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The Josephson effect is theoretically studied in two types of SQUIDs consisting ofs wave superconductor
and Sr2RuO4. Results show various response of the critical Josephson current to applied magnetic fields
depending on the type of SQUID and on the pairing symmetries. In the case of apx+ ipy wave symmetry, the
critical current in a corner SQUID becomes an asymmetric function of magnetic fields near the critical
temperatures. Our results well explain a recent experimental findingfNelsonet al., Science306, 1151s2004dg.
We also discuss effects of chiral domains on the critical current.
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I. INTRODUCTION

One of the important developments for unconventional
superconductivity after the the discovery of high-Tc
superconductivity,1 has been the series of so-called phase
sensitive experiments which test for the symmetry of the
Cooper pair wave function. These are the SQUID-type of
interference experiments,2–5 the observation of spontaneous
half-flux quantization in frustrated loops6 and the measure-
ment of zero-bias peaks in quasiparticle tunneling spectra
indicating subgap quasiparticle states at the sample
surface.7–11 This set of experiments, technically rather di-
verse, is based on the same concept, the unconventional
phase structure of the superconducting condensate, and have
uniquely proven that the Cooper pairs have the spin-singlet
dx2−y2 wave symmetry. A further unconventional supercon-
ductor whose pairing symmetry has been established with
high confidence is Sr2RuO4.

12 This is a spin tripletp-wave
superconductor13–15 with a gap function of the formdskd
~ ẑspx± ipyd,16,17 a so-called chiralp-wave state with whose
Cooper pairs possess an angular momentum component
along thez axis. Tunneling experiments have shown the
presence of subgap surface states.18,19 Moreover, the anoma-
lous temperature dependence of the critical current in
Pb/Sr2RuO4/Pb Josephson junction arrangement20 has been
interpreted in terms of an interference effect.21–23 A direct
experiment of the type of a SQUID-interference or frustrated
loop is difficult here for many technical reasons and has not
been performed until very recently.24

In this paper we would like to analyze some issues which
have to be taken into account in the interpretation of the
SQUID-type experiments for Sr2RuO4. The basic principle
had been designed long ago by Geshkenbein and
co-workers.25 One of the problems lies in the Josephson
junctions between a conventional spin-singlets-wave super-

conductor and a spin-tripletp-wave superconductor. The
mismatch of the angular momentsparityd and of spin quan-
tum number on the two sides of a Josephson junction seems
at first sight inhibit the lowest order Josephson effect so that
only a coupling in second order would be allowed. This
would indeed be fatal for phase sensitive tests based on the
Josephson effect. It has, however, been shown that the pres-
ence of spin-orbit coupling saves the situation since only the
total angular momentum has to be conserved. Thus under
well-defined conditions, the lowest order between ans- and a
p-wave superconductor is possible.26–30The conditions leave
a certain arbitrariness concerning the sign of the Josephson
coupling which can be important for interference effects.
This can be illustrated, if we consider the definition of the
lowest order matrix element which can be derived from a
simple microscopic tunneling model:

kcsskdsk 3 nd ·dskdlFS, s1d

where the average runs over the Fermi surface andn is the
interface normal vector. The arbitrariness appears in the ori-
entation of the normal vector, into or out of thep-wave su-
perconductor. This has been recently demonstrated by Asano
and co-workers30 for a model where the spin-orbit coupling
of the interface potential was taken into account for this ma-
trix element whose sign then depends on the shape of the
interface potential. Thus details of the spin-orbit coupling
and the interface potential, e.g., the way the parity is broken
at the interface, matter for the Josephson phase relation. The
arrangement suggested by Geshkenbeinet al. relies on the
assumption that all interfaces treat parity the same way.25 We
will follow this assumption here too.

We discuss now two basic forms of SQUID-interference
devices built from ans- and ap-wave superconductor. The
first type in Fig. 1sad is the symmetric SQUID as proposed
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by Geshkenbein and co-workers25 and the second in Fig. 1sbd
is the corner-SQUID analogous to the one used for high-Tc
superconductors. Thepx+ ipy phase of Sr2RuO4 introduces
an additional problem. This phase is twofold degenerate, i.e.,
px+ ipy andpx− ipy are equivalent and would in general form
domains in a sample, depending on the cooling history. We
will discuss in the following also the implications domains
on the interference experiment. Similar problems appear for
other chiral superconducting phase as we will discuss below.

This paper is organized as follows. In Sec. II, the Joseph-
son effect in two types of SQUID is discussed forpx+ ipy, px
and py pairing symmetries. Effects of the chiral domain are
studied in Sec. III. In Sec. IV, we discuss the critical current
in the chirald and the chiralf wave symmetries. The discus-
sion and the conclusion are given in Secs. V and XI, respec-
tively.

II. JOSEPHSON CURRENT

Before discussing the SQUID-experiment, the basics of
the Josephson current-phase relation betweens wave super-
conductor and Sr2RuO4 sSROd in Fig. 1scd has to be ad-
dressed. We describe the gap function of Sr2RuO4 by16,31

D̂p = ishxp̄x + hyp̄ydẑ · ŝŝ2, s2d

=iDsp̄x ± ip̄ydẑ · ŝŝ2 s3d

=iDeiuẑ · ŝŝ2, s4d

whereŝ j with j =1, 2 and 3 are the Pauli matrices,hx andhy
are the two complex order parameters andẑ is taken as a unit

vector parallel to the z axis.17 Moreover, p̄x=px/pF
=cosusp̄y=py/pF=sinud is the normalized momentum com-
ponent on the Fermi surface in thexsyd direction with pF

being the Fermi momentum of thep-wave superconductor.
Assuming a cylindrical symmetric Fermi surface, we can
represent this gap function also simply to the angleu on the
Fermi surface, reflecting best its internal phase structure. The

gap function of thes-wave superconductor is given byD̂k
= iDŝ2. Without any loss of generality, we may take the gap
magnitudes identical in both superconductors,D. On the ba-
sis of the current-phase relation,27–29 the Josephson current
for the lowest two orders derived from a microscopic calcu-
lation close toTc

30 can be written as

J̄px±ipy
= J1cossw + und − J2sin„2sw + und…, s5d

J1 = TBaSS D

2T
D D

D0
, s6d

J2 = TB
2S D

2T
D3 D

D0
, s7d

where un is the angle of the junction normal vector in the
plane relative to thex axis,TB denotes the transmission prob-
ability of a Cooper pair andaS is a measure for the strength
of the spin orbit coupling. Note that it can have either sign

depending on the junction. The Josephson currentJ̄ is mea-
sured in units ofeD0Nc/", whereD0 is the amplitude of the
gap function atT=0 andNc is the number of propagating
channels on the Fermi surface. Constant coefficients of the
order of unity have been omitted in Eq.s5d. From Eq.s1d it
is clear that the coupling betweens-wave andpx+ ipy-wave
superconductor for a junction inx directionsun=0d goes via
the py component. We assume a gauge where the overall
phase of thep-wave order parameter is shifted by ±p /2 for
the py component. Thus, in lowest order the current-phase
relation is proportional to cosw rather than sinw, in Eq. s5d.

In the first step, we consider the interference pattern of the
two basic SQUID’s in Figs. 1sad and 1sbd. We assume that all
junctions are of the same in the sense, that the normal vector
n in Eq. s1d is pointing a definite direction, say towards the
s-wave superconductor. In the symmetric SQUID, the Jo-
sephson current of the left and right junction are given by

JLswd = J1cosw − J2sin 2w, s8d

JRswd = − J1cosw − J2sin 2w. s9d

The relative sign change between the first-order terms on
both sides is due to the the correspondingun which differ by
p. The Josephson current in the symmetric SQUID is then
expressed by32

JSsw,Fd = JLsw + fBd + JRsw − fBd, s10d

=− 2J1sinw sinfB

− 2J2sin 2w cos 2fB, s11d

wherefB=pF /F0 andF0=2p"c/e. In the corner SQUID,

FIG. 1. Schematic pictures of two types of Josephson junction
are shown insad and sbd. The singly connected Josephson junction
is given in scd. In sdd–sfd, the SQUID ofpx andpy symmetries are
shown. The Josephson effect in the corner SQUID ofpy symmetry
is identical to that of thepx symmetry.
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the Josephson current in the bottom junctions is given by

JBswd = − J1sinw + J2sin 2w, s12d

where the current-phase relation is derived from Eq.s5d with
un=p /2. The Josephson current in the corner SQUID is ex-
pressed in the same way,

JCsw,Fd = J1cossw + fBd − J1sinsw − fBd

− 2J2cos 2w sin 2fB. s13d

Note that for the corner SQUID it matters which state is
realized. For Eq.s12d we assumed that the statepx+ ipy,
while for px− ipy would yield a sign change of the first term.

In Fig. 2, the critical Josephson current in the symmetric
SQUID and that in the corner SQUID are shown as a func-
tion of F. A parameterJ1/J2=10 is realized in high tempera-
tures nearTc. SinceJ1@J2, we find

maxuJSsFdu . 2J1UsinSp
F

F0
DU , s14d

maxuJCsFdu . 2J1UsinSp
F

F0
±

p

4
DU . s15d

The odd parity symmetry immediately results in a minimum
of the critical current atF=0 in the symmetric SQUID,25

which is connected with the opposite sign of Josephson cou-
pling on the two junctions according to Eq.s9d. Note that this
pattern is not dependent on which of the two degenerate
p-wave state is realized. Actually for the symmetric SQUID
any p-wave pairing state gives the same qualitative behavior
and does not depend on the detailed symmetry, such as bro-
ken time reversal symmetry, as long as the first-order Joseph-
son coupling induced by spin-orbit effects is dominant. This
is different for the corner SQUID which leads to a distinction
between differentp-wave states.

The change to the corner SQUID configuration yields a
phase shift by ±p /2 for px± ipy. As a consequence, the cosw
current-phase relation can be exchanged by sinw for the bot-
tom junction. For comparison, the results for thepx- and
py-wave states are depicted in Fig. 2 with the corresponding
device illustrations in Figs. 1sdd–1sfd. The Josephson current-
phase relation in the single junctions can for fixed gauge be
given by30,33

Jpx
swd = − J2sin 2w, s16d

Jpy
swd = J1sinw − J2sin 2w. s17d

For thepx componentsn parallel toxd, there is no contribu-
tion due to spin-orbit coupling, in contrast to thepy compo-
nent which has such a term proportional to sinw. in the py
symmetry.

In the symmetric SQUID of thepx type, the critical cur-
rent has the period ofF0/2 as shown in Fig. 2sad because
there is only the second-order contribution in the Josephson
coupling. On the other hand, thepy type behaves identical to
the px+ ipy type. For the corner SQUID configuration thepx
symmetrysand equivalently for thepy symmetryd has again a
F0/2-periodic interference pattern of the critical current.

If we assume thatJ1!J2 due to weak spin-orbit coupling,
the features of the interference pattern are significantly modi-
fied. In Fig. 3, the critical Josephson current is plotted as a
function of F for J1=0.1J2. For J1!J2, we actually find

maxuJSsFdu . 2J2UcosS2p
F

F0
DU , s18d

maxuJCsFdu . 2J2UsinS2p
F

F0
DU , s19d

for the px+ ipy symmetry. The period ofJc is given byF0/2
because the Josephson current proportional to sin 2w is
dominant. The critical current in the symmetric SQUID takes
its maxima atF=0 because sin 2w remains unchanged under
the p phase shift. On the other hand in the corner SQUID,
the critical current takes its minima atF=0. This is due to
the sign change of sin 2w under thep /2 phase shift in the
px+ ipy symmetry. The critical current in thepx andpy sym-
metries can be described by Eq.s18d irrespective of types of
SQUID as shown in the Fig. 3. Thus the minima atF=0 in
the corner SQUID directly suggests thepx+ ipy symmetry in
SRO when the period of the oscillations isF0/2.

In Fig. 4, the critical current for thepx+ ipy symmetry is
shown for several choices ofJ1/J2. In the vertical axis, suc-
cessive plots have been offset. The critical current is always
symmetric with respect toF in the symmetric SQUID. The
current maxima atF0 for J1/J2=0.1 is changed to the

FIG. 2. The Josephson critical current is plotted as a function of
F in the symmetric SQUID insad with J1/J2=10. The calculated
results for the corner SQUID are shown insbd.

FIG. 3. The Josephson critical current is plotted as a function of
F for J1/J2=0.1.
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minima as increase ofJ1/J2. In the corner SQUID, the asym-
metry in the critical current gradually disappears with de-
creasing ofJ1/J2.

III. CHIRAL DOMAINS

We have assumed so far that SRO is a single domain of
the px+ ipy symmetry. Real materials, however, may have
multidomain structures of thepx+ ipy and thepx− ipy sym-
metries. Here we discuss effects of chiral domains on the
Josephson current. We consider a simple model of such chi-
ral domains as shown in Fig. 5, where↑ and↓ indicate do-
mains of the different chiral states. The size of domains
should be much larger than the thickness of domain walls
which is typically given by the coherence length of super-
conductors. The structure of domain walls has been investi-
gated based on Ginzburg-Landau theories.34 For a domain
wall with normal vectorn, thep-wave component parallel to
n, pi, keeps its phase, while the component perpendicular,
p', changes the phase byp. This has important implication

to the analysis of the above SQUID configurations which we
will discuss here for a few simple situations as shown in Fig.
5, under the assumptionJ1@J2.

The presence ofhorizontal domain walls in Fig. 5, i.e.,
n iy, implies that the two chiral domains have eitherpx
+ ipy or −px+ ipy form. According to our previous discussion,
no qualitative change of the interference pattern is expected.
Thus the critical current in Fig. 2sad remains unchanged even
in the presence of the horizontal domain walls in the sym-
metric SQUID. On the other hand, the vertical domain walls
give rise to domains withpx+ ipy and px− ipy form. In this
case the number for domain walls between the two junctions
matters since each domain wall switches the phase ofpy,
entering the first-order term of the Josephson coupling, byp.
Thus the interference pattern would look different for an odd
or even number of domain walls:

maxuJSsFdu . H2J1usinsp
F
F0

du NDW even,

2J1ucossp
F
F0

du NDW odd,
J s20d

whereNDW is the number of the vertical domain walls. If the
number of walls is an even integer, the critical current takes
its minimum atF=0 as shown in Fig. 6sad. However, the
critical current has its maximum atF=0 when the number of
domain walls is an odd integer. Thus the existence of the
vertical domain walls can change drastically the characteris-
tic feature of the critical current in the symmetric SQUID.

In the corner SQUID, the current-phase relation in the two
junctions as shown in Fig. 5sbd are given by

JLswd = J1cosw − J2sin 2w, s21d

JBswd = ± J1sinw + J2sin 2w, s22d

where the sign of the first-order term of the bottom junction
is determined by the chirality of the last domain at the bot-
tom. The number of domain walls is irrelevant here. Still the
asymmetry of the interference pattern indicates the broken
time reversal symmetry in any case as shown in Fig. 6sbd.

IV. OTHER CHIRAL SUPERCONDUCTING PHASES

The chirality of superconductivity reflects the internal an-
gular momenta of a Cooper pair. Also other superconducting
phases besides the chiralp-wave phase can be found with
this property. In this section, we compare the Josephson ef-
fect of the px+ ipy-wave phase with those of other chiral
phase ofd- and f-wave origin.

A chiral phase in the case of spin-singletd-wave symme-
try can be composed of thedx2−y2 and thedxy state, when they
are degenerate, yielding adx2−y2± idxy. This gap function was
discussed as the surface states of high-Tc cuparates35 where
the degeneracy is not given, but one of the components is
subdominant. The other example is NaxCoO2·yH2O.36 Thus
we consider the gap function

FIG. 5. A simple model of chiral domains is illustrated in the
symmetric SQUIDsad and the corner SQUIDsbd. Across the do-
main wall with a normal vectorn, thep-wave component parallel to
n keeps its phase, while the component perpendicular ton changes
the phase byp.

FIG. 4. The Josephson critical current is plotted as a function of
F for px+ ipy.
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D̂k
sdd = hhxsp̄x

2 − p̄y
2d + hy2p̄xp̄yjiŝ2 s23d

=Dsp̄x
2 − p̄y

2 ± i2p̄xp̄ydiŝ2 = De±i2uiŝ2. s24d

Here the coupling to thes-wave superconductor is simpler,
since it is not relying on spin-orbit coupling. Thus the current
phase relation is dominated by the first-order coupling,

Jsfd = Jdsinsf + 2und, s25d

Jd = TBS D

2T
DS D

D0
D . s26d

Concerning the domain wall structure of this state, the
two order parameter components behave in the same way as
in the p-wave case. Thus only the component perpendicular
to the domain wall normal vector changes sign. Thus, for
n ix the componenthysdxyd changes sign whiledx2−y2 keeps
the phase. Thus, irrespective of the domain wall number for
the vertical domain wall case, the maximum of the critical
current in the symmetric SQUID would be atF=0. Thus,
domain walls could not lead to an interference pattern like in
the p-wave case. In the case of horizontal domain walls, the
situation is more complicated. There is a staggered phase for
the dx2−y2 component. This would give rise to compensating
contributions of the two domains to the Josephson effect,
similar to the situation discussed in the context ofc-axis
junction between ans-wave and a twinned high-temperature
superconductor.37,38In addition, this configuration could give
rise to spontaneous half-quanta flux lines wherever a domain
wall hits the junction perpendicularly. Under these circum-
stances, the interpretation of interference pattern would re-
quire much more care. Note that such spontaneous fluxes do
not occur in thep-wave case as long as the domain wall ends
perpendicularly on the junction. In both cases, the flux mag-
nitude depends on the angle between junction interface and
domain wall. A similar problem with the domain walls oc-
curs for the corner junction as a simple examination reveals.

The spin-triplet chiralf-wave symmetry is also a possible
candidate for the superconducting phase in NaxCoO2·yH2O.
The proposed gap function is given by

D̂k
sfd = iDhsp̄x

2 − 3p̄y
2dp̄x ± isp̄y

2 − 3p̄x
2dp̄yjẑ · ŝŝ2

= De7i3ui ẑ · ŝŝ2. s27d

The current phase relation for the chiralf wave symmetry is

given by Eq. s5d. In both the symmetric and the corner
SQUID, the characteristic behavior of the critical current for
the chiralp wave symmetry discussed in Secs. II and III are
also valid for the chiralf wave symmetry. In the limit of
J1/J2@1, the critical current in the symmetric SQUID take
the minima atF=0 and that in the corner SQUID shows the
phase shift byp /4 in the absence of the domain walls. In
addition, there are no differences in effects of domain walls
on the critical current between the chiralp wave and the
chiral f one. To distinguish the chiralp wave symmetry from
the chiral f wave, we should design SQUID’s witha=p /3
or 2p /3.39 The critical current forf waves becomes symmet-
ric function of F and takes its minimumsmaximumd at F
=0 in the SQUID witha=p /3sa=2p /3d,39 as shown in Fig.
7. On the other hand, the critical current forJ1/J2@1 in the
chiral p wave results in

maxuJa=p/3sFdu . 2J1UcosSp
F

F0
−

p

6
DU , s28d

maxuJa=2p/3sFdu . 2J1UcosSp
F

F0
−

p

3
DU . s29d

The calculated results are shown in Fig. 7. The asymmetry in
the critical current persists in the chiralp wave in such
SQUID’s. This argument, however, is valid when the differ-

FIG. 6. The critical current in the presence of
domain walls for J1/J2=10. In the symmetric
SQUID, the results for the chiralp wave symme-
try in the presence of the vertical domain walls
are shown insad. In sbd, the critical current for the
chiral p wave symmetry in the corner SQUID is
shown. The solidsbrokend line denote the results
when the chirality of the last domain at the bot-
tom is px+ ipys−px+ ipyd in sbd.

FIG. 7. The critical current for the chiralp wave is compared
with that for the chiralf wave insad andsbd, whereJ1/J2=10. The
relative junction angle is set ata=p /3 in sad anda=2p /3 in sbd as
shown in the upper figures.
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ence in the transmission probabilities of the two tunnel junc-
tions in Fig. 7 are much smaller than themselves.

V. DISCUSSION

We have shown that the asymmetry of the critical current
with respect toF in the corner SQUID is the evidence of the
px+ ipy symmetry when the period of oscillations isF0. A
recent experiment shows a large asymmetry of the critical
current in the corner SQUID.24 The experiment also shows a
minima of the critical current aroundF=0 in the symmetric
SQUID. The position of minima, however, slightly deviates
from F=0. We have assumed thatJ1 in the left junction is
equal to that in the right junction. When those are different
from each other, the Josephson critical current becomes
asymmetric ofF even in the symmetric SQUID. Thus the
small asymmetry found in the experiment might be caused
by the asymmetry of the two tunnel junctions. The degree of
asymmetry is negligible when the difference ofJ1 in the two
junctions is much smaller than themselves.

In addition to px+ ipy, the sinspxd+ i sinspyd40,41 and
sinspx+pyd+ i sinspx−pyd symmetries42 have been proposed
so far. The perturbation expansion43,44also indicates a possi-
bility of the chiral p wave symmetry with more complicated
structure than sinspxd+ i sinspyd and sinspx+pyd+ i sinspx

−pyd. The characteristic behavior of the Josephson current in
the two types of SQUID discussed in Secs. II and III are
valid not only for the isotropicpx+ ipy symmetry but also for
anisotropic sinspxd+ i sinspyd and sinspx+pyd+ i sinspx−pyd

symmetries. The latter two gap function have the fourfold
symmetry in the momentum space consistently with a ther-
mal conductivity experiment.45 In particular, sinspx+pyd
+ i sinspx−pyd is close to the chiralf wave symmetry because
sinspx+pyd and sinspx−pyd change their sign six times on the
Fermi surface. To distinguish one symmetry from another,
much more detail analysis would be required. At present, we
propose the angle resolved tunneling spectra for this
analysis.46

VI. CONCLUSION

We have studied the critical Josephson current in two
types of SQUID consisting ofs wave superconductor and
Sr2RuO4. In thepx+ ipy symmetry, the critical Josephson cur-
rent in the corner SQUID becomes the asymmetric function
of F because the current-phase relation in the two junctions
relate to each other byp /2 phase shift in the gap function.
We also show that the asymmetry remains even in the pres-
ence of the chiral domain structures in Sr2RuO4. Our results
well explain the recent experimental findings.24
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