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Phenomenological theory of zero-energy Andreev resonant states
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A conceptual consideration is given to a zero-energy state~ZES! at the surface of unconventional supercon-
ductors. The reflection coefficients in normal-metal/superconductor~NS! junctions are calculated based on a
phenomenological description of the reflection processes of a quasiparticle. The phenomenological theory
reveals the importance of the sign change in the pair potential for the formation of the ZES. The ZES is
observed as the zero-bias conductance peak~ZBCP! in the differential conductance of NS junctions. The split
of the ZBCP due to broken time-reversal symmetry states is naturally understood in the present theory. We also
discuss effects of external magnetic fields on the ZBCP.
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I. INTRODUCTION

Transport phenomena in unconventional superconduc
have attracted considerable interest in recent years bec
high-Tc superconductors may have thed-wave pairing
symmetry.1–3 The unconventional pairing symmetry caus
the anisotropy in transport properties such as the elec
conductance and the thermal conductivity.4,5 In normal-
metal/high-Tc superconductor junctions, for instance, t
shape of the differential conductance reflects the densit
states when thea axis of high-Tc materials is perpendicula
to the junction interface. Whena axis deviates from the in
terface normal, on the other hand, the conductance sho
large peak at the zero bias voltage.6–18Such anisotropy in the
conductance is now explained by the formation of a ze
energy state~ZES!6,19 at the interface of junctions. Since th
ZES appears just on the Fermi energy, it drastically affe
transport properties through the interface of unconventio
superconductor junctions. The low-temperature anomaly
the Josephson current between the two unconventiona
perconductors is explained in terms of the resonant tunne
of Cooper pairs via the ZES.20–24So far a considerable num
ber of studies have been made on the ZES itself and rel
phenomena of transport properties in both spin-singlet
spin-triplet unconventional superconductor junctions.7,8,25–50

The conductance in normal-metal/superconductor~NS!
junctions is calculated from the normal and the Andre
reflection51 coefficients which are obtained by solving th
Bogoliubov–de Gennes~BdG! equation52 under appropriate
boundary conditions at the junction interface. Conseque
we easily find the zero-bias conductance peak~ZBCP! in NS
junctions of high-Tc superconductors.6 Although the algebra
itself is straightforward, it is not easy to understand the ph
ics behind the calculation. In a previous paper,53 we briefly
discussed reasons for the appearance of the ZBCP by a
nomenological argument. The phenomenological anal
has several advantages. For instance, it shows the import
0163-1829/2004/69~13!/134501~11!/$22.50 69 1345
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of the unconventional pairing symmetry for the formation
the ZES without directly solving the BdG equation. Mor
over, we easily understand that the ZES is a result of
interference effect of a quasiparticle. The applicability of t
analysis in the previous paper, however, is very limited
cause of its simplicity.

In this paper, we reconstruct the phenomenological the
of the Andreev reflection to meet the mathematical accura
We calculate the reflection coefficients of an electronl
quasiparticle incident from a normal metal into a NS inte
face. Near the junction interface, a quasiparticle suffers
kinds of reflection:~i! the normal reflection by the barrie
potential at the NS interface and~ii ! the Andreev reflection
by the pair potential in the superconductor. In the pres
theory, we consider the two reflections separately to calcu
the transport coefficients. As a consequence, the Andree
flection coefficient is decomposed into a series expans
with respect to the normal reflection probability of NS jun
tions. The expression of the Andreev reflection probabi
enables us to understand the importance of the uncon
tional pairing symmetry for the formation of the ZES. I
unconventional superconductors, the pair potential in
electron branch (D1) differs from that in the hole branch
(D2). The Andreev reflection probability at the zero ener
is expressed as the summation of the alternating series w
D1 and D2 have the same sign. In this case, the zero-b
conductance becomes a small value proportional toutNu4,
where utNu2 is the normal transmission probability of junc
tions. On the other hand whenD1D2,0, all the expansion
series have the same sign and the conductance has a
peak at the zero bias. The phenomenological theory can
applied to superconductors with a broken time-reversal s
metry state~BTRSS! ~Refs. 54–67! and NS junctions unde
external magnetic fields.54,68–70

This paper is organized as follows. In Sec. II, the Andre
and the normal reflection coefficients are derived from a p
nomenological description of a quasiparticle’s motion ne
©2004 The American Physical Society01-1
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the NS interface. In Sec. III, we discuss the conducta
peaks in NS junctions. A relation between the broken tim
reversal symmetry states and the peak position in the c
ductance is discussed in Sec. IV. We apply the phenome
logical theory to NS junctions under magnetic fields in S
V. In Sec. VI, we summarize this paper.

II. QUASIPARTICLE’S MOTION NEAR NS INTERFACES

Let us consider two-dimensional NS junctions as sho
in Fig. 1, where a normal metal (x,0) and a superconducto
(x.0) are separated by a potential barrierV(r)5V0d(x).
We assume the periodic boundary condition in they direction
and the width of the junction isW. The NS junctions are
described by the Bogoliubov–de Gennes equation:52

E dr8S d~r2r8!h0~r8! D~r,r8!eiws

D* ~r,r8!e2 iws 2d~r2r8!h0~r8!
D S u~r8!

v~r8!
D

5ES u~r!

v~r! D , ~1!

h0~r!52
\2¹2

2m
1Vbd~x!2mF , ~2!

D~Rc ,rr !5H 1

Vvol
(

k
D~k!eik•rr, Xc.0

0, Xc,0,

~3!

wherews is a macroscopic phase of the superconductor,Rc
5(Xc ,Yc)5(r1r8)/2, andrr5r2r8. Here we assume spin
singlet superconductors for simplicity. The argument in

FIG. 1. A normal-metal/superconductor junction is illustrated
~a!. The trajectories of a quasiparticle in the electron branch
those in the hole branch are denoted by solid and broken li
respectively. In~b!, the pair potentials ofs, dx22y2, anddxy wave
symmetries are schematically illustrated.
13450
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following can be extended to spin-triplet superconductors
shown in the Appendix. When an electronlike quasiparticle
incident from the normal metal as shown in Fig. 1, the wa
function in the normal metal is given by

CN~r!5F S 1

0D eikxx1S 1

0D e2 ikxxr ee1S 0

1D eikxxr heGeikyy

AW
,

~4!

wherekx andky are the wave numbers on the Fermi surfa
and they satisfykx

21ky
25kF

2 with kF being the Fermi wave
number. Throughout this paper we assume thatE;D0
!mF , whereD0 is the amplitude of the pair potential andE
is the energy of a quasiparticle measured from the Fe
energy,mF5\2kF

2/(2m). In Eq. ~4!, r ee andr he are the nor-
mal and the Andreev reflection coefficients, respectively.

When a quasiparticle is incident from the normal metal
the electron branch, directions of the outgoing waves
indicated by arrows as shown in Fig. 1. The trajectories o
quasiparticle in the electron branch and those in the h
branches are denoted by solid and broken lines, respecti
In the normal metal, a velocity component perpendicular
the interface changes its sign in the normal reflecti
whereas all velocity components change signs in the
dreev reflection. In the superconductor, the wave numbe
the electron branch is (kx ,ky), but that in the hole branch
becomes (2kx ,ky). In unconventional superconductors, th
pair potential in the electron branch@D1[D(kx ,ky)# differs
from that in the hole branch@D2[D(2kx ,ky)#. Therefore
the wave function in the superconductor is described
these two pair potentials:

CS~r!5F S u1

e2 if1e2 iwsv1
D eikextee

1S eif2eiwsv2

u2
D e2 ikhxtheGeikyy

AW
, ~5!

u6~v6!5A1

2 S 11~2 !
V6

E D , ~6!

eif6[
D6

uD6u
, ~7!

ke(h)5Fkx
21~2 !kF

2
AE22uD1(2)u2

mF
G1/2

, ~8!

V65AE22uD6u2, ~9!

wheretee (the) is the transmission coefficient to the electro
~hole! branch in superconductors. The wave numbers o
quasiparticle are approximately given byke(h)'kx
1(2) i /(2j0) for E;0, wherej05\vF /(pD0) is the co-
herence length andvF5\kF /m is the Fermi velocity. Thus a
quasiparticle penetrates into the superconductor within
range ofj0. In Eqs.~5!–~7!, a phaseeif6 represents the sign
~internal phase! of the pair potential and appears in the wa
function in addition to a macroscopic phase of the superc

d
s,
1-2
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PHENOMENOLOGICAL THEORY OF ZERO-ENERGY . . . PHYSICAL REVIEW B69, 134501 ~2004!
ductor. The transmission and the reflection coefficients
obtained from the boundary conditions of these wave fu
tions. Near the junction interface, an incident quasipart
suffers two kinds of reflection:~i! the normal reflection by
the barrier potential at the NS interface and~ii ! the Andreev
reflection by the pair potential in the superconductor. In t
paper, we consider separately contributions of the two refl
tion processes to the reflection coefficients.

We first consider NS junctions with no barrier potential
the interface,

z0[
V0

\vF
50, ~10!

wherez0 represents the strength of the potential barrier. T
Andreev reflection coefficients become

r 0
he52 in1e2 if1e2 iws, ~11!

r 0
eh52 in2eif2eiws, ~12!

n65 i
E2V6

uD6u
, ~13!

wherer 0
he is the Andreev reflection coefficient from the ele

tron branch to the hole branch in the absence of the pote
barrier. We also give the Andreev reflection coefficient fro
the hole branch to the electron branch (r 0

eh). In the case of
E22D6

2 ,0, n6 can be described as

n65
AD6

2 2E2

uD6u
1 i

E

uD6u
~14!

[cosu61 isinu65eiu6. ~15!

Thus the Andreev reflection coefficients include only t
phase information in the limit ofz050.

FIG. 2. The Andreev reflection processes are decomposed in
series of reflections by the pair potential and the barrier potent
13450
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We next consider the reflection by the potential barrier
a phenomenological way. In the presence of the poten
barrier, the Andreev reflection processes are shown in Fig
In the electron branch, the normal transmission and the
mal reflection coefficients of the barrier are calculated to
tN5 k̄x /( k̄x1 iz0) and r N52 iz0 /(kx̄1 iz0), respectively,
with k̄x5kx /kF . Those in the hole branch aretN* and r N* .
The Andreev reflection coefficient in the first-order proce
is given by

r he~1!5tN* r 0
hetN . ~16!

At first an electronlike quasiparticle starting fromr i transmits
into the superconductor throughr0 (tN). In Fig. 2, the vec-
tors in real space are surrounded by squares to avoid co
sion. While traveling the superconductor within the range
j0, the quasiparticle is reflected into the hole branch by
pair potential atr1 (r 0

he). Then the quasiparticle goes back
the normal metal in the hole branch throughr08 (tN* ). The
second-order Andreev reflection process in Fig. 2~b! can be
estimated in the same way:

r he~2!5tN* ASr 0
hetN , ~17!

AS5r 0
her Nr 0

ehr N* ~18!

52ur Nu2n1n2ei (f22f1). ~19!

After the first Andreev reflection into the hole branch, t
quasiparticle suffers the normal reflection (r N* ). Next the
holelike quasiparticle experiences the second Andreev re
tion to the electron branch atr2 (r 0

eh). Then the electronlike
quasiparticle suffers the normal reflection (r N) followed by
the third Andreev reflection into the hole branch (r 0

he). Fi-
nally the holelike quasiparticle goes back to the normal me
through r08 (tN* ). We only show the expression of the An
dreev reflection coefficient in the third-order process,

r he~3!5tN* AS
2r 0

hetN . ~20!

The corresponding trajectory is shown in Fig. 2~c!. The total
Andreev reflection coefficient is obtained by the summat
of these reflection processes up to the infinite order,

r he5utNu2r 0
he(

n51

`

AS
n21 . ~21!

In the similar way, the normal reflection coefficient results

r ee5r N1tN
2 r N* r 0

her 0
eh(

n51

`

AS
n21 . ~22!

Although the reflection coefficients in Eqs.~21! and~22! are
obtained based on the phenomenological description o
quasiparticle’s motion, they are mathematically identical
the exact expressions calculated from the boundary co
tions of the wave functions in the presence of the poten
barrier.6 ~See also Note Added in Proof.!

a
l.
1-3
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III. CONDUCTANCE

The differential conductance is calculated from the n
mal and the Andreev reflection coefficients,71,72

GNS5
2e2

h (
ky

@12ur eeu21ur heu2#U
E5eVbias

, ~23!

whereVbias is the bias voltage applied to NS junctions. W
focus on the limit ofE→0 for a while, where the Andreev
reflection probability dominates the zero-bias conducta
because the conductance can be described by

GNS5
4e2

h (
ky

ur heu2U
E5eVbias

. ~24!

A quasiparticle after the Andreev reflection traces back
original trajectory of a quasiparticle before the Andreev
flection. This is called the retro property of a quasipartic
When we estimate the reflection coefficients in Eqs.~21! and
~22!, we only consider the phase factor of the Andreev
flection. A quasiparticle, however, may suffer addition
phase shift while moving around the NS interface. Actua
an electron acquires a phaseeik•(r12r0) while traveling from
r0 to r1 as shown in Fig. 2~a!. In addition to this, a phase

factoreik•(r082r1) is multiplied while traveling fromr1 to r08 in
the hole branch. These two phase factors exactly cancel
other out when the retro property holds becauser05r08 . Thus
r f n

indicates the same position for alln. In particular forE

50, a relationr i5r f n
for all n holds, which means the retr

property of a quasiparticle in the normal metal. In the lim
of E→0, we find in Eq.~15! that n6→1 irrespective of
symmetries of the pair potential. The Andreev reflecti
probability becomes

ur heu25utNu4U(
n50

`

r Nu2n@2ei (f22f1)#nU2

. ~25!

First, we consider superconductors where the pair poten
in the two branches (D1 andD2) have the same sign~i.e.,
ei (f22f1)51). For example, the pair potentials below s
isfy the condition irrespective of the wave numbers of a q
siparticle:

Ds~k!5D0 ~s wave!, ~26!

Ddx22y2~k!5D0~ k̄x
22 k̄y

2! ~dx22y2 wave!, ~27!

where k̄x5kx /kF and k̄y5ky /kF are the normalized wave
numbers on the Fermi surface in thex and y directions, re-
spectively. The schematic figures of the pair potentials
shown in Fig. 1~b!. Equation~26! represents the pair poten
tial of s-wave superconductors. The pair potential in Eq.~27!
is realized in a junction where thea axis of a high-Tc super-
conductor is perpendicular to the interface normal. Wh
ei (f22f1)51 is satisfied, Eq.~25! becomes the summatio
of the alternating series. The Andreev reflection probabi
results in
13450
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ur heu25
2utNu4

~22utNu2!2
. ~28!

In low transparent junctions~i.e., z0
2@1) the Andreev reflec-

tion probability becomes a small valueutNu4/2}1/z0
4. There-

fore the zero-bias conductance in Eq.~24! is proportional to
1/z0

4. Second, we consider that the signs of the two p
potentials are opposite to each other. The pair potential

Ddxy
~k!52D0k̄xk̄y ~dxy wave! ~29!

satisfiesei (f22f1)521 for all wave numbers and is rea
ized in a junction where thea axis of a high-Tc supercon-
ductor is oriented by 45° from the interface normal. All th
expansion series in Eq.~25! have the same sign and th
Andreev reflection probability becomes

ur heu251. ~30!

Thus the zero-bias conductance in Eq.~24! takes its maxi-
mum value. The sign of the pair potentials characterizes
interference effect of a quasiparticle near the NS interfa
For ei (f22f1)51, the alternating series in Eq.~25! reflect
the destructive interference among the partial waves o
quasiparticle in the expansion series. Hence the conduct
becomes small at the zero bias. On the other hand
ei (f22f1)521, the expansion series with the same si
imply that the partial waves in the expansion series interf
constructively, which leads to the large zero-bias cond
tance. The constructive interference at the interface caus
resonant state which is now referred to as the ZES. T
Andreev reflection probability is unity, independent of th
normal transmission probability of junctions as shown in E
~30!. This can be interpreted as a result of the resonant tra
mission of a quasiparticle through the ZES. A microsco
calculation shows that the ZES has a large local density
states aroundx5j0 at the zero energy.73 Similar arguments
have been done in normal-metal/insulator/normal-me
insulator/superconductor junctions74 and at the surface o
high-Tc superconductors.75

In Eq. ~30!, we can explain a large conductance at t
zero bias. In what follows, we will show that the condu
tance has a peak structure around the zero bias. WheE
Þ0 but still E&D0, the degree of resonance is suppress
becausen6 is no longer unity as shown in Eq.~15!. In the
superconductor, the argument of the phase cancellation in
round trip betweenr0 andr1 in Fig. 2~a! is still valid as far as
E22uD6u2,0 is being satisfied. In the electron branch
the way tor1, thex component of the wave number is give
by

ke.kx1 i
kF

k̄x

AuD1u22E2

2mF
. ~31!

The real part determines the direction of the quasipartic
motion. The inverse of the imaginary part characterizes
dumping of the wave function and is roughly estimated to
j0. It is also shown thatkx is the real part of the wave
1-4
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number in the hole branch on the way back tor0. The An-
dreev reflection probability for finiteE is given by

ur heu25
utNu4

utNu412ur Nu2@11Ren1n2ei (f22f1)#
. ~32!

To make clear a relation between the peak positions of
conductance and the relative sign of the pair potentials,
consider the pair potential

Ddsign
~k!5D0 sgn~kxky!, ~33!

instead of Eq.~29!. Here the anisotropy of pair potential
taken into account only through the phaseeif6 and thek
dependence of the pair potential is neglected. The pair
tential in Eq.~33! is illustrated in Fig. 1~b!. We will check
the validity of Eq.~33! later. The Andreev reflection prob
ability for Ddsign

becomes

ur heu25
utNu4

utNu414ur Nu2sin2u
5

E0
2

E21E0
2

, ~34!

E05
D0utNu2

2ur Nu
. ~35!

where we use a relationu5u15u2 in Eq. ~15!. The
Andreev reflection probability has a peak structure atE50
and the width of the peak is characterized byE0 which is
D0 /z0

2 in the limit of z0
2@1. On the other hand ins wave

junctions~i.e., ei (f22f1)51), we find

ur heu25
utNu4

utNu414ur Nu2cos2u
5

E0
2

~D0
22E2!1E0

2
. ~36!

The Andreev reflection probability has a peak atE5D0, re-
flecting a peak of the bulk density of states ins-wave super-
conductors. In Fig. 3, we plot the conductance, wherez0
53 andNc5WkF /p is the number of propagating channe
on the Fermi surface. The results fors-wave junction are
indicated by the broken line. The conductance fordx22y2

symmetry in the dotted line is amplified by five times. Th
conductance has a peak atE5D0 reflecting the bulk density
of states. The results forDdsign

and dxy are shown with the
dash-dotted line and the solid line, respectively. There is
significant difference between the conductance fordxy sym-
metry and that fordsign because the relative sign of the tw
pair potentials (ei (f22f1)521) dominates the subgap con
ductance structure. Throughout this paper, we describe
pair potential by using the step function at the NS interfa
and neglect its spatial dependence in superconductors. In
NS junctions, the pair potential is suppressed at the inter
in the presence of the ZES.60,65 The conductance shap
around the zero bias, however, almost remains unchan
even if the spatial dependence of the pair potential is ta
into account.76 This is also because relative sign of the tw
pair potentials determines the conductance around the
bias. The spatial dependence of the pair potential may a
the width of the ZBCP throughE0 in Eq. ~35!.
13450
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We note that there are no remarkable differences betw
the mathematical origin of the peaks atE50 for ei (f22f1)

521 and that atE5D0 for ei (f22f1)51. Actually it is
easy to confirm atE5D0 that the Andreev reflection prob
ability in s-wave junctions becomes

ur heu25utNu4U(
n50

`

r NU2n@ei (f22f1)#nU2

. ~37!

All the expansion series have the same sign forei (f22f1)

51.
In above arguments, we have assumed that the junct

have nonzero transmission probabilities. In the end of t
section, we briefly mention that the ZES becomes a r
bound state in the limit ofz0→`. A quasiparticle motion is
spatially limited at the surface of the semifinite superco
ductor because of the perfect normal reflection by the surf
and the Andreev reflection by the pair potential. The Z
becomes a bound state because there are no quasipa
excitations which extend into the bulk superconductors
E50. In the density of states, such ZES is found as
d-function peak. For finite transmission probability of jun
tions, the finite propagation into normal metals gives a fin
lifetime of the ZES which is given by\/E0. On the other
hand forei (f22f1)51, the resonant state atE5D0 does not
become a bound state because there are excitations tha
tend into the bulk superconductors atE5D0. In
superconductor/insulator/superconductor~SIS! junctions, the
ZES is also a bound state irrespective of the transmiss
probability of junctions. The description of the Andree
bound states in SIS junctions was given, for example,
Ref. 77.

FIG. 3. The conductance is plotted as a function ofE, where
z053. The anisotropy of the pair potential indxy symmetry is taken
into account only through the phase factorei (f22f1) andk depen-
dence of the pair potential is neglected in the dash-dotted line.
dxy symmetry is fully taken into account in the solid line. Th
conductance fordx22y2 symmetry is amplified by five times in the
dotted line.
1-5
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IV. PAIRING WITHOUT TIME-REVERSAL SYMMETRY

In recent experiments, a possibility of the BTRSS at
surface of high-Tc superconductors has been discussed.55–59

These experiments found the split of the ZBCP in the z
magnetic field. It is pointed out that such surface states m
have s1 idxy ~Ref. 60! or dxy1 idx22y2 ~Ref. 61! pairing
symmetry. Theoretical studies showed the split of the surf
density of states54,62–66whens1 idxy wave pairing symme-
try is assumed at the surface of thedxy wave superconductor
Within the present phenomenological theory, it is also p
sible to discuss the split of the conductance peak by
BTRSS in terms of the shift of the resonance energy.
assume the pair potential as

Ds1 idxy
~k!5aD01 ibDdxy

~k! ~s1 idxy wave! ~38!

with a21b251. We find

uD6u5uDu5Aa2D0
21b2Ddxy

2 ~k!, ~39!

ei (f22f1)5e2if25FaD02 ibDdxy

uDu G2

. ~40!

In Fig. 4, we show the conductance in thes1 idxy symmetry
for severala. For a50, the results are identical to the co
ductance ofdxy wave junctions in Fig. 3. The ZBCP split
into two peaks foraÞ0. The splitting width increases a
most linearly with increasinga. In the limit of a51, the
results coincide with the conductance ofs-wave junctions in
Fig. 3. The peak position can be explained by the expres
of the Andreev reflection probability

ur heu25
utNu4

utNu414ur Nu2cos2~u1f2!
, ~41!

cos~u1f2!5
AuDu22E2

uDu2
aD01

E

uDu2
bDdxy

~42!

'
AD0

22E2

D0
a1

E

D0
b sgn~kxky!. ~43!

FIG. 4. The conductance is plotted as a function ofE for s
1 idxy symmetry, wherez053.
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In the last equation, we replaceDdxy
by Ddsign

. The conduc-
tance peak~the resonance energy! is expected at an energ
which satisfies cos(u1f2)50 as shown in Eq.~41!. The
resonance energies fora50 and a51 are E5D0 and E
50, respectively. These resonance energies are indepen
of the wave numbers. Consequently the peak heights foa
50 anda51 become unity. The peak heights for finitea,
however, are always less than unity as shown in Fig. 4
cause the resonance energy depends on wave numbe
shown in Eq.~42!.

The positions of the conductance peaks are roughly gi
by E56aD0, which can be understood by the resonan
condition of cos(u1f2)50 in Eq. ~43!. Since the peak posi
tion is determined bya, relative amplitudes ofs and dxy
components can be estimated from the peak splitting w
observed in experiment. In the phenomenological theory,
fects of the BTRSS on the conductance can be understoo
terms of the shift of the resonance energy.

In theoretical studies, it is shown that thes1 idxy wave
BTRSS splits zero-energy peak of the local density
states54,62–66and the ZBCP.67 Experimental results are, how
ever, still controversial. Some experiments reported the s
of the ZBCP at the zero magnetic field,55–59 others did not
observe the splitting.7,10,12,13,16–18Thus opinions are still di-
vided among scientists on the BTRSS in high-Tc supercon-
ductors. If the BTRSS does not exist, we have to find anot
reasons for the peak splitting observed in experiments
recent papers, we have showed that the interfacial rand
ness causes the split of the ZBCP in the zero magnetic fi
in both numerically78 using the recursive Green functio
method79,80 and analytically73 using the single-site
approximation.81 Our conclusion, however, contradicts tho
of a number of theories82–87 based on the quasiclassic
Green function method.88–92 The drastic suppression of th
ZBCP by the interfacial randomness is the common conc
sion of all the theories. The theories of the quasiclass
Green function method, however, concluded that the rand
potentials do not split the ZBCP.

V. EFFECTS OF MAGNETIC FIELD

The TRS is also broken by applying external magne
fields onto NS junctions. The resonance atE50 is sup-
pressed because a quasiparticle acquires a Aharonov-B
like phase from magnetic fields.93–95 Actually it is pointed
out that the ZBCP in NS junctions splits into two pea
under the magnetic field.54,55,68–70The reflection process in
Fig. 5~a! corresponds toAs in Eq. ~19!. We consider uniform
magnetic fields perpendicular to thexy plane~i.e., Bẑ) and
assume the Landau gaugeAext5Bxŷ. Effects of magnetic
fields are taken into account through the phase of the w
function by using the gauge transformation. While traveli
from r0 to r1, an electronlike quasiparticle acquires a pha
eifm with

fm5
e

\cEr0

r1
dl•Aext~ l!5

e

\c

B

2
~x11x0!~y12y0!. ~44!

Since the magnetic field is sufficiently weak, the integrati
path can be replaced by a straight line betweenr0 and r1
which is denoted byC1 in Fig. 5~a!. This approximation is
1-6
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justified when the radius of the cyclotron motion of a qua
particle, 2mF /(kF\eB/mc), is much larger thanj0. The
condition is equivalent to the relationpD0@\eB/mc. In
high-Tc materials,D0;30240 meV, whereas\eB/mc is
1021 meV for B51 T, where we use the bare mass of
electron. The phase shift on the way fromr1 to r0 (C2) in
the hole branch is equal toeifm. This is because the directio
of a quasiparticle’s motion and the sign of the charge onC1
are opposite to those onC2 at the same time. In the sam
way, we can show that the phase shifts onC3 andC4 in Fig.
5~a! are alsoeifm. Under the gauge transformation, the p
potential should be changed to

D~r,r8!expF ie

\c S E r
1E r8 Ddl•Aext~ l!G . ~45!

At r1, a phase factor

expF2 i2e

\c E r1
dl•Aext~ l!G ~46!

is multiplied to the Andreev reflection coefficients, wherer
and r8 in Eq. ~45! are set to ber1. A phase factor

expF i2e

\c E
r2

dl•Aext~ l!G ~47!

is also multiplied to the Andreev reflection coefficients atr2.
The total phase shift by the magnetic field alongC1–C4 in
Fig. 5~a! (ei2fB) is then given by

fB52fm1
e

\cEr1

r2
dl•Aext~ l! ~48!

52
eB

\c
~y12y0!~x12x0!52

B

B0

ky

kx
, ~49!

B05
f0

2pj0
2

, ~50!

wheref052p\c/e. On the way to Eq.~49!, we use a rela-
tion (x12x0)/(y12y0)5kx /ky and x12x0;j0. We note
that 2fB is the gauge invariant magnetic flux passi

FIG. 5. The motion of a quasiparticle near the interface is ill
trated.
13450
-

through the gray area in Fig. 5~b!, where r35(2x1
1x0 ,y0). Thus 2fB remains unchanged in another gaug
such asAext52Byx̂ and penetrating magnetic fieldsAext

5Bl0e2x/l0ŷ with l0@j0, where l0 is the penetration
depth. In high-Tc materials,j0;2 nm andl0;200 nm.

Effects of magnetic field can be taken into account in
present theory by

As→Ase
2ifB, ~51!

whereAs is defined in Eq.~19!. We show the conductance i
dxy wave junctions calculated from Eqs.~21!–~23! and ~51!
in Fig. 6, wherez053 and 10 in~a! and~b!, respectively. In
high-Tc superconductors,B0 is about 160 T. The ZBCP de
creases with increasingB in both Figs. 6~a! and 6~b!. The
degree of suppression due to magnetic fields depends on
transmission probability of the junction. More drastic su
pression can be seen in lower transparent junctions. In
6~b!, the ZBCP almost disappears forB50.05B0. The
ZBCP, however, remains one peak and does not split
two peaks even in the strong magnetic fields. The result
Fig. 6 are qualitatively well described by the analytical e
pression of the Andreev reflection probability forE!D0,

ur heu25
utNu4

utNu414ur Nu2sin2~u1fB!
~52!

.
utNu4uDu2

utNu4uDu214ur Nu2~E1uDufB!2
. ~53!

We linearize the magnetic fields in sin(u1fB) in Eq. ~53!.
Equation ~53! implies that the resonance energy may
shifted fromE50 by magnetic fields. In contrast to the spli
ting of the ZBCP by the BTRSS in Sec. IV, we do not fin
the peak splitting under magnetic fields in Fig. 6. In t
BTRSS, the shift of the resonance energy is caused by
s-wave component which has the resonance energy aE
5D0. On the other hand, any resonant states are not as
ated with magnetic fields. Thus the magnetic fields only s
press the resonance of the ZES as shown in Fig. 6.

In a previous paper,54 however, the split of the ZBCP in
magnetic fields was reported within the quasiclassical
proximation ~QCA!. The results in Eq.~53! are similar to
that in the argument of the Dopplar shift in the QCA. Th
supercurrent flows along the interface shift the energy o
quasiparticle as

E→E1vF•ps , ~54!

ps52
eA

c
5

eBl0

c
e2x/l0ŷ, ~55!

whereps is the condensate momentum at the interface. In
~55!, d wave character of the supercurrent is not consider
The corresponding approximation in the present theory
replacingE1uDufB by E1D0fB in Eq. ~53! and we find

ur heuQCA
2 5

utNu4uDu2

utNu4uDu214ur Nu2~E1D0fB!2
. ~56!

-
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In Fig. 7~a!, we show the conductance calculated from E
~56! for z0510. In contrast to Fig. 6~b!, we find split of the
ZBCP when magnetic fields are larger than the thresh
magnetic fieldBc . The threshold depends onz0 as shown in
Fig. 7~b!, whereBc is plotted as a function of 1/z0

2 which is
proportional to the normal transmission probability of jun
tions. The threshold increases with increasing the transm
sion probability of junctions. This has been pointed out in
conductance calculated on the lattice model by using
QCA.69 In the lattice model, it was also shown thatBc de-
creases with the increase of the doping rate. The Fermi
ergy is a decreasing function of the doping rate. Theref
the transmission probability of junctions decreases with
creasing the doping rate.

Although Eqs.~53! and~56! are similar to each other, th
responses of the ZBCP to magnetic fields are qualitativ
different. To make clear if a magnetic field splits the ZBC
or not, we need some numerical simulations, where effect
magnetic field are taken into account accurately. In exp
ments, some papers show the split of the ZBCP in magn
fields.55,57 On the other hand, several papers report no sp
ting of the ZBCP.16,96–98A microscopic scattering theory in
dicates that the sensitivity of the ZBCP to magnetic fie
depends on the degree of potential disorder near the
interface.73

Finally we briefly discuss an important difference
the conductance in the present theory and that in the Q
The phenomenological theory reaches at Eq.~56! which is
almost the same as the conductance expression in the QC54

The two theories, however, still lack a quantitative agr
ment of the threshold magnetic field. The normalization
the penetrating magnetic fields in the QCA@B0

QCA

5f0 /(2pj0l0)# is about 1.6 T withl0;100j0.54,69 In Eq.
~55!, ps in the QCA is originally given by the vector potentia
which is not an observable value. Thus the QCA does

FIG. 6. The conductance under magnetic fields fordxy symme-
try, where z053 and 10 in~a! and ~b!, respectively. In high-Tc

material,B0 is estimated to be 160 T.
13450
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satisfy the gauge invariance. In the present theory, on
other hand, we consider uniform magnetic field and the n
malization of magnetic fields (B0) is about 160 T. This value
remains unchanged even if we consider penetrating magn
field asBe2x/l0ẑ with l0@j0. For example, in Fig. 7~b!, we
find that Bc is about 0.1B0 at z053. ThereforeBc is esti-
mated to be 16 T in the present theory. The same results
interpreted asBc50.16 T if we useB0

QCA in the QCA. The
threshold magnetic field in the QCA is estimated to be mu
smaller than that in the present theory. This disagreem
may be important because the maximum value of magn
fields in experiments is about 10 T.16,96–98

VI. CONCLUSION

We have presented a phenomenological theory of the
dreev reflection to make clear reasons for the appearanc
the ZBCP in normal-metal/unconventional-superconduc
junctions. The phenomenological theory reveals that the Z
is a consequence of the constructive interference effect
quasiparticle. The expression of the Andreev reflection pr
ability enables us to understand the importance of the unc
ventional pairing symmetry for the formation of the ZE
The phenomenological theory is applied to superconduc
with a BTRSS and junctions under magnetic fields. The s
of the ZBCP ins1 idxy wave superconductors is understo
in terms of the shift of the resonance energy by thes-wave
component. The Aharonov-Bohm like phase received fr
magnetic fields suppresses the degree of resonance o
ZES, which explains the suppression of the ZBCP in m
netic fields.

Note Added in Proof. Although the reflection coefficients
in Eqs.~21! and~22! are obtained from a phenomenologic
description of a quasiparticle’s motion, the calculatio
themselves are done in a correct quantum-mechanical w
The expansion in Fig. 2 corresponds to the estimation
probability amplitude of a quasiparticle starting forr i and
appearing at another pointr f . The probability amplitude is
calculated by multiplying the probability amplitudes along
propagation path and by summing over all possible pa

FIG. 7. The conductance in the quasiclassical approximatio
plotted for several magnetic fields in~a!, where z0510. In ~b!,
threshold magnetic fields are shown as a function of 1/z0

2.
1-8
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@see R.P. Feynman and A.R. Hibbs,Quantum Mechanics and
Path Integrals~McGraw-Hill, N.Y., 1965!#. These calcula-
tions are carried out in Eqs.~16!–~21! in a correct way. Thus
Eqs. ~21! and ~22! coincide with the correct expressions
the reflection coefficients calculated from the boundary c
ditions. This is pointed out by M. Belogolovskii and deta
are given in Ref. 74.

APPENDIX: ANDREEV REFLECTION
BY SPIN-TRIPLET SUPERCONDUCTORS

In the text, we consider two-dimensional spin-singlet s
perconductors andd-function type potential barrier for sim
plicity. Here we generalize the phenomenological theory
spin-triplet superconductors in three dimension. The pair
tential in superconductors is given by

D̂~k!5H id~k!•ŝŝ2 , triplet

id~k!ŝ2 , singlet,
~A1!

whereŝ j for j 51, 2, and 3 are Pauli matrices represent
the spin degree of freedom. We assume that the current
the x direction and consider a potential barrier

V~r!5V0@Q~x!2Q~x2L !#, ~A2!

whereL is the thickness of the insulating layer. The Andre
reflection coefficients in the absence of the insulator are
culated analytically

r̂ 0
he52e2 iwsD̂ (1)

† R̂(1) , ~A3!

r̂ 0
eh52eiwsR̂(2)D̂ (2) , ~A4!

D̂ (6)5 id6•ŝŝ2 , ~A5!

R̂(6)5
1

2uq6u (
l 51

2 FKl ,6

D l ,6
2

P̂l ,6G , ~A6!

D l ,65Aud6u22~21! l uq6u, ~A7!

Kl ,65AE22D l ,6
2 2E, ~A8!

P̂l ,65uq6uŝ02~21! lq6•ŝ, ~A9!

q65 id63d6* , ~A10!

d65d~6kx ,ky ,kz!, ~A11!

wherews is a macroscopic phase of superconductor,l (51 or
2! indicates the two spin branches of Cooper pairs, andŝ0 is
the 232 unit matrix. The normal transmission and the n
mal reflection coefficients of the insulator are calculated

t̂ N5
22i k̄xp̄xe

2 ikxL

z1*
ŝ0 , ~A12!
13450
-
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o
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-

r̂ N5
2z0

z1*
ŝ0 , ~A13!

z05
V0

mF
sinh~pxL !, ~A14!

z15~ p̄x
22 k̄x

2!sinh~pxL !12i k̄xp̄x cosh~pxL !, ~A15!

wherepx5A(V0 /mF)2(kx /kF)2 is the wave number at the
insulator andp̄x5px /kF .

The argument in Sec. II leads to the exact expression
the Andreev and the normal reflection coefficients99 which
are given by

r̂ ee52z0z1@ŝ02Ŵ#@ uz1u2ŝ02z0
2Ŵ#21, ~A16!

r̂ he52e2 iws4k̄x
2p̄x

2D̂ (1)
† R̂(1)@ uz1u2ŝ02z0

2Ŵ#21,
~A17!

Ŵ5R̂(2)D̂ (2)D̂ (1)
† R̂(1) . ~A18!

The results of unitary states including the spin-singlet sta
can be obtained when we use the following relations:

R̂(6)5
AE22uD6u22E

uD6u2
ŝ0 , ~A19!

uD6u5H ud6u, singlet

ud6u, triplet
~A20!

in Eqs. ~A16!–~A18!. The differential conductance is give
by

GNS5
e2

h (
ky ,kz

Tr@ŝ02 r̂ ee~ r̂ ee!†1 r̂ he~ r̂ he!†#uE5eVbias
.

~A21!

A relation d252d1 represents the condition for the perfe
formation of the ZES. Actually whend15d5nd2 with n
561, the Andreev reflection probability becomes

Tr@ r̂ he~ r̂ he!†#5(
l 51

2 U 4k̄x
2p̄x

2D lKl

4k̄x
2p̄x

2D l
21z0

2~D l
22nKl

2!
U2

,

~A22!

whereKl5Kl ,15Kl ,2 andD l5D l ,15D l ,2 .
In the limit of E→0 andz0@1, we find

Tr@ r̂ he~ r̂ he!†#5H 2S 4k̄x
2p̄x

2

2z0
2 D 2

, n51

2, n521,

~A23!

where spin degree of freedom gives rise to a factor 2. T
the zero-bias conductance is independent of the transmis
probability of junctions whend252d1 is satisfied.

In spin-singlet superconductors, we show that the inter
phase of a Cooper pair is responsible for the ZES. In sp
triplet superconductors, the internal spin degree of freed
of a Cooper pair has other possibilities for the formation
some resonant states in subgap energies.
1-9
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