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1. Introduction

The Josephson effect is a result of the Andreev reflection1)

of a quasiparticle incident into a superconductor from a
normal metal.2) In unconventional superconductors, the pair
potential of an incident quasiparticle in the electron branch is
different from that in the hole branch. When the two pair
potentials have opposite signs, a constructive interference of
a quasiparticle causes the formation of a zero-energy state
(ZES) at a surface of a superconductor.3–9) The ZES
drastically affects transport properties through the surfaces
of superconductors because it appears just on the Fermi
energy. For instance, a large peak at the zero bias voltage in
tunneling spectra of unconventional superconductors is a
direct consequence of the ZES.5,10–16) The low-temperature
anomaly of the Josephson current between the two uncon-
ventional superconductors is explained in terms of the
resonant tunneling of Cooper pairs through the ZES.17–28) In
theories, so far, the Andreev reflection has been studied by
using the free electron model in which the quadratic
dispersion relation and the isotropic Fermi surface are
assumed. Although the Fermi surfaces in real superconduc-
tors are not isotropic at al., calculated results based on the
free electron model well explain experimental results. This
fact implies that the Andreev reflection might be insensitive
to electronic structures in superconductors and that it would
be sensitive only to pairing symmetries. However, recent
theoretical studies showed several exceptions.26,29) The
density of states at the surface of organic superconductors
(TMTSF)2X (X ¼ PF6, ClO4, etc.)

30,31) depends strongly on
the shape of the quasi one-dimensional (Q1D) Fermi surface
when triangular lattice structures are taken into account in
the superconductor.29,32)

In (TMTSF)2X, unconventional superconductivity has
suggested from a number of experiments such as large
Hc2,

33) unchanged Knight shift across Tc,
34) an NMR

measurement,35) a thermal conductivity measurement36)

and the zero-bias conductance peak (ZBCP) in tunnel

spectra.37) Theoretically, a p wave paring has been proposed
in an early stage.38–40) On the other hand, a spin-singlet d
wave pairing mediated by spin fluctuations has been
proposed by several authors.41–43) Moreover, one of authors
has recently proposed that44) a triplet f wave pairing may
dominate over the d and the p wave in (TMTSF)2PF6. A
combination of a Q1D Fermi surface, coexistence of the 2kF
spin density wave and the 2kF charge density wave,45,46) and
an anisotropy in the spin fluctuations enables the f wave
symmetry.

Motivated by results of the surface density of states in
Q1D superconductors,29,32,47) we will discuss the direct-
current Josephson effect between two organic superconduc-
tors. The purpose of this paper is to make clear effects of the
quasi one-dimensionality, those of the quarter-filling elec-
tron density and those of the triangular lattice structures on
the Josephson current. So far, a theoretical paper48) has
reported the Josephson effect in organic superconductors.
However these issues were not discussed. For the purpose,
we describe the organic superconductors by using the tight-
binding model on a two-dimensional square lattice. The
quasi one-dimensionality is taken into account through the
anisotropy of the hopping integrals in the two directions. To
consider the triangular lattice structures in real materials, we
also introduce the asymmetric hopping integral among
second nearest lattice sites. In superconductors, we assume
pair potentials with p, d and f wave like pairing symmetries.
The Josephson current is numerically calculated by using the
lattice Green function method.49–51) A combination of the
quasi one-dimensionality, the quarter-filling electron density
and the weak triangular lattice structures seriously affects
the formation of a zero-energy state at a junction interface.
As a consequence, calculated results of the Josephson
current show anomalous dependences on temperatures.

This paper is organized as follows. In §2, we described the
Josephson junctions of organic superconductors by the
Bogoliubov–de Gennes equation on the two-dimensional
lattice. The Josephson current is discussed for p, d and f
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wave symmetries in §3. In §4, we discuss the calculated
results. We summarize this paper in §5.

2. Model and Method

Let us consider Q1D superconductor/insulator/supercon-
ductor (SIS) junctions as shown in Fig. 1. A vector r ¼
j �xxþ m �yy points a lattic site, where �xx and �yy are the unit
vectors in the x and the y directions, respectively. The two
superconductors (i.e., �1 � j � 0 and Lþ 1 � j � 1) are
separated by the insulator (i.e., 1 � j � L). We assume the
periodic boundary condition in the y direction. The number
of lattice sites in the y direction is M. The superconducting
junctions are described by the mean-field Hamiltonian

HBCS ¼
1

2

X
r;r0

~ccyrhr;r0 �̂�0 ~ccr0 � ~cctrh
�
r;r0 �̂�0 ~ccyr0

� �th i

þ
1

2

X
r;r02S

~ccyr�̂�r;r0 ~ccyr0
� �t� ~ccrf gt�̂��

r;r0 ~ccr0
h i

; ð1Þ

hr;r0 ¼ �tr;r0 þ ð�r � �rÞ�r;r0 ; ð2Þ

�̂�r;r0 ¼
idr;r0 � �̂��̂�2: triplet
idr;r0 �̂�2 : singlet,

�
ð3Þ

~ccr ¼
cr;"

cr;#

� �
; ð4Þ

where cyr;� (cr;�) is the creation (annihilation) operator of an
electron at r with spin � ¼ (" or #), �̂�0 is the 2� 2 unit
matrix representing the spin space, �̂�j with j ¼ 1{3 are the
Pauli matrices and S in the summation denotes the super-
conductors. The Fermi energy in the superconductor is �r ¼
�S for j � 0 and j � Lþ 1, and that in the insulator is �r ¼
�N for 1 � j � L. In superconductors, �r is taken to be zero,
and ta and tb are the hopping integral in the x and the y

directions, respectively. We also introduce the asymmetric
hopping integral (t0) between the second nearest neighbors as
shown in Fig. 1 to realize electronic structures in
(TMTSF)2PF6. In the insulator, �r ¼ VB for 1 � j � L

represents the barrier potential and the hopping integrals in
the two directions are equal to ta. The pair potential in p, d
and f wave symmetries are defined by,

d
ðpÞ
r;r0 ¼

�

2
sgnð j� j0Þ�j j�j0 j;2�m;m0e3; ð5Þ

dðdÞr;r0 ¼
�

2
�j j�j0j;2�m;m0 ; ð6Þ

d
ð f Þ
r;r0 ¼

�

2
sgnð j� j0Þ�j j�j0 j;4�m;m0e2; ð7Þ

where ej with j ¼ 1, 2 and 3 are unit vectors in the spin
space. The macroscopic phase factor ei’L or ei’R should be
mutiplied to the pair potentials when we calculate the
Josephson current. A schematic picture of Cooper pairs is
shown in Fig. 1. The pair potential in eqs. (5), (6) and (7) are
proposed in theoretical papers. At the quarter filling electron
density, it is reasonable to consider the pairing correlation
between two electrons localized at the second nearest
neighbor sites as shown in Fig. 1. The spins of the
neighboring electrons tend to align opposite direction. As a
consequence, the two neighboring spins form a singlet pair
or a triplet one. A Quantum Monte Carlo study42) on the
Hubbard model showed that spin correlation function has a
peak at a nesting vector ðka; kbÞ ¼ ð�=2; �Þ, where ka and kb
are the wavenumber in the x and the y direction, respec-
tively. Such spin structure favors a superconducting order
parameter in eq. (6). The possibility of the order parameter
in eq. (6) was also pointed out in a diagrammatic expan-
sion.41) Equation (6) is a natural solution when the two
neighboring spins form a spin-singlet pair. On the other
hand, a possibility of the spin-triplet pairing was pointed out
in several papers.38–40,44) The spin-triplet symmetry requires
the anti-symmetric pair potential in the momentum space,
which causes the node line at ka ¼ 0. The condensation
energy, however, is well preserved because the node line
does not intersect the Q1D Fermi surface.39) Equation (5) is
a natural solution when the two neighboring spins form a
spin-triplet pair with Sy ¼ 0 in the presence of an anisotropy
in the spin–spin correlation.52) Actually the easy axis of
spins is the b axis parallel to the y direction. One of authors
also proposed eq. (7) based on results of the fluctuation-
exchange calculation.44) The coexistence of the 2kF spin and
charge fluctuations favors the pairing correlation between
two electrons at fourth nearest neighbor sites in the presence
of an anisotropy in the spin–spin correlation. These pair
potential may remain qualitatively unchanged even in the
presence of jt0j � t because the spin and the charge
fluctuations along the chain direction, the quasi one-
dimensionality and the anisotropy of the spin–spin correla-
tion are important ingredients in the argument above.44) Thus
eqs. (5)–(7) are highly possible candidates of pair potentials
in Q1D superconductors at the quarter-filling electron
density such as (TMTSF)2X.

The two spin-triplet pair potentials in eqs. (5) and (7) are
basically belonging to the same symmetry class. Thus they
are possible to coexist. Especially this may happen at the
junction interface because the interface might suppress the
coexistence of the 2kF spin and the charge fluctuations which
favors eq. (7). As well as a paring symmetry in bulk, a
symmetry at a surface or a hetero structure interface is very
important issue to understand nature of superconductivity.53)

At present, however, we have only limited information on
this issue. In this paper, at the first step of studying the
quantum transport in organic superconductors, we distin-
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Fig. 1. A schematic figure of the SIS junction of the organic super-

conductor.
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guish eq. (5) from (7) because the purpose of this paper is to
study effects of the quasi-one dimensionality, the quarter-
filling electron density and triangular lattice structures on the
Josephson current.

The Hamiltonian is diagonalized by the Bogoliubov
transformation,

~ccr

~ccyr
� �t

" #
¼
X
�

ûu� ðrÞ v̂v�� ðrÞ
v̂v� ðrÞ ûu�� ðrÞ

� � ~���

~��y�
� �t

" #
; ð8Þ

~��� ¼
��;"

��;#

� �
; ð9Þ

where �y�;� (��;�) is the creation (annihilation) operator of a
Bogoliubov quasiparticle. In eq. (8), ûu� and v̂v� satisfy the
Bogoliubov–de Gennes (BdG) equation,54)

X
r0

hr;r0 �̂�0 �̂�r;r0

��̂��
r;r0 �h�r;r0 �̂�0

" #
ûu� ðr0Þ
v̂v� ðr0Þ

� �
¼ E�

ûu� ðrÞ
v̂v� ðrÞ

� �
: ð10Þ

The eigen value E� is independent of spin channels because
we consider unitary states in superconductors. In what
follows, we briefly discuss the method to calculate the
Josephson current for the d wave symmetry. The application
to the p and the f wave symmetries is straightforward. In the
case of the d wave symmetry, the BdG equation in eq. (10)
is decoupled into two equations,

X
r0

hr;r0 dðdÞr;r0

dðdÞr;r0
� 	�

�h�r;r0

" #
u11ð Þ� ðr0Þ
v21ð Þ� ðr0Þ

� �
¼ E�

u11ð Þ� ðrÞ
v21ð Þ� ðrÞ

� �
; ð11Þ

where uij
� 	

, for example, represents an element of ûu in
eq. (8) and u21; v11½ �t obeys essentially the same equation. In
the following, we omit 11 from u11 and 21 from v21. The
wave function can be represented in a 2M � 1 matrix form

�� ð jÞ ¼

u� ð j �xxþ 1 �yyÞ

..

.

u� ð j �xxþM �yyÞ
v� ð j �xxþ 1 �yyÞ

..

.

v� ð j �xxþM �yyÞ

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
: ð12Þ

For j < �2, for instance, the BdG equation reads

�

2

0̂0 ei’L 1̂1

e�i’L 1̂1 0̂0

 !
�� ð jþ 2Þ

þ
T̂TNð�Þ 0̂0

0̂0 �T̂TNð�Þ

 !
�� ð jþ 1Þ

þ
�E� 1̂1þ ÊES 0̂0

0̂0 �E� 1̂1� ÊES

 !
�� ð jÞ

þ
T̂TNðþÞ 0̂0

0̂0 �T̂TNðþÞ

 !
�� ð j� 1Þ

þ
�

2

0̂0 ei’L 1̂1

e�i’L 1̂1 0̂0

 !
�� ð j� 2Þ ¼ 0; ð13Þ

T̂TNðþÞ ¼

�ta �t0 0 � � � 0

0 �ta �t0 � � � 0

..

. . .
. . .

. . .
. ..

.

0 � � � 0 �ta �t0

�t0 0 � � � 0 �ta

0
BBBBBBB@

1
CCCCCCCA
; ð14Þ

T̂TNð�Þ ¼

�ta 0 � � � 0 �t0

�t0 �ta 0 � � � 0

..

. . .
. . .

. . .
. ..

.

0 � � � �t0 �ta 0

0 � � � 0 �t0 �ta

0
BBBBBBB@

1
CCCCCCCA
; ð15Þ

ÊES ¼

��S �tb 0 � � � �tb

�tb ��S �tb � � � 0

..

. . .
. . .

. . .
. ..

.

0 � � � �tb ��S �tb

�tb 0 � � � �tb ��S

0
BBBBBBB@

1
CCCCCCCA
; ð16Þ

where 1̂1 and 0̂0 are the M �M unit matrix and the zero
matrix, respectively. To solve the BdG equation, we apply
the recursive Green function method49–51) and calculate the
Matsubara Green function in a matrix form

�GG!n
ð j; j0Þ ¼

X
�

�� ð jÞ½i!n � E� ��1�y
� ð j

0Þ; ð17Þ

where !n ¼ ð2nþ 1Þ�T is the Matsubara frequency and T is
a temperature. Throughout this paper, we use the units of
h� ¼ kB ¼ 1, where kB is the Boltzmann constant. The
Josephson current in the insulator (1 < j < L� 1) is given
by50,51)

Jð jÞ ¼ �ieT
X
!n

ta Tr �GG!n
ð jþ 1; jÞ � �GG!n

ð j; jþ 1Þ
h i

: ð18Þ

We note that Jð jÞ is independent of j when we consider the
direct-current Josephson effect.

3. Josephson Current

The low-temperature anomaly of the Josephson current is
a typical phenomenon in the quantum transport between two
unconventional superconductors.17–22,24,27) In this section, we
discuss effects of the asymmetric second nearest neighbor
hopping (t0) on the ZES and on the Josephson current. For
finite t0, it is possible to consider two types of SIS junctions
as shown in Figs. 1(a) and 1(b). The parallel junction
consists of two A-type superconductors, whereas the mirror-
type junction consists of a A-type superconductor and a B-
type one. Generally speaking, the Josephson effects in the
two junctions are not identical to each other.

In what follows, we choose the parameters as tb ¼ 0:1ta,
�S ¼ �1:4099ta, �N ¼ �2:0ta, M ¼ 20, L ¼ 4, and VB ¼
2:0ta. The electron density is fixed at the quarter-filling. The
amplitude of the pair potential at the zero temperature is
�0 ¼ 0:1ta and the dependence of the pair potential on
temperatures is described by the BCS theory.

3.1 p Wave symmetry
In Fig. 2, we show the Josephson current in the parallel

junction for the p wave symmetry. The vertical axis is
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normalized by ��0=2eRN, where RN is the normal resistance
of junctions. We note in this vertical scale that the Josephson
current of the s wave superconductor with the isotropic
Fermi surface is close to unity in the limit of the zero
temperature.55) In (TMTSF)2PF6, the second nearest neigh-
bor hopping is estimated as �t0=ta ¼ 0:08. We also show
results for �t0=ta ¼ 0 and 0.16 for comparison. In Fig. 2(a),
the maximum value of the Josephson current ðJmaxÞ is plotted
as a function of temperatures, where Jmax is obtained from
the current–phase relation of the Josephson current. The
Josephson current increases with decreasing temperatures
for all t0 and does not saturate even in low temperatures. This
behavior is called the low-temperature anomaly of the
Josephson current and is owing to the ZES at the junction
interfaces. When the d vector has only one component, a
condition for appearance of the ZES is given by8)

dðka; kbÞ ¼ �dð�ka; kbÞ; ð19Þ

where dðka; kbÞ is the Fourier component of dr�r0 . We note
that eq. (19) is the most strict condition. The ZES can appear
when dðka; kbÞ � dð�ka; kbÞ is real negative.8) The two pair
potentials in eq. (19) correspond to the pair potentials in the
electron and hole branches of a quasiparticle. Since the
translational invariance in the y direction holds, kb is
conserved in the transmission and the reflection processes at
the junction interfaces. In the p wave symmetry, a Fourier
component of the pair potential in eq. (5) is given by

dðpÞðka; kbÞ ¼ �sinð2kaÞe3: ð20Þ

Since eq. (20) is an odd function of ka, it satisfies eq. (19)
for all the Fermi surface as shown in Fig. 3, where we draw
the Fermi surface for t0 ¼ 0 in (a), t0 ¼ �0:08ta in the
A-type superconductor in (b) and t0 ¼ �0:08ta in the B-type
superconductor in (c) with the solid line. The pair potential
in the p wave symmetry has a node line at ka ¼ 0 in both the
free electron model and the lattice model. In the lattice
model, however, eq. (20) has additional node lines at ka ¼
	0:5� because of the pairing interaction between two
electrons on the second nearest neighbor sites in the x

direction as shown in Fig. 1. We define the additional node
lines as the node lines resulting from the quarter-filling
electron density.

The asymmetric hopping ðt0Þ modulates the shape of the
Fermi surface as shown in Figs. 3(b) and 3(c). When the
Fermi surface looses a symmetry with respect to ka ¼ 0, the
condition for the ZES should be rewritten as

dðka; kbÞ � dð�k0a; kbÞ < 0; ð21Þ

where ka and �k0a are the wave numbers on the Fermi
surface. In Fig. 3(b), the two wave numbers are indicated by
arrows on the Fermi surface for kb ¼ �=2. In the following,
eq. (21) is referred to as the zero-energy condition (ZEC).
Even in the presence of t0, the ZEC is always satisfied
because the additional node lines at ka ¼ 	�=2 are far from
the Fermi surface. The amplitude of the Josephson current at
T ¼ 0:01Tc decreases with increasing �t0=ta as show in
Fig. 2(b). This is mainly because RN decreases with
increasing �t0=ta. In our calculation, RN in units of h=e2

are 1.04, 0.83 and 0.63 for �t0=ta ¼ 0, 0.08 and 0.16,
respectively. In Fig. 2(c), we show the Josephson current as
a function of ’ ¼ ’L � ’R at T ¼ 0:01Tc. The current–phase
relation in the low temperature deviates from the sinusoidal
function because the resonant tunneling through the ZES
enhances the multiple Andreev reflection between the two

Fig. 2. Josephson current for the p wave symmetry is shown, where

tb ¼ 0:1ta, �S ¼ �1:4099ta, M ¼ 20, L ¼ 4, and VB ¼ 2ta. In (a), the

maximum amplitude of the Josephson current (Jmax) is plotted as a

function of temperatures. In (b), Jmax at T ¼ 0:01Tc are shown as a

function of �t0=ta. The current–phase relation is calculated at T ¼ 0:01Tc
in (c).

Fig. 3. The Fermi surface of TMTSF for t0 ¼ 0 is shown in (a). Those for

t0 ¼ �0:08ta in the A-type and the B-type superconductors are shown in

(b) and (c), respectively. The pair potential in the p wave symmetry is

given by �sin 2ka which changes the sign at ka ¼ 0 as indicated by þ
and � in the figures.
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superconductors. We note that the results in the mirror-type
junction are identical to those in Figs. 2(a)–2(c). In the p

wave symmetry, the Josephson current is insensitive to the
lattice structures because the ZES always forms at the
junction interface irrespective of t0.

3.2 d Wave symmetry
In Fig. 4, we show the Josephson current in the parallel

junctions for the d wave symmetry. In Fig. 4(a), Jmax is
plotted as a function of temperatures. In the absence of t0, the
Josephson current saturates in low temperatures as that in the
s wave junctions. On the other hand, the results for �t0=ta ¼
0:08 and 0.16 do not saturate in low temperatures. In
particular, the Josephson current for �t0=ta ¼ 0:16 rapidly
increases with decreasing temperatures. In the case of spin-
singlet superconductors, the ZEC is given by

dðka; kbÞdð�k0a; kbÞ < 0; ð22Þ

where dðka; kbÞ is the Fourier component of dr�r0 . In the d

wave symmetry, A Fourier component of the pair potential
in eq. (6) is given by

dðdÞðka; kbÞ ¼ �cosð2kaÞ; ð23Þ

and is the even function of ka. The additional node lines in
the lattice model are at ka ¼ 	0:25� and 	0:75�. In the
absence of t0, eq. (23) does not satisfy the ZEC in eq. (22)
for all the Fermi surface as shown in Fig. 6, where we draw
the Fermi surface for t0 ¼ 0 in (a). The Fermi surface

indicated by the broken line does not satisfy the ZEC. In the
presence of t0, however, the ZEC can be satisfied for some
wave numbers on the Fermi surface as plotted with the solid
line in Fig. 6(b). The shape of the Fermi surface looses the
inversion symmetry with respect to ka ¼ 0 in the presence
of t0. As a result, the ZEC in eq. (22) is satisfied for some
wave numbers on the Fermi surface because the Fermi
surface lies along the additional node lines at ka ¼ 	0:25�.
This implies an importance of lattice structures on the
quantum transport. The current–phase relation deviates from
the sinusoidal relation as shown in the results for �t0=ta ¼
0:16 in Fig. 4(c) because most wave number on the Fermi
surface satisfy the ZEC as shown in Fig. 6(d). We note that
the Fermi surface around kb ¼ 0 and 	� are still out of the
ZEC even for �t0=ta ¼ 0:16. In this paper, we consider
relatively thick insulators, where the transmission probabil-
ities of a quasiparticle incident perpendicular to the interface
(kb 
 0) become much larger than those for kb 
 	�. The
contribution of the resonant tunneling via the ZES is small
for �t0=ta ¼ 0:08 because the Fermi surface around kb 
 0

in Fig. 6(b) is out of the ZEC.
The Josephson effect in the mirror-type junctions is

qualitatively different from that in the parallel junctions. In
Fig. 5, we show the Josephson current for the d wave
symmetry in the mirror-type junctions. In Fig. 5(a), Jmax for
�t0=ta ¼ 0:08 first increases with decreasing temperatures
then decreases for T < 0:05Tc. Such a non monotonic
temperature dependence has been also reported in the high-
Tc superconductor Josephson junctions. For �t0=ta ¼ 0:16,
the Josephson current changes its sign and the amplitude
increases rapidly with decreasing temperatures. The dif-

Fig. 4. Josephson current in the parallel junction for the d wave symmetry

is shown. In (a), the Josephson current is plotted as a function of

temperatures. In (b), amplitudes of the Josephson current at T ¼ 0:01Tc
are shown as a function of�t0=ta. The current–phase relation is calculated

at T ¼ 0:01Tc in (c).

Fig. 5. Josephson current for the d wave symmetry in the mirror-type

junction.
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ferences between the parallel and the mirror-type junctions
can be understood in terms of the relative sign of the pair
potentials in the two superconductors. In the presence of the
time-reversal symmetry, the Josephson current is decom-
posed into a series of

J ¼
X1
n¼1

Jn sinðn’Þ: ð24Þ

It was shown that the J1 is roughly given by22)

J1 ¼
X
kb

dRðk0a; kbÞdLðka; kbÞF1ðkbÞ; ð25Þ

where F1 is the positive function of kb, dRðk0a; kbÞ and
dLðka; kbÞ are the pair potential on the Fermi surface in the
right and the left superconductors, respectively. Thus the
product of dRðk0a; kbÞdLðka; kbÞ determines the sign of the
Josephson current which is proportional to sin ’. The parallel
junction consists of two A-type superconductors as shown in
Fig. 1. Therefore dRðka; kbÞ and dLðka; kbÞ are identical to
each other, which results in the positive sign of J1. On the
other hand in the mirror-type junctions, dLðk0Þ in the A-type
superconductor shown in Fig. 6(b) has the opposite sign to
dRðk00Þ in the B-type superconductor in (c). In the mirror-
type junctions, it is easily shown that dRðk0a; kbÞdLðka; kbÞ is
always negative (positive) for a quasiparticle satisfying (not
satisfying) the ZEC. In high temperatures, J1 becomes

positive because a quasiparticle for kb 
 0 (which is out of
the ZEC) mainly contributes to the Josephson current. In low
temperatures, the resonant transmission via the ZES also
contributes to the Josephson current. As a consequence, J1
has a non monotonic temperature dependence as shown in
Fig. 5(a). For �t0=ta ¼ 0:16, the Josephson current is
negative for low temperatures because the resonant trans-
mission via the ZES mainly contributes to the Josephson
current. It is also shown that the Josephson current propor-
tional to sin 2’ is given by

J2 ¼ �
X
kb

dRðka; kbÞdLðk0a; kbÞ

 �2

F2ðkbÞ; ð26Þ

where F2 is the positive function of kb. The sign of J2 is
always negative irrespective of the pairing symmetries of the
two superconductors. Thus the current–phase relation for
�t0=ta ¼ 0:16 in Fig. 4(c) shows the maximum at ’ > 0:5�
in the parallel junctions. While the current–phase relation in
the mirror-type junction takes its minimum at ’ < 0:5� as
shown in Fig. 5(c).

3.3 f Wave symmetry
In Fig. 7, we show the Josephson current for the f wave

symmetry in the parallel junctions. In Fig. 7(a), the
maximum amplitude of the Josephson current is plotted as
a function of temperatures for �t0=ta ¼ 0; 0:08 and 0.16. In
the absence of t0, the Josephson current show the low-
temperature anomaly because the Fourier component of the

Fig. 7. Josephson current for f wave symmetry in the parallel junctions. In

(a), the maximum amplitude of the Josephson current is plotted as a

function of temperatures. In (b), amplitudes of the Josephson current at

T ¼ 0:01Tc are shown as a function of �t0=ta. The current–phase relation

is calculated at T ¼ 0:01Tc in (c).

Fig. 6. The Fermi surface of TMTSF for t0 ¼ 0 is shown in (a). Those for

t0 ¼ �0:08ta in the A-type and the B-type superconductors are shown in

(b) and (c), respectively. The pair potential in the d wave symmetry is

given by�cos 2ka which changes its sign at ka ¼ 	0:25� as indicated by

+ and � in the figures. The Fermi surface for t0 ¼ �0:16ta is shown for

A-type and B-type superconductors in (d) and (e), respectively. The

Fermi surface shown with the solid line satisfy the condition for the ZES

in eq. (22).

J. Phys. Soc. Jpn., Vol. 73, No. 7, July, 2004 Y. ASANO et al. 1927



pair potential, �sin 4ka, satisfies the ZEC for all the Fermi
surface as shown in Fig. 9(a). The additional node lines are
at ka ¼ 	0:25�, 	0:5� and 	0:75� in the lattice model.
The anomalous behavior tends to disappear for finite t0. In
Fig. 9(b), the Fermi surface out of the ZEC is indicated by
the broken line for t0 ¼ �0:08ta. For t0 ¼ �0:16ta, most
wave numbers of the Fermi surface do not satisfy the ZEC as
shown in Fig. 9(d). In contrast to the d wave junctions, the
formation of the ZES is suppressed by introducing t0 in the f
wave junctions. The phase–current relation for �t0=ta ¼ 0

and 0.08 in Fig. 7(c) apparently deviates from the sinusoidal
function because of the multiple Andreev reflection via the
ZES. The results for �t0=ta ¼ 0:16 slightly deviate from
sin ’, but degree of deviation is smaller than those for
�t0=ta ¼ 0 and 0.08.

In Fig. 8, we show the Josephson current for the f wave
symmetry in the mirror-type junctions. In (a), the Josephson
current for �t0=ta ¼ 0 and 0.08 are essentially the same as
those in the parallel junctions. In the current–phase relation
for �t0=ta ¼ 0:16 in (c), the Josephson current becomes zero
around ’ ¼ 0:75�. In this case, J1 becomes negative because
dRðk0a; kbÞ � dLðka; kbÞ is negative for almost all the Fermi
surface. The amplitude of J2 is not negligible because of the
resonant transmission through the ZES for a quasiparticle
incident perpendicular to the interface (i.e., kb 
 0). In a
rough estimation, we find jJ2j 
 0:7jJ1j.

4. Discussion

So far, we have studied the tunneling spectra and the
Josephson current of unconventional superconductors in
both the free electron model and the lattice model. In the

case of high-Tc superconductors, we find no qualitative
differences between the calculated results in the two
theoretical models. Indeed, the theoretical results in the free
electron model well explain the experimental results. Thus
the formation of the ZES has been believed to be insensitive
to electronic structures in superconductors such as the
effective mass of an electron and the shape of the Fermi
surface. The calculated results in this paper, however,
indicate that this statement is justified when the Fermi
surface is far from the additional node lines peculiar to the
lattice model. At the quarter-filling electron density of Q1D
superconductors, the pairing interaction tends to work
between two electrons at the second nearest neighbor sites
in the x direction as shown in Fig. 1 because of the long
range Coulomb repulsion. In particular, the f wave super-
conductivity requires the pairing interaction between the
fourth nearest neighbor sites in the x direction. As a
consequence, the pair potential changes its sign at the
additional node lines at ka ¼ 	0:25� in the d and f wave
symmetries as shown in Figs. 6 and 9. In the absence of the
asymmetric hopping ðt0Þ, it is clear that the ZES is (not)
formed in the f (d) wave symmetry. This is because the pair
potential in the f wave (d wave) symmetry is an odd (even)
function of ka. In the presence of t0, the shape of the Fermi
surface looses the inversion symmetry with respect to ka,
which affects the formation of the ZES. Roughly speaking, t0

Fig. 9. The Fermi surface of TMTSF for t0 ¼ 0 is shown in (a). Those for

t0 ¼ �0:08ta in the A-type and the B-type junctions are shown in (b) and

(c), respectively. The Fermi surface for t0 ¼ �0:16ta is shown in (d) and

(e). The pair potential in the f wave symmetry is given by�sin 4ka which

changes the sign at ka ¼ 0 and 	0:25� as indicated by + and � in the

figures. The Fermi surface shown with the solid line satisfies the condition

for the ZES. The broken line indicates the wave numbers of the Fermi

surface which do not satisfy the condition of the ZES.

Fig. 8. Josephson current for f wave symmetry in the mirror-type

junctions.
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assists the formation of the ZES in the d wave symmetry,
whereas it suppresses the ZES in the f wave symmetry. As a
results, the Josephson current exhibit the various temper-
ature dependences and the phase–current relations depend-
ing on the pairing symmetries, the degree of asymmetry and
the types of junctions.

The formation of the ZES is a universal phenomenon at
the surface of unconventional superconductors.8) It may be
possible to analyze the pairing symmetry of unconventional
superconductors from the anisotropy in the tunneling con-
ductance and that in the Josephson current because these
transport properties reflect the internal information of
Cooper pairs. In particular, tunneling spectroscopy is a
useful tool to analyze the pairing symmetry.29,32) In experi-
ments, however, the tunneling measurement has never been
done because it may be difficult to have clean and stable
surfaces of such organic materials. We are thinking that it
may be slightly easier to fabricate Josephson junctions from
bulk superconductors. It would be possible to introduce a
weak link on a bulk superconductor by using, for example,
the ion-beam irradiation technique or electro-crystallization
technique on bicrystals.37) The calculated results, by the first
looking, imply that it may be impossible to specify the
pairing symmetry of the organic superconductors because
the low-temperature anomaly can be observed for all
candidates of pairing symmetries. In the previous paper,
however, we showed that the sensitivity of the ZES to
external magnetic fields depends strongly on the pairing
symmetries.29) Thus it would be possible to extract informa-
tion of the pairing symmetry from the characteristic behavior
of the Josephson current under magnetic fields. The results
of this paper is the first step to discuss this issue. In our
model, the external magnetic fields can be taken into account
through the Peierls phase of the hopping integral. The
investigation in this direction is in progress. Results will be
given elsewhere soon.

5. Conclusion

We have studied the Josephson current in quasi one-
dimensional unconventional superconductors at the quarter-
filling electron density by using the tight-binding model on a
two-dimensional square lattice. The triangular lattice struc-
ture is also considered by the asymmetric second nearest
neighbor hopping ðt0Þ introduced on the square lattice. The
theoretical model describes electronic structures of organic
superconductors such as (TMTSF)2X. In the calculation, we
assume p, d, and f wave like pairing symmetries in
superconductors. The pair potentials have the additional
node lines because the pairing interaction works between the
second or fourth nearest neighbor sites in the current
direction at the quarter-filled electron density. The formation
of the zero-energy states is sensitive to t0 in the d and f wave
symmetries because the Fermi surface lies just along the
additional node lines at ka ¼ 	0:25�. In the presence of t0,
the triangular lattice structure assists the formation of the
ZES in the d wave symmetry, whereas it suppresses the ZES
in the f wave symmetry. It is possible to consider the two
types of junctions, (i.e., parallel and mirror), because of the
triangular lattice structures. The Josephson current shows
various temperature dependences and current–phase rela-
tions depending on the pairing symmetries of superconduc-

tors, the shape of the Fermi surface and the types of the
junction.
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