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Josephson current through Anderson insulators
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The Josephson effect in superconductor / semiconductor / superconductor junctions is discussed, where
semiconductors are in the localization-transport regime. The temperature dependence of the critical Josephson
current J.) in a single sample is very different from those in other samples. Thus it is impossible to predict the
Josephson current in experiments from the ensemble average of the Josephson current in theories. A variety in
the temperature-dependencelgfcan be understood by an analysis of the normal conductance near the Fermi
energy. In some samples, we find tlatfirst increases with decreasing temperatures then decreases in agree-
ment with an recent experiment.
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. INTRODUCTION proportional to—L/&;c with &;c=min(é ,&p). The de-
pendence ofl. on temperatures in a single sample is, how-

_ Over the past few decades a considerable number of stu@ver, very different from those in other samples. We find
ies have been made on the dc Josephson éffect.recent  three typical behaviors of the Josephson current. A variety in
years, the Josephson effect has been investigated e temperature dependencelpfcan be understood by ana-
superconductor/semiconductor/superconductor(S-Sm-3  |yzing the normal conductance near the Fermi energy. In the
junctions, where the Josephson current flows through twopcglization regime, the normal conductance in a single
dimgnsional or quasi-one-dimensional electron systems i@ample Gy) has irregular peak structures when we [y
semiconductors.So far the Josephson effect has been disys 4 function of the Fermi energy. At these resonant peaks,
cussed when the normal metal is in the ballistic or the diffuhe transmission probability of semiconductors is of the or-
sive transport regimé? The quasiclassical Green function ger of unity. In off-resonant states between these peaks, the
method, the diagrammatic expansion, and the random matrigansmission probability is almost zero. When the Fermi en-
theory are useful theoretical tools to study the Josephsoggy s in the resonant peaks or far from any resonant peaks,
current in these transport regimes. In two or quasi-one diy "monotonically increases with decreasifig Conversely,
mensions, however, a wave function of a quasiparticle igyhen the Fermi energy is near the resonant peaks but still in
essentially localized owing to the disorder in the sysfem.the off-resonant states], first increases with decreasing
Effects of the(Anderson localization on the Josephson cur- emperatures then decreases. We think that the reentrant
rent are expected at very low temperatures. In an experimenbehavior in our simulation corresponds to that found

it was found that the amplitude of the critical Josephsony, ihe experiment. Throughout this paper, we take units of
current J.) first increases with decreasing temperaturesﬁ:szl_

then decreases in S-Sm-S junctidfiit present, there is "o Thjs paper is organized as follows. In Sec. II, we explain
reasonable explanation for this nonmonotonic temperaturg,e theoretical model and the method of numerical simula-
dependence of the Josephson current. The Josephson currggh Numerical results of the Josephson current are shown in

in the localization regime was also observed in anotheec 1. The discussion is given in Sec. IV. We summarize
experiment, where the indium-oxide thin films were the g paper in Sec. V.

Anderson insulators. In general, it is difficult to study ana-
lytically the Josephson current through the Anderson insula-
tors in the strong localization regime. Il. MODEL AND METHOD

~ In this paper, we study the Josephson current in S-Sm-S | et us consider the S-Sm-S junction on the quasi-one-
junctions by using the recursive Green function methdd. gimensional tight-binding lattice as shown in Fig. 1, where

The Josephson current can be numerically calculated in afj m) labels the lattice site, and/ is the number of lattice
arbitrary degree of disorder in semiconductors; this is an ad-

vantage of the recursive Green function method. When semi- Superconductor  Semiconductor  Superconductor

conductors are in the diffusive regimg<L<¢,, , the en- O-O O-O—-O— m=W
semble average ofJ. increases with decreasing O ...........
temperature$, where 2,, is the localization length of a .............

wave function at the Fermi energl, is the length of the .............
semiconductors, and is the elastic mean free path of a 9290000000 et

quasiparticle. It is known thal; is proportional to €/¢0 in
high temperatures, wheré,=\Dy/2#T is the coherence
length, T is the temperature arid,, is the diffusion constant FIG. 1. The S-Sm-S junction is illustrated. The circles denote
in semiconductors. In the localization reginfg <L, our the lattice sites. The system consists of the semicondiitied
numerical results show that the ensemble average &j)lig(  circles and two superconducting lead wiréspen circles
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sites in the transverse direction. The lattice sites fetj1l We———7T 77
<L represent the semiconductdilled circles. The perfect .
superconducting lead wires are attached to both sides of th 55| i
semiconductor for —wo<j<0 and L+1<j<o (open JURPYTY YT ]
circles. The BCS Hamiltonian leads to ol ..°'° *e%cnceqe,
B i o
L
HBCS= _tz [CJTJrl,m,O'Cj,m,O'_FCjT,er l,UCj,m,a'+ HC] = 15 e i
jimo " W =20
Z o =20t =
o] B = 2 £=321[a]
+ 2 [(&mT4t— e 1 oGm0l v or V=30t
j\mo [ o . Y;AL=33 [ao]
+ t 05 - -
—JZm [A} mCl € m s +H-CI, (1)
. ) . i 0.0 M L M 1 M L M 1 M L M 1 M

where c;r’m’(, (Cj.m,o) is the creation(annihilation) operator 0 10 20 30 40 50 60 70
of an electron at j;m) with spin =1 or |, and A; , L
=|A; n|€¢m is the pair potential. We assume thaf , . .
=A€* for j<0, A;,=0 for 1<j<L, andA; ,=A€*r FIG. 2. The normal conductance is plotted as a functiot.,of

whereW=20, ur=2t, andV=3t. The vertical axis iGy\)L/W
which corresponds to the conductivity when the normal metals are
in the diffusive regime.

for j=L+1. The dependence & on temperatures is de-
scribed by the BCS theory. The critical temperatureT s
~0.57A,, whereA, is the amplitude of the pair potential at
the zero temperature. The random on-site potential is de- . . o
Red by, W is gven randorly n the ange of 11" Unclen Then e Josephon cuent s gver by e
—V2=<e <VI/2for1<j=<L. In what follows, we measure gy P P :

J.m. . Lo between two superconductors. In 1991, Furusaki and
the energy in units of the hopping integral denoted bym : .

. . U : Tsukada established an alternative methodhere the Jo-
the chemical potential of junctions. The Fermi enejgy . . :

) . %ephson current is described by the two Andreev reflettion

corresponds to the difference in energy between the ban

edge and the chemical potential. The length is measured i%oefflc:lents. These two methods yield exactly the same Jo-

units of the lattice constant denoted ay. Throughout this ?eerg?:?por%urerggﬁ ?)\t/ﬁgrtT:?Jliggatl?iea\lflv(?)'/l'soljk(;ﬂ;u;l?:(())gf?(;\?vgg-a
paper, we fiXW=20, ug=2.0t, V=3.Qt, andA,=0.01. In '

semiconductors, the number of propagating channels at threlation between the Josephson current and the space-
X S propagating (?erivative of the Matsubara Green function which is shown
Fermi energy is 10 in these parameters.

NN . . in Eq. (4). We note here that Ed4) is a useful expression
The BCS Hamiltonian is diagonalized by the BOgOIIUbOthen we numerically calculate the Josephson current by us-

transformation ing the lattice-Green function method. The details of the
Gt _E u,(i.m =My, " simulation are given in Ref. 9.
t - . . T 1
Cimyl 7 lo(hm) Ul (.m) Ly, ll. RESULT

whereu, andv, are the wave functions of a quasiparticle

. . . . 0
which satisfy the Bogoliubov-de GennéBdG) equatior. T=0 by using the conventional recursive Green function

fTOn stci)l\:]engh?thanqualltlo?,tw?hapl\p;llyt thE rrecgflv?] (f;rr?eqnethod? where the two superconductors in Fig. 1 are re-
unctio ethod and caiculate the iatsubara treen u C'placed by perfect normal lead wires and the last term in Eq.

tion in a matrix form, (1) is deleted. In Fig. 2, we show the normal conductance as

We numerically calculate the normal conductanGg) at

) (j)q,‘r(j " a function ofL. The results are averaged over a number of
G, (i.] ')=E e 3 samples with different impurity configurations. The en-
" v lon—E, semble averaged values are denoted by ). The vertical

axis indicates(Gy)L/W, which becomes the conductivity
when the disordered region is in the diffusive transport re-
gime. When the disordered region is in the quasiballistic
transport regime{Gy)~W. Thus{Gy)L/W is proportional
to L, as shown for 82L<10. When the disordered region is
. . in the diffusive regime as shown in 20 <50, (G\)L/W is
J(j)=—ieTX t TG, (i+1))~G, (j.i+1]. (4  independent of. because the conductivity is independent of
“n the sample size. When the disordered region is in the local-
We note that](j) is independent of when we consider the ization regime{(Gy)L/W is proportional to exp{L/&,) for
direct-current Josephson effect. largeL. From the numerical results in the diffusive regime,
In a conventional way for calculating the Josephson curwe estimate the mean free path+ 3.2a,) and the diffusion
rent, we first estimate the energy of the Andreev bound statesonstant D) by a relation {/W){Gy)=e?NgD,, where

where w,=(2n+1)#T is the Matsubara frequency. The
wave functionW ,(j) has 2V components, and thath [the
(m+W)th] element isu,(j,m) [v,(j,m)]. The Josephson
current in semiconductors €j<L), is given by
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FIG. 3. The Josephson current in the diffusive regime is shown
for several samples with different configurations of impurities, FIG. 4. The decay length of the Josephson currépt)(is com-
whereL =40. The solid line is the ensemble average of the Josephpared with the localization length of the normal curreét,() and
son current. the coherence lengttéf) in the diffusive regime.

N is the density of states at the Fermi energy. From numerigime, i.e.,(i) J, monotonically increases with decreasifig

cal results forL>¢&, , we also estimate the localization g5ng (i) J. in a specific sample is well described by).

length (€a1) is about 38, by assuming a relatiofin Gy)- When semiconductors are in the localization regithds

_LégA,_. We note tha€,, depends on parameters suchugs expected to be proportional ® Yéc, whereé,. is the de-
andV.

) i . cay length of the Josephson current. In Fig. 4, we compare
For comparison, we first show numerical results of theg c with &, and &, . The decay lengtt,c is estimated

. . . . . J
Josephson current in the diffusive regime. When semicong o, the critical current by using a relatigin J))«—L/&c in
ductors are in the diffusive transport regime, the ensembl@,q |imit of L>¢,c. The localization length af=0 is plot-

average of the critical Josephson current is giveh'by ted with the solid line. These decay length are ensemble

A A averaged values, but we on{it- - ) for simplicity.

<JC>:J02_TZ R L (5) The numerical results show th&f-~ &p in high tempera-
Ao Gy w2+A2?sinhay, tures andé;c approaches t&,, in the limit of the zero-

temperature. Thus we conclude tigt=min(&,, ,¢p). We

AYY defineT, by an equation
‘]O:m’ (6)
N
éaL=éplr=1,, ®
L

mm=v2n+1 & (7)  and it is about 0.07E, in Fig. 4. Effects of the localization

on the Josephson current are expected at low temperatures
where(Ry) is the normal resistance of semiconductors. Wefor T<<T,,.

note that(J.) is proportional toee” /0 in high temperatures. In the localization regime, the sample-to-sample fluctua-
In Fig. 3, we show the critical Josephson current as aions of the conductancesGy) becomes larger thatGy)
function of temperatures for several samples with differenitself. In the Josephson current, fluctuation®l{) are also
random impurity configurations, whele=40, and we fix larger thar(J.). However, the logarithm of the conductance
the phase differencéeo= ¢, — g at w/2. There are finite and that of the Josephson current are self-averaged values.
sample-to-sample fluctuations i ,***° but the Josephson Thusé,, andé;c are larger than their fluctuations. In Fig. 4,
current in a single sample is well described(@y) which is  therefore, we calculate logarithm of the transport properties
denoted by the solid line and is well explained by the anasuch agIn(Gy)) and{In(J.)).
lytical expression in Eq(5). In recent paper€ it was From numerical results, we show exp(J.)) in Fig. 5,
pointed out that Eq(5) is not correct in low temperatures wherelL =300. The calculated results increase monotonically
and the nonsinusoidal current-phase relation is observed. Agith decreasing temperatures. It may be possible to consider
a result, the Josephson current takes its maximundeat that exp(InJ.)) reflects some averaged behavior of the Jo-
> /2. In this paper, we approximately use Ef) because sephson current in the localization regime. However, charac-
the purpose of this paragraph is to confirm the two characteristic behaviors of the Josephson current in a single sample
teristic features of the Josephson current in the diffusive reare very different from exglh J.)) in Fig. 5. In Figs. 6a)—
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FIG. 5. exp(InJy) is shown as a function of temperatures, g V=3.0t AL o
hereL =300.
where T 400’
6(c) we show the Josephson current as a function of tempera -
tures for several samples. Scales of the vertical axi@)n 2.0x10
(b) and(c) are different order in magnitude although degree
of randomness in semiconductors are the same for al 00
samples: which arises the large fluctuations in the Josephso 0.00
current. We find three typical temperature-dependencg, of
in Fig. 6: (i) J. increases with decreasifigthen saturates in 1.0x10°
low temperatures(ii) J, shows no saturation even in low

temperatures, andii) J. first increases with decreasing 8.0x10°
then decreases. We believe that the reentrant behavidr)in

(=]

corresponds to that observed in the experinient. f‘) 6.0x107°
The electronic states near the Fermi energy are respon.—
sible for a variety in the temperature-dependencé,ah the - 40x10°
localization regime. To make this point clear, we plot the
normal conductance in a single sample as a function of the 2.0x10~° F
Fermi energy in Fig. 7, where=300. The Fermi energy is
given by ug=2.0t+Sug. There are number of irregular 0.0 . X
conductance peaks. The electronic states at these peaks ¢ 0.00 0.05 0.10 0.15 0.20
characterized by a relatively large localization length and the T/T,

transmission probabilities have large values of the order of
unity. Thus these peaks are understood in terms of the reso- FIG. 6. The Josephson current for several samples are shown as
nant transmission peaks. Conversely, the transmission prole-function of temperatures, wheke=300.

abilities are very small in off-resonant states between thessuperconductorhnsulator/superconduct()sls junctiond®

conductance peaks. The peak structures are a typical behay, Yaturates in low temperatures. The current expressi@&@iSn
ior of the conductance in the localization regime and reflec s given by

the sample-specific impurity configuration.
In Fig. 8, we show typical temperature dependences of the

Josephson current in three samples with 300. In the in- Tz — 9)

sets, the normal conductance in these samples is plotted as a “n @n a+A

function of the Fermi energy, where a vertical broken line A A

indicatesug=2.0x. =Jo— tanl—( ) (10)
When the Fermi energy is in off-resonant states, the Jo- Ao 2T

sephson current increases with decreasing temperatures fior SIS systems, we implicitly assume that the coherence
T/T.>0.03 as shown in Fig.(8). In low temperatures for length is always longer than the thickness of the insulators.
T/T.<0.03, J, saturates. This saturation in very low tem- The essential difference between E@®.and (9) is the co-
peratures is one of the characteristic behaviod 0ih local-  herence factor in normal metatg, /sinh#, in Eq. (5) which
ization regime. Actually 0.0B. is close toTy=0.075T in limits the region of the phase-coherent transport at finite tem-
Eq. (8). It is known that the critical current in peratures. The Andreev reflection at junction interfaces arises
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FIG. 7. The normal conductance in a single sample is plotted as 2.0x10° .
a function of the Fermi energy around-=2.0t, whereL =300. i
0.0
e . 0.00 0.20
the common factoA?/(w?2+ A?).2% In the diffusive regime,
the coherence factor increases with decreasingvhich 20x10”

characterizes the dependence(df) on temperatures. AT

=0, the coherence factor becomes unity, which means that a
quasiparticle can travel all over the normal metal without — — 152107
losing the phase coherence. In the localization regime, itis <
reasonable to consider that some coherence f4€tbo,) ] S oxio”
describes the spatial region of the phase-coherent propaga- =
tion. Although we cannot give a microscopic expression of

-04-02 00 02 04 T
3u, /T,

-8 p—
F(wy), the Josephson current may be described by an equa- 5.0x10
tion - (c)
0.0 1 1 L 1 ) 1 .
A 000 005 010 015 020
Jox T ——F(wp). (11) T/T,

wp wﬁ-i— A? )
FIG. 8. Atypical temperature dependence of the Josephson cur-
In high temperatures fof>T,, F may increase with de- rentis shown, wheré&=300. In insets, the normal conductance is
creasing temperature. However, o Ty, F must be a con- plotted as a function of the Fermi energy.(&), the Fermi energy is
stant independent of temperatures because the motion ofigoff-resonant states. The Fermi energy is in one of resonant peaks
quasiparticle is limited within the localization length. As a in (b). The Fermi energy is close to a resonant peatcjn
consequence, the current expression is equivalent td%q.

which leads to the saturation 6f in low temperatures. the reentrant behavior df, in (c). Since the Fermi energy is
When the Fermi energy is in one of resonant peaks agt the off-resonant states, saturates in low temperatures. In

shown in Fig. 8), J. monotonically increases with. This  he experiment, the reentrant behavior af, was reported.

is a typical behavior of the resonant transmission in l0Wrpe cajculated results indicate that the resonant states in the

temperatures. We do not have to con5|d_er cqherence facmﬁ:?\derson insulators is one of possible candidate to explain
in this case because the resonant peak itself is a result of ﬂfﬁe experimental results df,

phase-coherence of a quasiparticle.

The most interesting behavior &, in the localization
regime is shown in Fig.®), where the Fermi energy is close
to one of the resonant peaks but still in the off-resonant states IV. DISCUSSION
as shown in the inset. When temperatures are higher than the
difference between the Fermi energy and the resonant peak, At finite temperatures, variable range hopgihgvRH)
the resonant states can contribute to the Josephson currefl@minates the temperature-dependence of the conductance in
The resonant states, however, cannot contribute to the cuthe strong localization regime. In this paper, the Josephson
rent when the temperatures are lower than the difference beurrent stemming from VRH is not taken into account. We
tween the Fermi energy and the resonant peak. This explairikink, however, that such inelastic propagating processes do
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not contribute to the Josephson current because a quasiparti- V. CONCLUSION

cle loses its phase memory Wh."e VRH.occ_urs. . We have studied the dc Josephson effect in S-Sm-S junc-

When semiconductors are in the' diffusive reginia,) tions, where semiconductors are in the localization-transport
means the expected values of experimental measurements {ime The Josephson current is numerically calculated by
a single sample. On the other hand, in the localization,sing the Jattice recursive Green function method. The decay
regime, the characteristic behavior of the Josephson curre[gngth of the ensemble averaged Josephson current is given
in a single sample depend strongly on microscopic informaty the coherence length for high temperatures. In low tem-
tion of the sample such as the impurity configuration. As aperatures, the decay length approaches the localization
result, (J.) does not predict any experiments for a singlelength of the normal conductance. The ensemble averaged
sample. We note here that we reach almost the same conclualues, however, cannot explain the characteristic behavior
sion when the diffusive normal metal is sandwiched betweemnf the Josephson current in a single sample because the Jo-
two anisotropic superconductdis.n these systems(J.) sephson current is a result of the phase coherence of a qua-
vanishes for all temperatures when a node plane of the pagiparticle. The temperature dependence of the Josephson cur-
potential is perpendicular to the junction interf&ée-How- rent in a single sample is very different from that in other
ever, the Josephson current in a single sample remains s@mples. The variety in the temperature dependencé; of
finite value® Since the Josephson current is a result of thecan be explained by analyzing the normal conductance near
phase coherence of a quasiparti¢lé,) sometimes loses its the Fermi energy. When the Fermi energy is near a resonant
physical meaning. conductance peak]. first increases with decreasing tem-

In this paper, we assumgwave superconductors. In the peratures then decreases. This reentrant behavidr, iis
case of anisotropic  superconductors, effects ofconsistent with that observed in an experiment.
zero-energy-staté$ 2°on the Josephson current in the local-
ization regime may be an important problem. We have al-
ready developed the method of the numerical simulation in
d-wave superconductof.This issue will be addressed, and  The author is indebted to H. Akera, T. Ohtsuki, Y. Tanaka,
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