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Josephson current through Anderson insulators

Yasuhiro Asano*
Department of Applied Physics, Hokkaido University, Sapporo 060-8628, Japan

~Received 14 May 2002; published 8 November 2002!

The Josephson effect in superconductor / semiconductor / superconductor junctions is discussed, where
semiconductors are in the localization-transport regime. The temperature dependence of the critical Josephson
current (Jc) in a single sample is very different from those in other samples. Thus it is impossible to predict the
Josephson current in experiments from the ensemble average of the Josephson current in theories. A variety in
the temperature-dependence ofJc can be understood by an analysis of the normal conductance near the Fermi
energy. In some samples, we find thatJc first increases with decreasing temperatures then decreases in agree-
ment with an recent experiment.
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I. INTRODUCTION

Over the past few decades a considerable number of s
ies have been made on the dc Josephson effect.1,2 In recent
years, the Josephson effect has been investigated
superconductor/semiconductor/superconductor~S-Sm-S!
junctions, where the Josephson current flows through t
dimensional or quasi-one-dimensional electron systems
semiconductors.3 So far the Josephson effect has been d
cussed when the normal metal is in the ballistic or the dif
sive transport regime.1,2 The quasiclassical Green functio
method, the diagrammatic expansion, and the random m
theory are useful theoretical tools to study the Joseph
current in these transport regimes. In two or quasi-one
mensions, however, a wave function of a quasiparticle
essentially localized owing to the disorder in the syste4

Effects of the~Anderson! localization on the Josephson cu
rent are expected at very low temperatures. In an experim
it was found that the amplitude of the critical Josephs
current (Jc) first increases with decreasing temperatur
then decreases in S-Sm-S junctions.5,6 At present, there is no
reasonable explanation for this nonmonotonic tempera
dependence of the Josephson current. The Josephson c
in the localization regime was also observed in anot
experiment,7 where the indium-oxide thin films were th
Anderson insulators. In general, it is difficult to study an
lytically the Josephson current through the Anderson ins
tors in the strong localization regime.

In this paper, we study the Josephson current in S-S
junctions by using the recursive Green function method8,9

The Josephson current can be numerically calculated in
arbitrary degree of disorder in semiconductors; this is an
vantage of the recursive Green function method. When se
conductors are in the diffusive regime,l !L!jAL , the en-
semble average of Jc increases with decreasin
temperatures,1 where 2jAL is the localization length of a
wave function at the Fermi energy,L is the length of the
semiconductors, andl is the elastic mean free path of
quasiparticle. It is known thatJc is proportional to e2L/jD in
high temperatures, wherejD[AD0/2pT is the coherence
length,T is the temperature andD0 is the diffusion constan
in semiconductors. In the localization regimejAL!L, our
numerical results show that the ensemble average of ln(Jc) is
0163-1829/2002/66~17!/174506~6!/$20.00 66 1745
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proportional to2L/jJC with jJC5min(jAL ,jD). The de-
pendence ofJc on temperatures in a single sample is, ho
ever, very different from those in other samples. We fi
three typical behaviors of the Josephson current. A variet
the temperature dependence ofJc can be understood by ana
lyzing the normal conductance near the Fermi energy. In
localization regime, the normal conductance in a sin
sample (GN) has irregular peak structures when we plotGN
as a function of the Fermi energy. At these resonant pe
the transmission probability of semiconductors is of the
der of unity. In off-resonant states between these peaks,
transmission probability is almost zero. When the Fermi
ergy is in the resonant peaks or far from any resonant pe
Jc monotonically increases with decreasingT. Conversely,
when the Fermi energy is near the resonant peaks but st
the off-resonant states,Jc first increases with decreasin
temperatures then decreases. We think that the reen
behavior in our simulation corresponds to that fou
in the experiment.5 Throughout this paper, we take units o
\5kB51.

This paper is organized as follows. In Sec. II, we expla
the theoretical model and the method of numerical simu
tion. Numerical results of the Josephson current are show
Sec. III. The discussion is given in Sec. IV. We summar
this paper in Sec. V.

II. MODEL AND METHOD

Let us consider the S-Sm-S junction on the quasi-o
dimensional tight-binding lattice as shown in Fig. 1, whe
( j ,m) labels the lattice site, andW is the number of lattice

FIG. 1. The S-Sm-S junction is illustrated. The circles den
the lattice sites. The system consists of the semiconductor~filled
circles! and two superconducting lead wires~open circles!.
©2002 The American Physical Society06-1
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sites in the transverse direction. The lattice sites for 1< j
<L represent the semiconductor~filled circles!. The perfect
superconducting lead wires are attached to both sides o
semiconductor for 2`< j <0 and L11< j <` ~open
circles!. The BCS Hamiltonian leads to

HBCS52t (
j ,m,s

@cj 11,m,s
† cj ,m,s1cj ,m11,s

† cj ,m,s1H.c.#

1 (
j ,m,s

@~e j ,m14t2mF!cj ,m,s
† cj ,m,s#

2(
j ,m

@D j ,mcj ,m,↓
† cj ,m,↑

† 1H.c.#, ~1!

wherecj ,m,s
† (cj ,m,s) is the creation~annihilation! operator

of an electron at (j ,m) with spin s5↑ or ↓, and D j ,m
5uD j ,mueiw j ,m is the pair potential. We assume thatD j ,m
5DeiwL for j <0, D j ,m50 for 1< j <L, and D j ,m5DeiwR

for j >L11. The dependence ofD on temperatures is de
scribed by the BCS theory. The critical temperature isTc
'0.57D0, whereD0 is the amplitude of the pair potential a
the zero temperature. The random on-site potential is
noted bye j ,m , which is given randomly in the range of
2V/2<e j ,m<V/2 for 1< j <L. In what follows, we measure
the energy in units of the hopping integral denoted byt from
the chemical potential of junctions. The Fermi energymF
corresponds to the difference in energy between the b
edge and the chemical potential. The length is measure
units of the lattice constant denoted bya0. Throughout this
paper, we fixW520, mF52.0t, V53.0t, andD050.01t. In
semiconductors, the number of propagating channels at
Fermi energy is 10 in these parameters.

The BCS Hamiltonian is diagonalized by the Bogoliub
transformation

Fcj ,m,↑
cj ,m,↓

† G5(
n

Fun~ j ,m! 2vn* ~ j ,m!

vn~ j ,m! un* ~ j ,m!
GFgn,↑

gn,↓
† G , ~2!

whereun and vn are the wave functions of a quasipartic
which satisfy the Bogoliubov-de Gennes~BdG! equation.10

To solve the BdG equation, we apply the recursive Gre
function method9 and calculate the Matsubara Green fun
tion in a matrix form,

Ǧvn
~ j , j 8!5(

n

Cn~ j !Cn
†~ j 8!

ivn2En
, ~3!

where vn5(2n11)pT is the Matsubara frequency. Th
wave functionCn( j ) has 2W components, and themth @the
(m1W)th# element isun( j ,m) @vn( j ,m)#. The Josephson
current in semiconductors (1, j ,L), is given by9

J~ j !52 ieT(
vn

t Tr@Ǧvn
~ j 11,j !2Ǧvn

~ j , j 11!#. ~4!

We note thatJ( j ) is independent ofj when we consider the
direct-current Josephson effect.

In a conventional way for calculating the Josephson c
rent, we first estimate the energy of the Andreev bound st
17450
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of the junction. Then the Josephson current is given by
derivative of the energy with respect to the phase-differe
between two superconductors. In 1991, Furusaki a
Tsukada established an alternative method,11 where the Jo-
sephson current is described by the two Andreev reflectio12

coefficients. These two methods yield exactly the same
sephson current even though the way of calculation are
ferent from each other. Furusaki and Tsukada also show
relation between the Josephson current and the sp
derivative of the Matsubara Green function which is sho
in Eq. ~4!. We note here that Eq.~4! is a useful expression
when we numerically calculate the Josephson current by
ing the lattice-Green function method. The details of t
simulation are given in Ref. 9.

III. RESULT

We numerically calculate the normal conductance (GN) at
T50 by using the conventional recursive Green functi
method,8 where the two superconductors in Fig. 1 are
placed by perfect normal lead wires and the last term in
~1! is deleted. In Fig. 2, we show the normal conductance
a function ofL. The results are averaged over a number
samples with different impurity configurations. The e
semble averaged values are denoted by^•••&. The vertical
axis indicateŝ GN&L/W, which becomes the conductivit
when the disordered region is in the diffusive transport
gime. When the disordered region is in the quasiballis
transport regime,̂GN&;W. Thus^GN&L/W is proportional
to L, as shown for 0,L,10. When the disordered region
in the diffusive regime as shown in 20,L,50, ^GN&L/W is
independent ofL because the conductivity is independent
the sample size. When the disordered region is in the lo
ization regime,̂ GN&L/W is proportional to exp(2L/jAL) for
largeL. From the numerical results in the diffusive regim
we estimate the mean free path (l ;3.2a0) and the diffusion
constant (D0) by a relation (L/W)^GN&5e2NFD0, where

FIG. 2. The normal conductance is plotted as a function ofL,
whereW520, mF52t, andV53t. The vertical axis iŝ GN&L/W
which corresponds to the conductivity when the normal metals
in the diffusive regime.
6-2
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JOSEPHSON CURRENT THROUGH ANDERSON INSULATORS PHYSICAL REVIEW B66, 174506 ~2002!
NF is the density of states at the Fermi energy. From num
cal results forL@jAL , we also estimate the localizatio
length (jAL) is about 33a0 by assuming a relation̂ln GN&}
2L/jAL . We note thatjAL depends on parameters such asmF
andV.

For comparison, we first show numerical results of t
Josephson current in the diffusive regime. When semic
ductors are in the diffusive transport regime, the ensem
average of the critical Josephson current is given by1,13

^Jc&5J02
D

D0
T(

vn

D

vn
21D2

hn

sinhhn
, ~5!

J05
pD0

2e^RN&
, ~6!

hn5A2n11
L

jD
, ~7!

where^RN& is the normal resistance of semiconductors.
note that̂ Jc& is proportional toe2L/jD in high temperatures

In Fig. 3, we show the critical Josephson current a
function of temperatures for several samples with differ
random impurity configurations, whereL540, and we fix
the phase differencedw5wL2wR at p/2. There are finite
sample-to-sample fluctuations inJc ,14,15 but the Josephson
current in a single sample is well described by^Jc& which is
denoted by the solid line and is well explained by the a
lytical expression in Eq.~5!. In recent papers,16–18 it was
pointed out that Eq.~5! is not correct in low temperature
and the nonsinusoidal current-phase relation is observed
a result, the Josephson current takes its maximum atdw
.p/2. In this paper, we approximately use Eq.~5! because
the purpose of this paragraph is to confirm the two char
teristic features of the Josephson current in the diffusive

FIG. 3. The Josephson current in the diffusive regime is sho
for several samples with different configurations of impuritie
whereL540. The solid line is the ensemble average of the Jose
son current.
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gime, i.e.,~i! Jc monotonically increases with decreasingT,
and ~ii ! Jc in a specific sample is well described by^Jc&.

When semiconductors are in the localization regime,Jc is
expected to be proportional toe2L/jJC, wherejJC is the de-
cay length of the Josephson current. In Fig. 4, we comp
jJC with jD and jAL . The decay lengthjJC is estimated
from the critical current by using a relation^ ln Jc&}2L/jJC in
the limit of L@jJC . The localization length atT50 is plot-
ted with the solid line. These decay length are ensem
averaged values, but we omit^•••& for simplicity.

The numerical results show thatjJC;jD in high tempera-
tures andjJC approaches tojAL in the limit of the zero-
temperature. Thus we conclude thatjJC5min(jAL ,jD). We
defineT0 by an equation

jAL5jDuT5T0
, ~8!

and it is about 0.075Tc in Fig. 4. Effects of the localization
on the Josephson current are expected at low tempera
for T,T0.

In the localization regime, the sample-to-sample fluctu
tions of the conductance (dGN) becomes larger than̂GN&
itself. In the Josephson current, fluctuations (dJc) are also
larger than̂ Jc&. However, the logarithm of the conductanc
and that of the Josephson current are self-averaged va
ThusjAL andjJC are larger than their fluctuations. In Fig. 4
therefore, we calculate logarithm of the transport proper
such aŝ ln(GN)& and ^ ln(Jc)&.

From numerical results, we show exp(^ln Jc&) in Fig. 5,
whereL5300. The calculated results increase monotonica
with decreasing temperatures. It may be possible to cons
that exp(̂ln Jc&) reflects some averaged behavior of the J
sephson current in the localization regime. However, cha
teristic behaviors of the Josephson current in a single sam
are very different from exp(^ln Jc&) in Fig. 5. In Figs. 6~a!–

n
,
h-

FIG. 4. The decay length of the Josephson current (jJC) is com-
pared with the localization length of the normal current (jAL) and
the coherence length (jD) in the diffusive regime.
6-3
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YASUHIRO ASANO PHYSICAL REVIEW B66, 174506 ~2002!
6~c! we show the Josephson current as a function of temp
tures for several samples. Scales of the vertical axis in~a!,
~b! and ~c! are different order in magnitude although degr
of randomness in semiconductors are the same for
samples: which arises the large fluctuations in the Josep
current. We find three typical temperature-dependence oJc
in Fig. 6: ~i! Jc increases with decreasingT then saturates in
low temperatures,~ii ! Jc shows no saturation even in low
temperatures, and~iii ! Jc first increases with decreasingT
then decreases. We believe that the reentrant behavior in~iii !
corresponds to that observed in the experiment.5

The electronic states near the Fermi energy are res
sible for a variety in the temperature-dependence ofJc in the
localization regime. To make this point clear, we plot t
normal conductance in a single sample as a function of
Fermi energy in Fig. 7, whereL5300. The Fermi energy is
given by mF52.0t1dmF . There are number of irregula
conductance peaks. The electronic states at these peak
characterized by a relatively large localization length and
transmission probabilities have large values of the orde
unity. Thus these peaks are understood in terms of the r
nant transmission peaks. Conversely, the transmission p
abilities are very small in off-resonant states between th
conductance peaks. The peak structures are a typical be
ior of the conductance in the localization regime and refl
the sample-specific impurity configuration.

In Fig. 8, we show typical temperature dependences of
Josephson current in three samples withL5300. In the in-
sets, the normal conductance in these samples is plotted
function of the Fermi energy, where a vertical broken li
indicatesmF52.0t.

When the Fermi energy is in off-resonant states, the
sephson current increases with decreasing temperature
T/Tc.0.03 as shown in Fig. 8~a!. In low temperatures for
T/Tc,0.03, Jc saturates. This saturation in very low tem
peratures is one of the characteristic behavior ofJc in local-
ization regime. Actually 0.03Tc is close toT050.075Tc in
Eq. ~8!. It is known that the critical current in

FIG. 5. exp(̂ln Jc&) is shown as a function of temperature
whereL5300.
17450
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superconductor/insulator/superconductor~SIS! junctions19

saturates in low temperatures. The current expression inSIS
is given by

Jc5J02
D

D0
T(

vn

D

vn
21D2

, ~9!

5J0

D

D0
tanhS D

2TD . ~10!

In SIS systems, we implicitly assume that the coheren
length is always longer than the thickness of the insulato
The essential difference between Eqs.~5! and ~9! is the co-
herence factor in normal metalshn /sinhhn in Eq. ~5! which
limits the region of the phase-coherent transport at finite te
peratures. The Andreev reflection at junction interfaces ar

FIG. 6. The Josephson current for several samples are show
a function of temperatures, whereL5300.
6-4
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JOSEPHSON CURRENT THROUGH ANDERSON INSULATORS PHYSICAL REVIEW B66, 174506 ~2002!
the common factorD2/(vn
21D2).20 In the diffusive regime,

the coherence factor increases with decreasingT, which
characterizes the dependence of^Jc& on temperatures. AtT
50, the coherence factor becomes unity, which means th
quasiparticle can travel all over the normal metal witho
losing the phase coherence. In the localization regime,
reasonable to consider that some coherence factor@F(vn)#
describes the spatial region of the phase-coherent prop
tion. Although we cannot give a microscopic expression
F(vn), the Josephson current may be described by an e
tion

Jc}T(
vn

D

vn
21D2

F~vn!. ~11!

In high temperatures forT.T0 , F may increase with de
creasing temperature. However, forT,T0 , F must be a con-
stant independent of temperatures because the motion
quasiparticle is limited within the localization length. As
consequence, the current expression is equivalent to Eq~9!
which leads to the saturation ofJc in low temperatures.

When the Fermi energy is in one of resonant peaks
shown in Fig. 8~b!, Jc monotonically increases withT. This
is a typical behavior of the resonant transmission in l
temperatures. We do not have to consider coherence fa
in this case because the resonant peak itself is a result o
phase-coherence of a quasiparticle.

The most interesting behavior ofJc in the localization
regime is shown in Fig. 8~c!, where the Fermi energy is clos
to one of the resonant peaks but still in the off-resonant st
as shown in the inset. When temperatures are higher than
difference between the Fermi energy and the resonant p
the resonant states can contribute to the Josephson cu
The resonant states, however, cannot contribute to the
rent when the temperatures are lower than the difference
tween the Fermi energy and the resonant peak. This exp

FIG. 7. The normal conductance in a single sample is plotte
a function of the Fermi energy aroundmF52.0t, whereL5300.
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the reentrant behavior ofJc in ~c!. Since the Fermi energy is
at the off-resonant states,Jc saturates in low temperatures. I
the experiment,5 the reentrant behavior ofJc was reported.
The calculated results indicate that the resonant states in
Anderson insulators is one of possible candidate to exp
the experimental results ofJc .

IV. DISCUSSION

At finite temperatures, variable range hopping21 ~VRH!
dominates the temperature-dependence of the conductan
the strong localization regime. In this paper, the Joseph
current stemming from VRH is not taken into account. W
think, however, that such inelastic propagating processe

s

FIG. 8. A typical temperature dependence of the Josephson
rent is shown, whereL5300. In insets, the normal conductance
plotted as a function of the Fermi energy. In~a!, the Fermi energy is
in off-resonant states. The Fermi energy is in one of resonant p
in ~b!. The Fermi energy is close to a resonant peak in~c!.
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YASUHIRO ASANO PHYSICAL REVIEW B66, 174506 ~2002!
not contribute to the Josephson current because a quasi
cle loses its phase memory while VRH occurs.

When semiconductors are in the diffusive regime,^Jc&
means the expected values of experimental measuremen
a single sample. On the other hand, in the localizat
regime, the characteristic behavior of the Josephson cur
in a single sample depend strongly on microscopic inform
tion of the sample such as the impurity configuration. A
result, ^Jc& does not predict any experiments for a sing
sample. We note here that we reach almost the same co
sion when the diffusive normal metal is sandwiched betw
two anisotropic superconductors.20 In these systems,̂Jc&
vanishes for all temperatures when a node plane of the
potential is perpendicular to the junction interface.22 How-
ever, the Josephson current in a single sample remai
finite value.13 Since the Josephson current is a result of
phase coherence of a quasiparticle,^Jc& sometimes loses its
physical meaning.

In this paper, we assumes-wave superconductors. In th
case of anisotropic superconductors, effects
zero-energy-states23–25on the Josephson current in the loca
ization regime may be an important problem. We have
ready developed the method of the numerical simulation
d-wave superconductors.26 This issue will be addressed, an
results will be given elsewhere.
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V. CONCLUSION
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