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Effects of impurity-scattering on a zero-bias conductance peak in ferromagnet/insulator/d-wave
superconductor junctions are theoretically studied. The impurities are introduced through the random
potential in ferromagnets near the junction interface. As in the case of normal-metal/insulator/d-wave
superconductor junctions, the magnitude of zero-bias conductance peak decreases with increasing the
degree of disorder. However, when the magnitude of the exchange potential in ferromagnet is sufficiently
large, the random potential can enhance the zero-bias conductance peak in ferromagnetic junctions.
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1. Introduction

In recent years, spin-dependent transport properties in
hybrid structures consisting of the colossal magneto resis-
tance (CMR) materials and high-TC superconductors have
received considerable theoretical and experimental attention
because the latest progress of nano-technologies enables
such structures. In hybrid structures involving high-TC
superconductors, it is well known that the zero-energy states
(ZES) formed at a surface of superconductors affect
transport properties. For instance, a large peak can be seen
in the conductance at the zero-bias voltage in normal-metal/
insulator/high-TC superconductor junctions.1–9) The ZES are
also responsible for the low-temperature anomaly of the
Josephson current in unconventional superconductor junc-
tions.10–12) In unconventional superconductors, the pair
potential changes its sign depending on a direction of a
quasiparticle’s motion.13–15) The origin of the ZES is an
interference effect of a quasiparticle in the presence of the
sign-change in the pair potential. The retro-reflectivity of
Andreev reflection16) (AR) supports the interference ef-
fect.17)

When we compare the theoretical results with experi-
ments, we should know effects of random potentials on the
conductance because a quasiparticle suffers the random
impurity-scattering near interfaces in real junctions. Very
recently, we study effects of impurity-scattering on the
conductance in diffusive normal-metal/insulator/d-wave
superconductor (DN/I/d-SC) junctions in numerical simula-
tions.18,19) At the same time, the full resistance of the
disordered junctions is derived from a microscopic theory.20)

The existence of the ZES induces the quite novel inter-
ference feature peculiar to the unconventional superconduc-
tors where the pair potential changes its sign on the Fermi
surface. In the presence of the ZES, with the increase of the
resistance in the normal diffusive region, RD, the full

resistance R does not show the reentrant behavior, i.e.
ðdR=dRDÞ > 0 at RD ¼ 0 which is completely different from
that in the diffusive normal metal/insulator/s-wave super-
conductor (DN/I/s-SC) junctions where reentrant behavior
ðdR=dRDÞ < 0 at RD ¼ 0 is expected.21) In the extreme case,
with (110) oriented junction of d-wave superconductor,
where quasiparticles always feel ZES at the interface, R can
be expressed as RD þ RRD¼0,

20) which indicates the absence
of the proximity effect.22)

In clean ferromagnet/insulator/ d-wave superconductor
(FM/I/d-SC) junctions, it is pointed out that the retro-
reflectivity of AR is suppressed by the exchange potential in
FM.23–27) Since the momentum of quasiparticle parallel to
the interface is conserved in clean junctions, an Andreev
reflected hole with down-spin cannot trace the original path
of an incident electron with up-spin. As a consequence, the
zero-bias conductance peak (ZBCP) in FM/I/d-SC junctions
decreases with increasing the exchange potential. In addition
to the basic physical point of view, FM/I/d-SC junctions
have a possibility to be used as a measuring tool of the spin-
polarization in FM. In FM/I/conventional superconductor
junctions, generally speaking, the conductance mainly
depends on both the potential barrier at the interface and
the spin-polarization in FM. Thus a relation between the
conductance and the spin-polarization is unclear when we
lack definite information on the potential barrier. When a
superconductor is a d-wave superconductor, however, it may
be possible to say that there is a one-to-one correspondence
between a height of ZBCP and a degree of spin-polarization
in FM.28) This is because the ZBCP in d-wave junctions is a
result of the resonant tunneling of a quasiparticle through the
junction, therefore, it does not depend on the potential
barrier. Thus the ZBCP depends only on the spin-polariza-
tion. The above argument, however, was valid only when the
junctions are in the clean limit. In real junctions, impurity-
scattering inevitably exists in the FM and may affect the
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zero-bias conductance. Therefore, we need to study effects
of the impurity-scattering in FM on a relation between the
ZBCP and the exchange potential.

In this paper, effects of the randomness on the ZBCP in
FM/I/d-SC junctions are studied numerically by using the
recursive Green function method. It is naively expected that
the height of the ZBCP in disordered FM/I/d-SC junctions
might be smaller than that in clean junctions. Contrary to
expectations, we found that the random potential enhances
the height of ZBCP when the polarization of ferromagnets is
sufficiently large. We also study a full resistance R of the
junction as a function of the length of disordered region in
the FM. In contrast to the case of DN/I/s-SC junction,
reentrant behavior is hard to be expected in the case of
DN/I/d-SC junction with ZES. When the magnitude of the
polarization in FM is not large, full resistance R can be
expressed as RD þ RRD¼0 as well as that in DN/I/d-SC
junction. We also study the relation between the tunneling
conductance and the polarization in FM. The calculated
results show that a relation between the height of the ZBCP
and the magnitude of the exchange potential is insensitive to
the random potential when ferromagnets are near half-
metallic, and the length of the disordered region is
sufficiently short.

This paper is organized as follows. In §2, the model and
formulations are presented. The numerical results are shown
in §3. In §4, we summarize this paper.

2. Formulation

We consider a FM/I/d-SC junction on the two-dimen-
sional square lattice as shown in Fig. 1(a). Periodic boundary
conditions are assumed in the direction parallel to the
interface and the width of the junction is Ma, where a is the
lattice constant. We describe the FM/I/d-SC junction by the
mean-field (BCS) Hamiltonian H on the single-orbital tight-
binding model,

H ¼ �t
X

l;m;l0 ;m0 ;�

cyl0 ;m0 ;�cl;m;� þ H.c.
� �

þ
X
l;m;�

vl;m � v�
� �

cyl;m;�cl;m;� � �n̂n

�
X

l;m;l0 ;m0

�m;m0

l;l0 cyl;m;#c
y
l0;m0;" þ H.c.

� �
ð1Þ

where ðl;mÞ are lattice indices, cl;m;�ðcyl;m;�Þ is the annihila-
tion (creation) operator of an electron at ðl;mÞ with spin �
(¼ " or #), n̂n is the number operator and � is the chemical
potential of a junction. In the first term, the summationP

l;m;l0 ;m0 runs over nearest-neighbor sites, and t is the
nearest-neighbor hopping integral. In this paper, the length is
measured in units of the lattice constant a and the energy is
measured in units of t. We introduce the pair potential
between the next nearest neighbor sites to describe the
junction with � ¼ �=4 where the � is the angle between the
(100) direction of high-Tc superconductors and the junction
interface normal. As shown in Fig. 1(b), the pair potential
�m;m0

l;l0 is given by

�m;m0

l;l0 ¼
�0 : l ¼ l0 � 1;m ¼ m0 � 1

��0 : l ¼ l0 � 1;m ¼ m0 � 1

0 : otherwise

8<
: ð2Þ

where �0 is the amplitude of the pair potential at the zero
temperature. We note that the tight-binding model does not
correspond to the two-dimensional CuO2 plane in high-TC
superconductors. The tight-binding lattices represent the
two-dimensional space. In our model, we introduce the pair
potential between the next nearest neighbor sites to describe
junctions with � ¼ �=4. An alternative way to describe the
�=4-junction is keeping the pair potential between the
nearest neighbor sites and rotating the square lattice by 45�.
There are no essential differences between results in the two
models when we focus on the formation of the ZES. This is
because the ZES is a consequence of the d-wave symmetry
of the pair potential. The exchange potential in FM is defind
by Vex ¼ ðv" � v#Þ=2, where v"ð#Þ is the spin-dependent
potential of an electron with � ¼ "ð#Þ. The impurity potntial
in FM is considered through on-site potential vl;m which
takes random values uniformly distributed within a range of
�Vdis=2 � vl;m � Vdis=2 in a disordered region as shown in
Fig. 1(a). In an insulator, vl;m is set to be Vins independent of
ðl;mÞ. Far from the interface, vl;m is taken to be zero.

By applying the Bogoliubov transformation, H in eq. (1)
is diagonalized and we obtain the Bogoliubov–de Gennes
equation which is numerically solved by using the recursive
Green function technique.17–19,29,30) In this method, the real-
space Green function G

m;m0

l;l0 is calculated without any
approximation for the random potential: this is an advantage
of the recursive Green function method. Using the Kubo

Ldis

M

I d-wave SCFM disordered FM

(a)

(b)

+

π/4
d-wave SC

Fig. 1. Schematic figure of (a) disordered ferromagnetic metal/insulator/

d-wave superconductor junction and (b) pair potential of d-wave

superconductor.
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formula,31,32) the conductance is expressed in terms of the
Green’s functions

G ¼
e2

h

t2

2

X
�

XM
m¼1

X2M
n¼1

�
�GGm;n
l;lþ1

�GGn;m
l;lþ1 þ �GGm;n

lþ1;l
�GGn;m
lþ1;l

� �GGm;n
l;l

�GGn;m
lþ1;lþ1 � �GGm;n

lþ1;lþ1
�GGn;m
l;l

�
; ð3Þ

where �GG ¼ GðE � i0Þ � GðE þ i0Þ and �GGl;l0 is a 2M � 2M

matrix. Since the DC conductance does not depend l, l is
taken to be far away from the disordered region in numerical
simulations. In what follows, we calculate the ensemble
average of the conductance hGi over a number of samples
which have different random impurity-configurations.

3. Results

Throughout this paper, we fix M ¼ 32, �0 ¼ 0:001t, � ¼
�2:5t and use 1000 samples to carry out the ensemble
average.

In Figs. 2A, 2B, and 2C, the ensemble average of the
conductance hGi at the zero-bias voltage (ZBCP) is plotted
as a function of Vdis for several choices of Vex, where Vins is
fixed at 5.0. The length of the disordered region is
Ldis ¼ 2:0, 5.0, and 10.0 in Figs. 2A, 2B, and 2C,
respectively. The curve (a) are results of N/I/d-SC junctions
(i.e., Vex ¼ 0:0). We consider the exchange potential in
ferromagnet as Vex ¼ 0:25, 0.5, 0.75, 1.0 and 1.4 in curves
(b), (c), (d), (e), and (f), respectively. In clean FM/I/d-SC,
(i.e., Vdis ¼ 0), the results show that the height of the ZBCP
decreases with increasing the exchange potential. In a
previous paper, we showed that the specular Andreev
reflection is a source of the ZES at the junction interface.17)

It is known that the presence of the time-reversal symmetry
in systems leads to the specular Andreev reflection or the
retro reflectivity of a holelike quasiparticle.21) In FM/I/d-SC,
however, the specular Andreev reflection is suppressed even
in the limit of the zero-bias voltage because the exchange
potential in ferromagnet breaks the time-reversal symmetry.
In N/I/d-SC junctions, the height of the ZBCP monotoni-
cally decreases with increasing Vdis as shown in curves (a).
This is because the tunneling conductance is suppressed by
the existence of diffusive metal since hGðeV ¼ 0Þi is given
by

hGðeV ¼ 0Þi ¼
1

RD þ RB

with RB ¼ RRD¼0, where R, RD and RB denotes the full
resistance, resistance in the diffusive metal, and resistance
from the insulating barrier, respectively.20) However, in the
presence of Vex, the results show that the height of the ZBCP
first increases with increasing Vdis then decreases as shown
in Fig. 2A(c)–2A(f). The same tendency can be also found in
Figs. 2B and 2C for large Vex such as curve (f). This novel
feature can not be understood by the simple summation of
resistance RD and RB and is considered to be an interference
effect of a quasiparticle. When Vex is sufficiently large, the
retro-reflection is strongly suppressed by the exchange
potential in clean junctions. In the presence of disorder,
however, the propagation path of an incident spin-up
electron and that of reflected spin-down hole is determined
rather by the random potential than by the exchange

potential when Vex � Vdis. Thus the retro-reflectivity seems
to be recovered when Ldis is sufficiently small.

In order to clarify this feature, we concentrate on the Ldis
dependence of the full resistance R. When the magnitude of
Vex is not so large, resistance increases linearly with the
increase of Ldis as shown in Fig. 3. The results qualitatively
agree with those in N/I/d-SC junctions. Since the resistance
from the disordered region RD is proportional to Ldis, the full
resistance of the junction R is given by RD þ RRD¼0.

20)

However, with the further increase of Vex, the resistance
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Fig. 2. The zero-bias conductance peak is plotted as a function of Vdis.

The length of random region Ldis are 2.0, 5.0, and 10.0 in A, B, C,

respectively. The magnitude of the exchange potential Vex are 0, 0.25,

0.5, 0.75, 1.0 and 1.40, in a, b, c, d, e and f , respectively.
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deviates from the linear relation. For sufficiently large Vex

such as 1.25 in Fig. 3, R first decreases for Ldis < 5 then
increases. In this case, the randomness in FM opens
available channels of the resonant tunneling and reduces
the full resistance.

The ZBCP in d-wave junctions is a result of the resonant
tunneling of a quasiparticle through the junction. Therefore,
the height of the ZBCP does not depend on the potential
barrier in the absence of the exchange potential. The
resonant tunneling, however, is suppressed by the exchange
potential, which leads to the fact that the height of the ZBCP
depends on the potential barrier. From this fact, we
discussed a relation between a height of ZBCP and a degree
of spin-polarization in a previous paper.28) However the
argument above is valid for clean junctions because the
random potentials were not taken into account. In this paper,
we address this issue. Figure 4 shows a relation between the
normalized ZBCP hGðeV ¼ 0Þi and Vex for Vdis ¼ 1 in (a)
and 0.5 in (b), where Vins is fixed at 5 because of the height
of ZBCP hGðeV ¼ 0Þi does not depend on the barrier
potential. In this figure, Ldis is chosen to be smaller than the
mean free path of diffusive region which is estimated to be
about 80 for (a) Vdis ¼ 0:5 and 20 for (b) Vdis ¼ 1:0. The
solid line is the result of a clean junction (Vdis ¼ 0). The
dotted (Ldis ¼ 2), dot-dashed (Ldis ¼ 5) and dashed
(Ldis ¼ 10) lines denote the results of disordered junctions.
The magnitude of Ldis is sufficiently smaller than that of the
mean free path. The height of the ZBCP decreases mono-
tonically with increasing Vex irrespective of the degree of
disorder. When the exchange potential is small, the height of
the ZBCP depends on the random potential as well as on the
potential barrier. This feature can be understood from an
equation hGðeV ¼ 0Þi�1 ¼ RB þ RD. Since the resonant
tunneling can still occur for small Vex, RB is not much
larger than RD. Thus we can not find a clear relation between
the exchange potential and the height of the ZBCP for small

Vex. The height of the ZBCP is not so much sensitive to the
disorder in the limit of large Vex, where FM are referred to as
half-metals. In this case, a relation RB � RD is satisfied
because the resonant tunneling is strongly suppressed by the
exchange potential. Thus the height of the ZBCP reflects Vex

and depends on the potential barrier as hGðeV ¼ 0Þi � R�1
B .

4. Summary

In this paper, we have studied effects of disorder on the
spin-polarized tunneling in ferromagnet/insulator/d-wave
superconductor (FM/I/d-SC) junctions by using the recursive
Green function method. Before performing a numerical
simulation, we expected that the impurity-scattering decrea-
ses the zero-bias conductance peak (ZBCP) because it was
reported that the exchange potential and the impurity-
scattering suppress the ZBCP independently. Contrary to
expectations, we found that the random impurity-scattering
in FM enhances the height of ZBCP when the magnitude of
the exchange potential in ferromagnet is sufficiently large.
The enhancement of the ZBCP originates from the fact that
the retro-reflectivity of the Andreev reflection of a quasi-
particle is recovered by the impurity-scattering. We have
also studied a full resistance R of the junction as a function
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of the length of diffusive region in the FM. When the
magnitude of the polarization in FM is not strong, we find
the full resistance R can be expressed as RD þ RRD¼0 and that
R has no reentrant behavior as a function of RD. In this
paper, the symmetry of the pair potential is chosen as d-
wave. The possibility of the formation of d þ is-wave state
at the interface or surface of d-wave superconductor is an
hottest issue.33–36) It is actually interesting problem to study
the case where d þ is-wave state is formed at the interface of
FM/I/d-SC junctions.
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