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A relation between amplitudes of Josephson current and nodes in excitation-gap of unconventional
superconductors is studied in superconductor/dirty normal metal/superconductor junctions. It is found
that ensemble average of the Josephson current vanishes when the junction interface is perpendicular to a
plane which includes line- or point-zeros of the excitation-gap. A zero-energy state formed at the
junction interface is a character of unconventional superconductor junctions and causes large sample-to-
sample fluctuations in the Josephson current in low temperatures. The disappearance of the ensemble-
averaged Josephson current and the large fluctuations occur at the same time when the Cooper pairs have
d- or f -wave pairing symmetries.
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1. Introduction

Symmetries of the Cooper pair are an important informa-
tion to understand the mechanism of high-Tc superconduc-
tivity.1) Transport properties in anisotropic superconductors
have been a topic of increasing interest2,3) because the high-
Tc superconductors may have the dx2�y2 -wave pairing
symmetry.4–6) The unconventional superconductivity has
been one of important topics since superconductivity was
found in heavy-fermion materials such as, CeCu2Si2, UBe13
and UPt3.

7–9) The unconventional superconductivity is
reported in a layered perovskite Sr2RuO4 in a recent
work.10) One of the important features in unconventional
superconductor junctions is the formation of zero-energy
bound sates (ZES’s)11) at the junction interface. It is known
that the ZES’s cause a low-temperature anomaly of the
Josephson current in SIS junctions of d-wave superconduc-
tors, where I denotes insulators.12,13)

In previous papers, we studied the dc Josephson effect in
superconductor/normal metal/superconductor (SNS) junc-
tions of the dx2�y2-wave superconductors, where the normal
metal is in the diffusive transport regime owing to impurity
scatterings.14,15) We found that ensemble average of the
Josephson current, hJi, vanishes when an orientation angle
between the a-axis of high-Tc superconductors and the
junction interface normal is �=4. The disappearance of hJi is
a consequence of the d-wave symmetry (anisotropy) in the
pair potential; a sign of the pair potential becomes either
positive or negative along a Fermi surface. Thus hJi ¼ 0 is
expected in dirty SNS junctions of anisotropic super-
conductors with another symmetries.

In this paper, we show that the ensemble average of
Josephson current vanishes when the junction interface is
perpendicular to a plane which includes the line- and the
point-zeros of an excitation-gap irrespective of symmetries
in the pair potentials. The work reported here is a natural
extension of the previous work.15) Throughout this paper, we
take the units of h� ¼ kB ¼ 1, where kB is the Boltzmann
constant.

This paper is organized as follows. In §2, we briefly

explain a formula for the Josephson current used in
calculation. The Josephson current in dirty SNS junctions
of p-, d-, and f -wave superconductors is studied in §3. In §4,
we discuss a meaning of the disappearance of the ensemble-
averaged Josephson current. The conclusion is given in §5.

2. Josephson Current

Let us consider an SNS junction, where the length of the
normal metal is LN and the cross section of the junction is SJ .
The normal of the junction interface is in the z direction. In
the xy plane, the periodic boundary condition is applied. At
the two NS interface, (z ¼ 0 and LN), the potential barrier
described by Vbf�ðzÞ þ �ðz� LNÞg is introduced, which
reflects difference of electronic structures in the normal
metal and those in the unconventional superconductors. We
describe the SNS junction by the Bogoliubov-de Gennes
(BdG) equation,17)Z
dr0

�ðr� r0Þh0ðr0Þ�̂�0 �̂�ðr� r0Þ

��̂��ðr� r0Þ ��ðr� r0Þh0ðr0Þ�̂�0

" #
ûu�ðr0Þ

v̂v�ðr0Þ

" #

¼
ûu�ðrÞ

v̂v�ðrÞ

" #
ÊE�; ð1Þ

ÊE� ¼
E�;1 0

0 E�;2

 !
; ð2Þ

where h0ðrÞ ¼ � r2
2m

þ VðrÞ � �F, �F is the Fermi energy, �̂�0
is the unit matrix of 2 2. The potential VðrÞ includes the
barrier potential at the two NS interfaces and impurity
potentials in the normal metal. The pair potential between an
electron with (�, r) and that with (�0, r0) is given by
��;�0 ðr� r0Þ. In the normal segment, the pair potential is
taken to be zero. In what follows, we use c� � �� � � for indicating
2 2 matrices which represents the spin space. Eigenvalues
of the BdG equation depend on the spin configuration when
the superconductors are in nonunitary states as shown in E�;l,
where l ¼ 1; 2 indicate the spin configuration. In unitary
states, E�;1 ¼ E�;2. In the superconductors, we assume that
the scalar and the pair potentials are uniform. Thus the BdG
equation is represented in Fourier space,
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" #
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� �
¼

ûuk

v̂vk

� �
ÊEk; ð3Þ

where �k ¼ k2=ð2mÞ � �F. The pair potential is given by

�̂�ðr� r0Þ ¼
X
k

�̂�ðkÞeik�ðr�r0Þ; ð4Þ

�̂�ðkÞ ¼
id0ðkÞ�̂�2 singlet

iðdðkÞ � �̂�Þ�̂�2 triplet

(
; ð5Þ

where �̂�j with j ¼ 1; 2 and 3 are the Pauli’s matrices. In what
follows, we assume that the two superconductors are
identical to each other. When the two superconductors have
spin-singlet Copper pairs, the Josephson current is given
by,16)

J ¼ 4e sin ’T
X
!n

X
p;p0

�sðp; LÞ�sðp0;RÞTNðp;p0Þ; ð6Þ

where ’ ¼ ’L � ’R is the phase difference between the two
superconductors, p ¼ ðkx; kyÞ is the wavevector in the xy

plane, T is a temperature and !n ¼ ð2nþ 1Þ�T is the
Matsubara frequency.16) The wavevector p (p0) indicates the
propagating channel at the left (right) NS interface and
TNðp;p0Þ is the transmission coefficients in normal metal
between the channel p and p0. A part of the Andreev
reflection18) coefficient (ARC) at left (right) interface is
described by �sðp; LÞ (�sðp0;RÞ). These are a function of

d0 � d0ðp; kzÞ and d0;� � d0ðp;�kzÞ: ð7Þ

It is possible to obtain a general expression of the ARC’s.16)

For purposes of this paper, we need only the ARC under a
condition

d0 ¼ �d0;�; ð8Þ

where � ¼ 1 or �1. When eq. (8) is satisfied, we obtain

�sðp; jÞ ¼ �kk2z
d0

�s

����
j

; ð9Þ

�s ¼H2fð1þ �Þ�þ ð1� �Þj!njg þ �kk2z ð�þ j!njÞ; ð10Þ

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2n þ jd0j2

q
; ð11Þ

for j ¼ L or R, where H ¼ Vbm=kF represents a strength of
the potential barrier at the NS interfaces. When the two
superconductors have spin-triplet Copper pairs, the Joseph-
son current is given by,

J ¼ 4eT
X
!n

X
p;p0

Im½ei’� tðp; LÞ � � �
t ðp

0;RÞTNðp;p0Þ�; ð12Þ

where � tðp;LÞ (� tðp0;RÞ) is a vector stemming from the
ARC at the left (right) NS interface16) and is a function of

d � dðp; kzÞ and d� � dðp;�kzÞ: ð13Þ

Under the condition

d ¼ �d�; ð14Þ

with � ¼ 1 or �1, these vectors are calculated to be

� tðp; jÞ ¼ �kk2z
d

�u

����
j

; ð15Þ

�u ¼H2fð1þ �Þ�þ ð1� �Þj!njg þ �kk2z ð�þ j!njÞ; ð16Þ

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2n þ jdj2

q
; ð17Þ

for unitary states, and

� tðp; jÞ ¼ �kk2z
1

2

X2
l¼1

D�
l

�nuðlÞ
; ð18Þ

D1ð2Þ ¼d� þ ð�Þi
d�  q

jqj
; ð19Þ

q ¼id  d�; ð20Þ

�nuðlÞ ¼H2fð1þ �Þ�l þ ð1� �Þj!njg þ �kk2z ð�l þ j!njÞ; ð21Þ

�l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2n þ j�lj2

q
; ð22Þ

j�1ð2Þj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdj2 þ ð�Þjqj

q
; ð23Þ

for nonunitary states.

3. Dirty SNS Junctions

In what follows, we consider superconductors in which
the excitation-gap of a quasiparticle has point- and/or line-
nodes. We define that ‘node-vector’ points the direction
parallel to a line which connects two node-points as shown
in Fig. 1(a), where we illustrate the excitation-gap in the
Anderson–Brinkman–Morel states19) described by �̂�ðkÞ ¼

c-axis
Sr RuO 2 4

NS interface NS interface

z(a) (b)

x

y

NS interface
c-axis

(c)
c-axis

(d)

NS interface

Fig. 1. We schematically illustrate the excitation gap of a quasiparticle in

the ABM state (a) and that in the polar state (b) of the p-wave
superconductor. In (a), the ‘node-axis’ corresponds to the axial vector

which characterizes the pair potential and is in the z direction in this

figure. The ‘node-plane’ includes the node-lines of the gap and is the yz

plane in (b). In (c) and (d), the pair potentials in high-TC superconductors
are shown. The c-axis is perpendicular to the NS interface in (c). In (d),

the c-axis is parallel to the NS interface and a node-plane (xz plane) is

perpendicular to the NS interface.
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���ð �kkx þ i �kkyÞ�̂�3. Here ��� is the amplitude of the pair potential
and �kkj ¼ kj=kF for j ¼ x; y, and z, respectively. Since the
profile of the gap in the xz plane is shown in (a), the figure is
rotated around the broken line to obtain the real excitation-
gap. In the figure, dark areas indicate the gap. The
excitation-gap becomes zero at the two points on the Fermi
surface (i.e., �kkz ¼ �1). Thus the ‘node-vector’ in this case is
in the z direction. In the same way, we define that ‘node-
plane’ is the plane on which node-lines are included as
shown in Fig. 1(b), where we depict the excitation-gap in a
polar state described by �̂�ðkÞ ¼ ��� �kkx�̂�1. The gap has line-
zeros on the equator. Thus a ‘node-plane’ in this case is the
yz plane.

When the normal conductor is in the diffusive transport
regime, TNðp;p0Þ is almost independent of the propagating
channels.15) Therefore we approximately replace these
transmission coefficients in the normal metal by its ensemble
average

hTNðp;p0Þi ¼
�
1

Nc

�2
gN

ln

sinh ln
; ð24Þ

where ln ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
LN=�D, �D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0=2�T

p
is the coher-

ence length, D0 is the diffusion constant, Nc ¼ SJk
2
F=4� is

the number of propagation channels on the Fermi surface,
GN � ð2e2=hÞgN is the conductance in the normal metal and
h� � �i means the ensemble average with respect to the random
configuration of the impurities.15) Since the transmission
coefficients in normal metal are independent of the
propagating channels, the summation with respect to p0

and p in eqs. (6) and (12) can be carried out independently at
the two NS interfaces. The ensemble average of the
Josephson current in dirty SNS junctions is given by

hJi ¼4e sin ’T
X
!n

gN
ln

sinh ln
ILIR; ð25Þ

Ij ¼
1

Nc

X
p

�sðp; jÞ; ð26Þ

for spin-singlet superconductor junctions, and

hJi ¼4eT
X
!n

gN
ln

sinh ln
Im½ei’IL � I�R�; ð27Þ

Ij ¼
1

Nc

X
p

� tðp; jÞ; ð28Þ

for spin-triplet superconductor junctions.

3.1 p-wave superconductors
Although a large number of studies have made on the

spin-triplet superconductors, there is not perfect agreement
as to the pair potential in many superconductors. Here we
study a relation between the nodes in the excitation-gap and
the amplitude of the Josephson current without explicit
expression of the pair potential. In general, the pair potential
of the p-wave superconductor can be described by,

dðkÞ ¼ ���
X3
j¼1

ej½c1; j �kkx þ c2; j �kky þ c3; j �kkz�; ð29Þ

where c1; j, c2; j and c3; j are numerical coefficients, e1, e2 and
e3 are the unit vector in the x, y and z directions,

respectively. When the gap of the p-wave superconductors
has the two point-nodes on the kz-axis, the pair potential is
given by

dðkÞ ¼ ���
X3
j¼1

ej½c1; j �kkx þ c2; j �kky�: ð30Þ

When the gap has the line-node on a plane characterized by
axþ by ¼ 0, the pair potential is given by

dðkÞ ¼ ���
X3
j¼1

c1; jejða �kkx þ b �kkyÞ: ð31Þ

The node-vector in eq. (30) and the node-plane in eq. (31)
are perpendicular to the NS interface. In both cases in eqs.
(30) and (31), we find d� ¼ d (i.e., � ¼ 1 ). Thus there are
no ZES at the NS interfaces. Since �u in eq. (15) and �nuðlÞ
in eq. (18) are functions of jdj and jqj, they are the even
function of p. On the other hand, d in eq. (15) and Dl in eq.
(18) are the odd function of p. This fact immediately leads to
the disappearance of the averaged Josephson current because
the integration with respect to p in eqs. (28) gives zero. Thus
we conclude that the averaged Josephson current vanishes
when the node-plane or the node-vector of the excitation-gap
are perpendicular to the NS interface.

We apply above argument to realistic junctions of the p-
wave superconductor Sr2RuO4.

10) There is fairly general
agreement that the pair potential may be described by20)

d ¼ ���ð �kkx þ i �kkyÞe3: ð32Þ

As well as high-Tc superconductors, the electric conductivity
in two-dimensional ab-plane is much larger than that along
the c-axis. We consider the situation where c-axis is
perpendicular to the NS interface as shown in Fig. 1(a).
The superconductor is in the unitary states and the node-
vector is in the z direction perpendicular to the NS interface.
The integration with respect to p in eq. (28) is given in the
limit of H � 1

IL ¼
1

4�

Z 2�

0

dei
Z �=2

0

d�
sin4 � cos3 �K

�u

e3; ð33Þ

�u ¼H2ð ���2 sin2 � þ K2Þ; ð34Þ

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2n þ ���2 sin2 �

q
� j!nj; ð35Þ

where use the polar coordinates. It is easily confirmed that
the averaged Josephson current vanishes because the
integration with respect to  gives zero.

3.2 d-wave superconductors
It is known that the pair potential in high-Tc super-

conductors have dx2�y2 -wave pairing. Thus we focus on the
Josephson effect between the two dx2�y2 -wave superconduc-
tors. First we consider the situation where the c-axis of the
high-Tc superconductor is perpendicular to the NS interface.
The pair potential can be described by

d0 ¼ d0;� ¼ ���ð �kk2x � �kk2y Þ: ð36Þ

We illustrate excitation gap on the ab-plane in Fig. 1(c). The
node-planes are described by x ¼ �y which are perpendi-
cular to the NS interface. In the limit of high potential barrier
at the NS interface (i.e., H � 1), eq. (26) becomes
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IL ¼
���

2�H2

Z
d �kkx

Z
d �kky

�kk2z ð �kk2x � �kk2y Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2n þ ���2ð �kk2x � �kk2y Þ

2
q ; ð37Þ

¼
���

2�H2

Z 2�

0

d

Z �=2

0

d�
sin3 � cos2 � cos 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2n þ ���2 sin4 � cos2 2

q : ð38Þ

It is shown that the average of the Josephson current
vanishes because the integration with respect to  gives zero
in eq. (38).

Next we consider the situation where the c-axis is parallel
to x direction and the node-plane is perpendicular to the NS
interface. After appropriate rotation of the coordinates, the
pair potential is described by

d0 ¼ �d0;� ¼ 2 ��� �kky �kkz ð39Þ

The excitation gap is shown in Fig. 1(d), where one of the
node-plane described by y ¼ 0 is perpendicular to the NS
interface. In this case, �s is the even function of �kky, whereas
d0 is the odd function of �kky. By using eq. (39), eq. (26)
becomes

IL ¼
���

�H2

Z
d �kkx

Z
d �kky

�kk3z
�kky

j!nj þ
4 ���2 �kk4z

�kk2y
KH2

h i : ð40Þ

It is easy to confirm IL ¼ 0 because the integration with
respect to �kky becomes zero. We note that the ZES are formed
at the NS interface since the pair potential satisfies d0 ¼
�d0;� (i.e., � ¼ �1). The denominator in the integrand of
eq. (40) approaches to zero in the limit of H � 1 and
!n ! 0, which indicate that the contribution of ZES to the
Josephson current is important in low temperature regime.
The ZES are the origin of the large sample-to-sample
mesoscopic fluctuations21,22) in the Josephson current for
T ! 0.15)

3.3 f -wave superconductors
Although UPt3 is one of the candidate of f -wave

superconductors,23) we lack a perfect agreement of the f -
wave superconductivity in real materials. In addition, it
seems to be difficult to give a general discussion on the
relation between the node and the Josephson current because
the number of the basis functions in f -wave case is too
many. However, it is possible to repeat the same argument
which we have done in the d- and p-wave cases. We
approximately separate the pair potential into two groups,

d1ðkÞ ¼ ���
X3
j¼1

ej½c1; j �kkx �kky �kkz þ c2; j �kkzð �kk2x � �kk2y Þ

þ c3; j �kkzð5 �kk2z � 1Þ�; ð41Þ

and

d2ðkÞ ¼ ���
X3
j¼1

ej½c4; j �kkxð5 �kk2x � 3Þ þ c5; j �kkyð5 �kk2y � 3Þ

þ c6; j �kkxð �kk2y � �kk2z Þ þ c7; j �kkyð �kk2z � �kk2x Þ�: ð42Þ

It is noted that we do not classify the pair potential into two
groups in terms of the lattice symmetries.24) Here we use the
parity in eq. (14); d1ðkÞ and d2ðkÞ satisfy � ¼ �1 and 1,
respectively. In d1, the functions �kkx �kky �kkz and �kkzð �kk2x � �kk2y Þ have

the node-plane at �kkx ¼ 0, �kky ¼ 0 and �kkx ¼ � �kky which are
perpendicular to the NS interface. Since the node-plane of
�kkzð5 �kk2z � 1Þ is parallel to the NS interface, we set c3; j to be
zero in what follows. In the same way in d2, the basis
function become zero on the plane �kkx ¼ 0 or �kky ¼ 0 which
are the perpendicular to the NS interface. These pair
potentials in eqs. (41) and (42) can be described in the
different linear combinations,

d1ðkÞ ¼ ���
X3
j¼1

ej½ ~cc1; j �kkzð �kkx þ i �kkyÞ þ ~cc2; j �kkzð �kkx � i �kkyÞ�; ð43Þ

and

d2ðkÞ ¼ ���
X3
j¼1

�ej½f ~cc6; jð �kkx þ i �kkyÞ þ ~cc7; j �kkyð �kkx � i �kkyÞg

 ð5 �kk2z � 3Þþ ~cc4; jð �kkxþ i �kkyÞ3þ ~cc5; jð �kkx � i �kkyÞ3�:ð44Þ

In these expression, it is easily confirmed that the excitation-
gap has the two point nodes on the kz axis. As we have done
in the p- and d-wave cases, it can be confirmed that the
integration with respect to  in eq. (28) gives zero when we
substitute eqs. (41), (42), (43) and (44) into eq. (15) or (18).
Thus in the f -wave superconductors, hJi vanishes when the
node-plane and/or node-vector is perpendicular to the NS
interface. When the pair potential is described by eq. (41),
the ZES dominate the Josephson current in a single sample
and the mesoscopic fluctuations in the Josephson current
becomes large in the low-temperature regime. On the other
hand when the pair potential is described by eq. (42), the
Josephson current in a single sample is also expected to be a
small value because there are no ZES.

4. Discussion

In this section, we discuss a meaning of the disappearance
of the ensemble-averaged Josephson current. Here we focus
on a d-wave superconductor junction, where the pair
potential is shown in Fig. 1(d). In clean SIS junctions, the
Josephson current rapidly increases with decreasing the
temperature because ZES are formed at the junction
interface.12,13) The Josephson current is also studied in
clean SNS junctions.25) In these clean junctions, the
Josephson current has finite amplitudes below the critical
temperature. It is evident that the Josephson current in a
single specific dirty SNS junction must be smaller than that
in a clean junction because of the impurity scatterings.
However, the amplitude of the Josephson current of a single
sample does not banish below TC, whereas its ensemble-
average is zero for all temperatures.15) This fact implies an
importance of the sample-to-sample fluctuations of the
Josephson current (�J) which become large in low
temperatures because of ZES.15) The average of the
Josephson current corresponds to the expected value for a
measurement of a single sample and the fluctuations indicate
the reliability of the measured results. When hJi ¼ 0 and
�J 6¼0 are satisfied at the same time, the reliability of the
Josephson current of a single sample becomes questionable.
Actually, we have confirmed that the dependence of the
Josephson current on temperatures in one sample is very
different from that in another samples.15) Thus the reliability
of a single measurement is lost owing to the impurities. This
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is the most important effect of the impurities. In another
numerical simulation,26) we confirmed hJi ¼ 0 even when
the normal metal is in the quasi-ballistic transport regime. In
experiments27) at present, the two superconductors are
separated by the grain boundary. It seems to be difficult to
know the potential profile of the grain boundary. In such
situation, experimentalists should pay attention to a fact that
the reliability of measured results in a single sample may be
questionable if the grain boundary is not clean enough.

The dirty SNS junctions in this paper can be realized in an
experiment,28) where the weak link is fabricated between the
two superconductors by the ion irradiation. When the length
of the weak link is long enough, the system becomes the
dirty SNS junctions because the ion irradiation makes the
potential in the weak link random. It is possible to confirm
hJi ¼ 0, when the current-phase relation ship is measured27)

over a number of different samples.

5. Conclusion

We study the ensemble average of the Josephson current
in superconductor/dirty normal metal/superconductor junc-
tions of unconventional superconductors. We conclude that
the ensemble average of the Josephson current vanishes
when the node-plane and/or the node-vector in the
quasiparticle’s excitation-gap is perpendicular to the NS
interface.
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