) ‘ : (29
the p-wave case. In the case of horizontal domain walls, the 0
situation is more complicated. There is a staggered phase fdihe calculated results are shown in Fig. 7. The asymmetry in
the d,_,» component. This would give rise to compensatingthe critical current persists in the chirgl wave in such
contributions of the two domains to the Josephson effectSQUID’s. This argument, however, is valid when the differ-
similar to the situation discussed in the contextosfixis
junction between as-wave and a twinned high-temperature
superconductot’38n addition, this configuration could give
rise to spontaneous half-quanta flux lines wherever a domair
wall hits the junction perpendicularly. Under these circum-
stances, the interpretation of interference pattern would re-
quire much more care. Note that such spontaneous fluxes d
not occur in thep-wave case as long as the domain wall ends

maAJaZ*rr/S(q)” = 2‘-]1

a=2n/3 \

w

perpendicularly on the junction. In both cases, the flux mag- __ ; e

nitude depends on the angle between junction interface an :” :“'2 | chiral £ chiral p

domain wall. A similar problem with the domain walls oc- < = [

curs for the corner junction as a simple examination reveals 7 of

The spin-triplet chiraf-wave symmetry is also a possible g g

candidate for the superconducting phase ipQ¢D,-yH,0. . . : ; ol : ; .

The proposed gap function is given by e (DO/"(’DO & W 0 @0/-‘(’1,0 = W
A = - 3p))p, (P2 - 3PPz - 06
A =iA{(pZ 3py) Py £ '(52;/ 3p,)pyiZ- 00, FIG. 7. The critical current for the chirg wave is compared

= Ae*i365. Gy (27) with that for the chiralf wave in(a) and(b), whereJ;/J,=10. The

relative junction angle is set at=7/3 in () anda=27/3 in (b) as
The current phase relation for the chifalvave symmetry is  shown in the upper figures.
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ence in the transmission probabilities of the two tunnel juncsymmetries. The latter two gap function have the fourfold

tions in Fig. 7 are much smaller than themselves. symmetry in the momentum space consistently with a ther-

mal conductivity experimerf® In particular, siiip,+ py)

+i sin(p,—py) is close to the chiral wave symmetry because

sin(pc+py) and sirip,—p,) change their sign six times on the
We have shown that the asymmetry of the critical currentFermi surface. To distinguish one symmetry from another,

with respect tab in the corner SQUID is the evidence of the much more detail analysis would be required. At present, we

py+ipy, symmetry when the period of oscillations d&,. A propose the angle resolved tunneling spectra for this

recent experiment shows a large asymmetry of the criticagnalysist®

current in the corner SQUIB! The experiment also shows a

minima of the critical current aroun®=0 in the symmetric VI. CONCLUSION

SQUID. The position of minima, however, slightly deviates . . .
Q b gty We have studied the critical Josephson current in two

f ®=0. We h thdt in the left junction i e
rom 0. We have assumed tha in the left junction is ftypes of SQUID consisting o§ wave superconductor and

equal to that in the right junction. When those are differen ) "
from each other, the Josephson critical current become§r2Ruo4' In thep, +ip, symmetry, the critical Josephson cur-

asymmetric of® even in the symmetric SQUID. Thus the rent in the corner SQUID becomes the asymmetric function

small asymmetry found in the experiment might be cause&’f © because the current-phase rele_ltiqn in the wo junptions
by the asymmetry of the two tunnel junctions. The degree o elate to each other by/2 phase shift in the gap function.

asymmetry is negligible when the differenceJafin the two N als?trs]hom_th?tjthe e_tsynsmgttry re_mgzs(,)e\gen in th?t pres-
junctions is much smaller than themselves. ence of the chiral domain Structures iry 4. OUP TEsUlts

I addiion to p+ip, the sifp)+i sin(p,)%4! and well explain the recent experimental findirgjs.

sin(pg+py) +i sin(p,—py) symmetrie®’ have been proposed
so far. The perturbation expansféri*also indicates a possi-
bility of the chiral p wave symmetry with more complicated  The authors thank Y. Maeno, Y. Liu, and V. B. Geshken-
structure than sip,) +i sin(p,) and sirip,+p,)+isin(p,  bein for useful discussion. This work has been partially sup-
—py). The characteristic behavior of the Josephson current iported by Grant-in-Aid for the 21st Century COE program
the two types of SQUID discussed in Secs. Il and Il areon “Topological Science and Technology” from the Ministry
valid not only for the isotropi@, +ip, symmetry but also for of Education, Culture, Sport, Science and Technology of Ja-
anisotropic sifp,) +i sin(py) and sirfp,+p,)+i sin(p,—py) pan.

V. DISCUSSION
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