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Charge transport in the diffusive normal metalsDNd/insulator/s- and d-wave superconductor junctions is
studied in the presence of magnetic impurities in DN in the framework of the quasiclassical Usadel equations
with the generalized boundary conditions. The cases ofs- andd-wave superconducting electrodes are consid-
ered. The junction conductance is calculated as a function of a bias voltage for various parameters of the DN
metal, resistivity, Thouless energy, the magnetic impurity scattering rate, and the transparency of the insulating
barrier between DN and a superconductor. It is shown that the proximity effect is suppressed by magnetic
impurity scattering in DN for any value of the barrier transparency. In low-transparents-wave junctions this
leads to the suppression of the normalized zero-bias conductance. In contrast to that, in high transparent
junctions zero-bias conductance is enhanced by magnetic impurity scattering. The physical origin of this effect
is discussed. For thed-wave junctions, the dependence on the misorientation anglea between the interface
normal and the crystal axis of a superconductor is studied. The zero-bias conductance peak is suppressed by the
magnetic impurity scattering only for low transparent junctions witha,0. In other cases the conductance of
the d-wave junctions does not depend on the magnetic impurity scattering due to strong suppression of the
proximity effect by the midgap Andreev resonant states.
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I. INTRODUCTION

Presently, thanks to the nanofabrication technique, de-
tailed experimental studies of the electron coherence in me-
soscopic superconducting systems become possible, where
the Andreev reflection1–3 plays an important role in the low
energy transport. In diffusive normal metal/superconductor
sDN/Sd junctions, the phase coherence between incoming
electrons and Andreev reflected holes persists in DN at a
mesoscopic length scale and results in strong interference
effects on the probability of Andreev reflection.4

One of the remarkable experimental manifestations of the
coherent Andreev reflection is the zero bias conductance
peak sZBCPd in DN/S junctions.5–15 The physics of ZBCP
was extensively studied theoretically using scattering matrix
approach16–21 and the quasiclassical Green’s function
technique.22,25–34Volkov, Zaitsev, and KlapwijksVZK d22 ex-
plained the origin of the ZBCP in DN/S junctions in the
framework of the quasiclassical theory by solving the Usadel
equations23 with the Kupriyanov and LukichevsKL d bound-
ary condition for the Keldysh-Nambu Green’s function.24

According to the VZK theory the ZBCP is due to the en-
hancement of the pair amplitude in DN by the proximity
effect. The influence of the magnetic impurity scattering on
the bias voltage dependent conductance was also studied
within this approach.22,27,35

Recently the VZK theory fors-wave superconductors was
extended by Tanakaet al.37 using more general boundary
conditions provided by the circuit theory of Nazarov.36 These
boundary conditions treat an interface as an arbitrary connec-
tor between diffusive metals. The connector is characterized

by a set of transmission coefficients ranging from a ballistic
point contact to a tunnel junction. The boundary conditions
coincide with the KL conditions when a connector is diffu-
sive or transmission coefficients are low, while the BTK
theory2 is reproduced in the ballistic regime. The extended
VZK theory37,44 revealed a number of new features like a
U-shaped gap like structure and a crossover from a zero bias
conductance peaksZBCPd to a zero bias conductance dip
sZBCDd. These phenomena are relevant for the actual junc-
tions in which the barrier transparency is not necessarily
small. However, the influence of the magnetic impurity scat-
tering in DN on the charge transport was not studied in this
regime.

The generalized VZK theory was recently applied also to
unconventional superconducting junctions.43,44 The forma-
tion of the midgap Andreev resonant statessMARSd at the
interface of unconventional superconductors38–41 is naturally
taken into account in this approach.43,44 It was demonstrated
that the formation of MARS in DN/d-wave superconductor
sDN/dd junctions strongly competes with the proximity ef-
fect. Remarkable recent advances in experiments on tunnel-
ing in highTC cuprates42 stimulate an interest to the problem
of an influence of the magnetic impurity scattering on a
charge transport in DN/d junctions.

In the present paper the generalized VZK theory is ap-
plied to the study of an influence of the magnetic impurity
scattering in the DN on the conductance in DN/S where S is
either s- or d-wave superconductor. The parameters of the
problem are the height of the insulating barrier at the DN/S
interface, the resistanceRd, the magnetic impurity scattering
rate g, the Thouless energyETh in DN and the anglea be-
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tween the normal to the interface and the crystal axis of
d-wave superconductors. We shall focus on the dependence
of the normalized conductancesTseVd=sSseVd /sNseVd, on
the bias voltageV, wheresSsNdseVd are the conductances in
the superconductingsnormald state. The organization of the
paper is as follows. In Sec. II the detailed derivation of the
expression for the normalized conductance is provided. In
Sec. III the results of calculations ofsTseVd are presented for
s- andd-wave junctions separately and physical explanation
of the results is given. In Sec. IV the summary of the ob-
tained results and the conclusions are presented. In this paper
we restrict ourselves to zero temperature and setkB="=1. In
general the zero bias conductancesZBCd, by definition, is
studied in the theory and in the experiment at eV→0. Thus,
the ZBC defined in a standard way actually depends on tem-
perature and has certain limit atT→0. On the other hand, we
calculate ZBC in another way, we first setT=0, then calcu-
late the differential resistance at eV→0. We are sure that the
limits T→0, eV→0 are commutable for the differential re-
sistance.

II. FORMULATION

In this section we introduce the model and the formalism.
We consider a junction consisting of normal and supercon-
ducting reservoirs connected by a quasi-one-dimensional dif-
fusive conductorsDNd with a lengthL much larger than the
mean free path. This structure was considered in Refs. 37
and 44, while in the present paper the scattering on magnetic
impurities in DN is taken into account. Similar to Ref. 37
and 44, we assume that the interface between the DN con-
ductor and the S electrode atx=L has a resistanceRb while
the DN/N interface atx=0 has zero resistance and we apply
the generalized boundary conditions of Ref. 36 to treat the
interface between DN and S.

We model the insulating barrier between DN and S by the
delta functionUsxd=Hdsx−Ld, which provides the transpar-
ency of the junctionTm=4 cos2 f / s4 cos2 f+Z2d, where
Z=2H /vF is a dimensionless constant,f is the injection
angle measured from the interface normal to the junction,
andvF is Fermi velocity. The interface resistanceRb is given
by

Rb = R0
2

E
−p/2

p/2

dfTm cosf

,

where R0 is Sharvin resistanceR0
−1=e2kF

2Sc/4p2, kF is the
Fermi wave vector andSc is the constriction areassee Fig. 1d.
Note that the areaSc is in general not equal to the cross-
section areaSd of the normal conductor, thereforeSc/Sd is
independent parameter of our theory. This allows to vary
Rd/Rb independently ofTm. In real physical situation, the
assumptionSc,Sd means that only a part of the actual flat
DN/S interfaceshaving areaScd is conducting, no matter is it
a single conducting region or a series of such regions. These
conducting regions are not constrictions in a standard
sense—we do not assume the narrowing of the total cross
section, but rather that only the part of the cross section is
conducting.

We apply the quasiclassical Keldysh formalism in the fol-
lowing calculation of the conductance. The definitions of

434 Green’s functions in DN and S,Ǧ1sxd and Ǧ2sxd, and
other notations can be found in Refs. 37 and 44. The new
feature in the present model is the spin-scattering term in the

static Usadel equation23 for Ǧ1sxd in DN,

D
]

]x
SǦ1sxd

]Ǧ1sxd
]x

D + ifȞ − iŠspin,Ǧ1sxdg = 0, s1d

whereD is the diffusion constant in DN,Ȟ is given by

Ȟ = SĤ0 0

0 Ĥ0

D ,

with Ĥ0=et̂3, and

Šspin=
g

2
t̂3Ǧ1sxdt̂3

is the self-energy for magnetic impurity scattering with the
scattering rateg in DN. Note that magnetic impurities take
random alignments and we average them in all directions,

thus Ǧ1sxd in our calculation is a unit matrix in the spin
space. The Nazarov’s generalized boundary condition for

Ǧ1sxd at the DN/S interface has the same form as the one
without magnetic impurity scatteringssee Refs. 37 and 44d.

In the actual calculation it is convenient to use the stan-
dardu-parametrization whereusxd is a measure of the prox-
imity effect in DN and is determined by the following equa-
tion:

D
]2

]x2usxd + 2ihe + ig cosfusxdgjsinfusxdg = 0. s2d

One can see that introduction of magnetic impurity scattering
g leads to modification of the effective coherence length in
DN. In particular, switching ong makes functionusxd expo-
nentially decaying at zero energy, whileusxd at g=0 behaves
linearly in DN. It will be shown below that these modifica-
tions result in suppression ofu in DN, as expected due to the
pair-breaking nature of magnetic scattering, which in turn
leads to corresponding modifications of the subgap conduc-
tance.

FIG. 1. Schematic illustration of the model.
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Finally, we obtain the following result for the electric cur-
rent:

Iel =
1

e
E

0

`

de
f t0

Rb

kIb0l
+

Rd

L
E

0

L dx

cosh2 uimsxd

s3d

with

f t0 = 1
2htanhfse + eVd/s2Tdg − tanhfse − eVd/s2Tdgj.

Then the total differential resistanceR for s-wave junction at
zero temperature is given by

R=
Rb

kIb0l
+

Rd

L
E

0

L dx

cosh2 uimsxd
s4d

with

Ib0 =
TmL1 + 2s2 − TmdL2

2us2 − Tmd + Tmsg cosuL + f sinuLdu2
,

L1 = s1 + ucosuLu2 + usinuLu2dsugu2 + uf u2 + 1d

+ 4 Imagsfg*dImagscosuL sinuL
* d, s5d

L2 = RealfgscosuL + cosuL
* d + fssinuL + sinuL

* dg, s6d

g = «/Î«2 − D2, f = D/ÎD2 − «2.

For a d-wave junction, the functionIb0 is given by the fol-
lowing expression:

Ib0 =
Tn

2

C0

us2 − Tnds1 + g+g− + f+f−d + TnfcosuLsg+ + g−d + sinuLsf+ + f−dgu2

C0 = Tns1 + ucosuLu2 + usinuLu2dsug+ + g−u2 + uf+ + f−u2 + u1 + f+f− + g+g−u2 + uf+g− − g+f−u2d + 2s2 − Tnd

3Realhs1 + g+
* g−

* + f+
* f−

* dfscosuL + cosuL
* dsg+ + g−d + ssinuL + sinuL

* dsf+ + f−dgj

+ 4TnImagscosuL sinuL
* dImagfsf+ + f−dsg+

* + g−
* dg,

g±=« /Î«2−D±
2, f±=D± /ÎD±

2−«2, andD±=D cos 2sf7ad. In
the abovea, uimsxd, and uL denote the angle between the
normal to the interface and the crystal axis ofd-wave super-
conductors, the imaginary part ofusxd and usL−d, respec-

tively. The conductance in the superconducting statesSseVd
is simply related toR by sSseVd=1/R.

It is important to note that in the present approach, ac-
cording to the circuit theory,Rd/Rb can be varied indepen-

FIG. 2. Normalized conductance forZ=3.
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dently of Tm, i.e., independently ofZ, since one can change
the magnitude of the constriction areaSc independently. In
other words,Rd/Rb is no longer proportional toTavsL / ld,
whereTav is the averaged transmissivity of the barrier andl
is the mean free path in the diffusive region. Based on this
fact, we can chooseRd/Rb andZ as independent parameters.

In the following section, we will discuss the normalized
conductancesTseVd=sSseVd /sNseVd where sNseVd is the
conductance in the normal state without magnetic impurity
given bysNseVd=sN=1/sRd+Rbd.

III. RESULTS

A. Tunneling conductance fors-wave junctions

In this section, we focus on the bias voltage dependent
normalized conductancesTseVd for various situations. Let us

first focus on the relatively low transparent junctions with
Z=3 for variousg /D sFig. 2d. For ETh/D=1 andRd/Rb=1,
the sTseVd curves have a rounded bottom shape and
the height of the bottom value is reduced with an increase
in g /D. The height of the peak at eV= ±D is reduced with
an increase ing /D fsee Fig. 2sadg. For ETh/D=1 and
Rd/Rb=10, thesTseVd curves also have a rounded bottom
structure which flattens with an increase ing /D. Also the
peak at eV= ±D is suppressed with the increase ofg /D fsee
Fig. 2sbdg. For small Thouless energyETh/D=0.01 and
Rd/Rb=1, the conductance has a prominent ZBCP with the
width given by ETh. As seen from Fig. 2scd, the magnetic
impurity scattering suppresses the peak height. With the in-
crease of the resistance ratioRd/Rb, the ZBCP transforms
into ZBCD, as shown in Fig. 2sdd. The magnitude of ZBCD
decreases with the increase ofg /D, and the height of the
peaks around eV/D,0.04 is also reducedfsee Fig. 2sddg. As

FIG. 3. Normalized conductance forZ=1.

FIG. 4. Normalized conductance for high
transparent junctions withZ=0.
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seen from these figures, the characteristic energy range ofg
which modifies the magnitude ofsTseVd, is determined by
ETh, in agreement with the previous study based on the KL
boundary conditions.27

In the case of an intermediate barrier strengthZ=1
sFig. 3d the magnitude ofsTseVd always exceeds unity. The
resulting line shapes ofsTseVd for ETh/D=1 are quite
similar to the corresponding curves forZ=3 fsee Figs. 3sad
and 3sbdg. For ETh/D=1 and Rd/Rb=1, the zero-bias
valuesTs0d is independent ofg /D fsee Fig. 3sadg, in contrast
to the corresponding case shown in Fig. 2sad. Another
important difference from the case of largeZ-factor is the
absence of ZBCP for low Thouless energy. It is seen that for
ETh/D=0.01 a ZBCD occurs in both cases ofRd/Rb=1 and
Rd/Rb=10. This conductance dip and the finite voltage peaks
are fully suppressed with the increase ofg /D for Rd/Rb=1
fsee Fig. 3scdg. On the other hand, forRd/Rb=10 only the

peaks around eV/D,0.04 are suppressed while the magni-
tude ofss0d does not depend ong, similar to the caseZ=3
fsee Fig. 3sddg. The relevant scale ofg is again given by the
magnitude ofETh.

For the fully transparent case withZ=0 sFig. 4d, sTseVd
also always exceeds unity. The line shapes ofsTseVd with
ETh/D=1 are similar to the corresponding curves forZ=3
and Z=1 fsee Figs. 4sad and 4sbdg. For ETh/D=1 and
Rd/Rb=1, the magnitude ofsTs0d is enhanced byg /D in
contrast to the corresponding cases shown in Figs. 2sad and
3sad fsee Fig. 4sadg. For ETh/D=0.01 andRd/Rb=1, sTseVd
has a ZBCD. The magnitude ofsTs0d is enhanced byg /D
and the depth of the ZBCD decreases with the increase of
g /D fsee Fig. 4scdg. On the other hand, forETh/D=0.01 and
Rd/Rb=10, the magnitude ofss0d does not depend ong
while the finite bias peaks are suppressed similar to the cases
of Z=3 andZ=1 fsee Fig. 4sddg.

FIG. 5. Real supper panelsd and imaginary
slower panelsd part of uL for Z=3 andETh/D=1.

FIG. 6. Real supper panelsd and imaginary
slower panelsd part of uL for Z=3 and
ETh/D=0.01.
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In order to understand the above wide variety of line
shapes and their relation to the proximity effect, we shall
discuss the behavior of functionuL which is the measure of
the proximity effect at the DN/S interface and determines the
normalized local density of states by Re cosusxd. At e=0, uL

is always a real number even for nonzerog. First, we study
the case ofZ=3 andETh/D=1 sFig. 5d where the same val-
ues ofg /D andRd/Rb are chosen as in Fig. 2. The real part
of uL has a step-function-like structure and it is always posi-
tive for eøD and negative otherwise. The absolute value of
the real part ofuL decreases with an increase ing /D. At the
same time, the imaginary part ofuL has a coherent peak, the
height of which is reduced with an increase ing /D. For the
case ofZ=3 andETh/D=0.01sFig. 6d where the same values
of g /D are chosen as in Fig. 2, the real part ofuL has a ZBCP
with the width given byETh. The imaginary part ofuL has
a ZBCD for Rd/Rb=1. Both the amplitudes of the real

and imaginary part ofuL are reduced with the increase of
g /D only around zero energy in the interval of the order of
ETh.

Next we consider the case ofZ=0 with ETh/D=1 sFig. 7d
andETh/D=0.01 sFig. 8d where the same values ofg /D are
chosen as in Fig. 4. The line shapes of both ResuLd and
ImsuLd are similar to those in Figs. 5 and 6. There is no clear
qualitative difference between the energy dependencies of
RealfImaggsuLd for Z=0 and those forZ=3. For all cases, the
magnitude ofuL is reduced with the increase ofg and then
the proximity effect is suppressed by the magnetic impurity
scattering within the energy range determined byETh. In al-
most all cases, the magnitude ofsTseVd is reduced with the
decrease ofuL. Only for the high transparent case with not so
large Rd/Rb, the decrease of the magnitude ofuL, i.e., the
reduction of the proximity effect, can enhance the magnitude
of sTseVd.

FIG. 7. Real supper panelsd and imaginary
slower panelsd parts of uL for high transparent
junctions withZ=0 andETh/D=1.

FIG. 8. Real supper panelsd and imaginary
slower panelsd parts of uL for high transparent
junctions withZ=0 andETh/D=0.01.
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In the following, we explain the wide variety of the line
shapes ofsTseVd. We considerZ=0 and ETh/D=1 case,
whereuL has a weak energy dependence around zero volt-
age. For the fully transparent case withTm=1, i.e., Z=0,
sTs0d can be given by

sTs0d =
1 + Rd/Rb

1/kIb0l + Rd/Rb
. s7d

with

kIb0l =
2

1 + sinuL
. s8d

From this equation we find that the magnitude ofsTs0d
gets close to unity under the strong proximity effect, i.e.,
when the magnitude ofRd/Rb is large. As shown in Figs. 7sad
and 7sbd, the magnitude ofuL at e=0 is lowered with an
increase ing /D for Rd/Rb=1. Then, according to Eqs.s7d
and s8d, the resultingsTseVd around eV,0 is slightly en-
hanced as shown in Fig. 4sad. For Rd/Rb=10, the magnitude
of Rd/Rb is much larger than the magnitude of 1/kIb0l. Then
the g dependence ofsTs0d becomes negligible as shown in

Fig. 4sbd. In order to understand the case ofZ=0 and the
small magnitude ofETh/D, we decomposeR into R1 andR2
following the previous work,37 whereR1 andR2 are defined
by

R1 =
1

L
E

0

L dx

cosh2 uimsxd

and

R2 =
Rb

RdkIb0l
.

Figure 9 shows thatR1 has a minimum at a finite voltage
which can result in a ZBCD and thatR2 has a maximum for
high transparent junctions. For a large magnitude ofRd/Rb,
the effect ofR1 is dominant, then the normalized conduc-
tance always has a ZBCDfsee Figs. 9scd, 9sdd, and 4sddg.
Since R2 has a maximum at zero voltagefFig. 9sbdg, the
resultingsTseVd has a ZBCD as shown in Fig. 4scd.

Next we focus on the zero voltage resistanceR/Rb as a
function of Rd/Rb. For Z=3, R/Rb has a reentrant behavior
as a function ofRd/Rb due to the so-called reflectionless

FIG. 9. Normalized resistance forZ=0 and
ETh/D=0.01.

FIG. 10. Normalized zero voltage resistance
as a function ofRd/Rb.
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tunneling effect20 fsee Fig. 10sadg. With the increase ofg,
this effect is smeared since the magnitude ofuL is reduced as
shown in Fig. 11. In contrast, forZ=0, whereR/Rb increases
monotonically as a function ofRd/Rb, the g dependence of
R/Rb is very weakfsee Fig. 10sbdg.

B. Tunneling conductance ford-wave junctions

Below we discuss the results of calculations for the
d-wave case. Figure 12 shows the normalized conductance
for Z=10, Rd/Rb=1, ETh/D=0.01, anda /p=0 wherea de-
notes the misorientation angle between the normal to the
interface and the crystal axis ofd-wave superconductors. In
this case, MARS are not formed at the interface of the
d-wave superconductor. The origin of the ZBCP is due to the
proximity effect in the DN region and the height of the
ZBCP is suppressed with increasingg similar to the case of
the s-wave junctions.

With the increase of the magnitude ofa the MARS are
formed at the interface. The MARS contribute to the charge
transport across the junction and leads to the formation of the
ZBCP. As is seen in Fig. 13, the ZBCP does not depend ong
for Z=10, Rd/Rb=1, ETh/D=0.01, anda /p=0.125. The
similar result is obtained for different anglea /p=0.25. The
reason is that MARS reduce the proximity effect in DN,

therefore the influence of magnetic impurity scattering on
the sT becomes less important. In the extreme case,a
=0.25p, the proximity effect is completely absent by the
symmetry of the pair potential andsT is completely indepen-
dent ofg.

IV. CONCLUSIONS

We have performed a detailed theoretical study of the
conductance of diffusive normal metal/s- andd-wave super-
conductor junctions in the presence of magnetic impurities.
Below, the main results obtained in this paper are summa-
rized.

s1d For thes-wave junctions, the proximity effect is sup-
pressed by the magnetic impurity scattering within the en-
ergy range determined by the Thouless energy in DN. In this
range both the real and imaginary parts of the proximity
effect parameter, i.e., ResuLd and ImsuLd are reduced with the
increase of the magnitude ofg for any transparency of the
insulating barrier.

s2d The magnitude of the normalized bias voltage
dependent conductancesTseVd in the low transparent
s-wave junctions is suppressed by the magnetic impurity
scattering. On the other hand, for high transparents-wave
junctions,sTseVd can be enhanced by the magnetic impurity
scattering.

s3d In the d-wave junctions, the zero bias conductance
peak formed for low transparent barriers is suppressed by
the magnetic impurity scattering only fora,0. For other
misorientation angles the conductance is not sensitive to
the magnetic impurity scattering in a diffusive normal
metal.

In the present paper, we have discussed the case where
magnetic impurities are located in DN. These results can be
also applied to the situation when the junction is in a
weak magnetic fieldH. If the field direction is parallel to the
junction plane, the pair-breaking rate is given by
g=e2w2DH2/6, wherew is the transverse size of the DN.35

Assuming w=10−5 m, D=10−2 m2/s, D=10−3 eV, and
H=10−4–10−2 T, we estimate the pair-breaking rate
g /D=10−3,10. This range ofg corresponds to the param-
eters chosen in the present paper. The suppression of the

FIG. 11. Real part ofuL at zero energy as a function of
Rd/Rb.

FIG. 12. Normalized conductance in ad-wave junction for
Z=10, Rd/Rb=1, ETh/D=0.01, anda /p=0.

FIG. 13. Normalized conductance in ad-wave junction for
Z=10, Rd/Rb=1, ETh/D=0.01, anda /p=0.125.
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ZBCP and ZBCD by the magnetic field was actually ob-
served in several experiments.5,7,11–13,15The results of the
present paper may serve as a guide to study the charge trans-
port in the junctions with magnetic impurities or under ap-
plied magnetic field.

It is also an interesting problem to study the influence of
the magnetic impurity scattering on diffusive normal metal/
triplet superconductor junctions where anomalous proximity
effect is expected.45 An application of the present theory to
the S/N/S junctions with unconventional superconductors
also requires separate investigation.
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