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Numerical method for dc Josephson current betweend-wave superconductors
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~Received 29 September 2000; published 17 January 2001!

We develop a numerical method to calculate the dc Josephson current between thedx22y2-wave supercon-
ductors. The Josephson junctions are described by the Bogoliubov–de Gennes equation on the two-
dimensional tight-binding lattice. The Josephson current is expressed by the Matsubara Green function which
is computed by the recursive Green-function method. We find ind-wave-superconductor/dirty-normal-metal/
d-wave-superconductor junctions that the ensemble average of the Josephson current disappears for all tem-
perature regimes when the angle between the crystal axis and the normal of the junction interface isp/4.
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In recent years, the Josephson effect between the an
tropic superconductors has attracted much attention bec
the high-Tc superconductors might havedx22y2-wave pairing
symmetry.1,2 In anisotropic superconductors, the sign of t
pair potentials depends on the direction of a quasipartic
motion, which leads to the zero-energy states~ZES’s! ~Ref.
3! at the normal-metal/superconductor (NS) interface. The
ZES’s are detected in conductance spectra ofN/I /d-wave
superconductor junctions,4 whereI denotes the insulators. S
far the dc Josephson effect has been discussed indId
junctions.5–9 The critical Josephson current shows anom
lous dependence on the temperature because of the ZES
is also shown that the roughness at the interface betwee
insulator and the superconductor suppresses the anom
behavior.5,9 The Josephson current also flows in syste
such asdcd ~Ref. 10! anddNd ~Refs. 8, 11, and 12! junc-
tions, wherec is the constriction. The mesoscopic fluctu
tions of the critical current is one of the interesting top
when the normal metals is in the diffusive transport regime13

In this paper, we present a numerical method to calcu
the Josephson current between the twod-wave superconduct
ors. The Josephson junction is described by
Bogoliubov–de Gennes equation14 on the two-dimensiona
tight-binding model.15,16 The Josephson current is repr
sented by the Matsubara Green function17 which is numeri-
cally calculated by using the recursive Green-funct
method.18 The advantage of the method is wide applicabil
to various systems such as, the clean~ballistic! junctions, the
dirty ~diffusive! junctions, and the junctions in the localiza
tion regime.

Let us consider thedNd junction on the two-dimensiona
tight-binding model as shown in Fig. 1~a!, where the length
of the normal segment isLa0 and the width of the junction is
Wa0, wherea0 is the lattice constant. The pair potential
the momentum space is schematically depicted in the lo
figures. In thedx22y2-wave superconductor, thea axis points
the direction in which the amplitude of the pair potent
takes its maximum. The orientation angle between thex di-
rection and thea axis isaL and the phase of the pair pote
tial is fL in the superconductor on the left-hand side. On
right-hand side, they areaR and fR , respectively. The
Hamiltonian of the system reads
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FIG. 1. ThedNd junction is illustrated in~a!. The orientation
angle in the left~right! superconductor isaL (aR). In ~b!, the pair
potential in Eq.~6! is depicted on the tight-binding lattice.
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where (j ,m) is the lattice index,cj ,m,s
† (cj ,m,s) is the cre-

ation~annihilation! operator of an electron at (j ,m) with spin
s (5↑ or ↓), t is the nearest-neighbor hopping integral, a
m is the Fermi energy, respectively. Throughout this pap
we take units of\5kB51, wherekB is the Boltzmann con-
stant. In they direction, the periodic boundary condition
applied. We assume that the on-site potentiale j ,m is zero far
from the interface in the two superconductors~i.e., e j ,m50
for j , j L<0 and L11< j R, j ). In the d-wave supercon-
ductor the pair potentialD̄(R,r2r 8) has the site-off-
diagonal elements, wherer5( j ,m), r 85( j 8,m8), R5(r
1r 8)/2, respectively. In what follows, we assume the u
form amplitude of the pair potential in the superconduct
and neglect the dependence ofD̄ on R. The pair potential is
given in the Fourier representation

D̄~r2r 8,a,f!5
1

~2p!2E dk D̄~k,a,f!eik(r2r8). ~2!

In the case of thedx22y2 symmetry, the Fourier componen
of the pair potential fora50 anda5p/4 can be described
by

D̄~k,0,f!52Deif~coskya02coskxa0!, ~3!

D̄~k,p/4,f!52Deif sinkxa0 sinkya0 , ~4!

where D and f (5fL or fR) are the amplitude and th
phase of the pair potential, respectively. When2p/4<a
<p/4, we describe the pair potential by the linear combin
tion of Eqs.~3! and ~4!,

D̄~k,a,f!5cos 2aD~k,0,f!1sin 2aD~k,p/4,f!. ~5!

By substituting Eq.~5! into Eq. ~2!, the pair potential in rea
space results in

D̄~r2r 8,f,a!52d1 d u j 82 j u,1dm8,m1d1 d j 8, jd um82mu,1

2d2~d j 8, j 11dm8,m111d j 8, j 21dm8,m21!

1d2~d j 8, j 11dm8,m211d j 8, j 21dm8,m11!,

~6!

d1~f,a!5Deif cos 2a, ~7!

d2~f,a!5~D/2!eif sin 2a. ~8!

The pair potential is schematically illustrated in Fig. 1~b!.
The Hamiltonian in Eq.~1! is diagonalized by the Bogoliu
bov transformation

Fcj ,m,↑
cj ,m,↓

† G5(
n

Fun~ j ,m! 2vn* ~ j ,m!

vn~ j ,m! un* ~ j ,m!
GF g̃n,↑

g̃n,↓
† G , ~9!

where g̃n,s
† (g̃n,s) is creation~annihilation! operator of a

Bogoliubov quasiparticle. We omit the spin index of th
wave function (un ,vn) since we do not consider the spin
dependent potential in this study. The wave function satis
the Bogoliubov–de Gennes equation in a matrix form
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Ťj 11
2 Cn~ j 11!1Ťj

1Cn~ j 21!1Ȟ j
0Cn~ j !5EnCn~ j !,

~10!

with

Ťj
65S 2t1̂ D̂2

6~ j !

D̂2
6* ~ j ! t1̂

D , ~11!

Ȟ j
05S ĥ0~ j ! D̂1~ j !

D̂1* ~ j ! 2ĥ0* ~ j !
D , ~12!

ĥ0~ j !um,m85$e j ,m14t2m%dm,m82t~dm,m8111dm,m821!

2t~dm,1dm8,W1dm,Wdm8,1!, ~13!

D̂1~ j !um,m85d̄1~ j ! ~dm,m8111dm,m8211dm,1dm8,W

1dm,Wdm8,1!, ~14!

D̂2
6~ j !um,m852d1~ j !dm,m87d2~ j !~dm,m8211dm,1dm8,W!

6d2~ j !~dm,m8111dm,Wdm8,1!, ~15!

d̄1~ j !5H d1~fL ,aL!: j <0

0: 1< j <L

d1~fR ,aR!: L11< j ,

~16!

d1,2~ j !5H d1,2~fL ,aL!: j <0

0: 1< j <L11

d1,2~fR ,aR!: L12< j .

~17!

Here En is the eigenvalue measured from the chemical
tential of the junction. The wave functionCn( j ) is the vector
with 2W components andmth (m1Wth) component is
un( j ,m) @vn( j ,m)#. TheW3W (2W32W) matrices are in-
dicated byˆ (ˇ) and the unit matrix is denoted by 1ˆ . The
Matsubara Green function is defined by

Ǧvn
~ j , j 8!5(

n

Cn~ j !Cn
†~ j 8!

ivn2En
, ~18!

wherevn5(2n11)pT and T are the Matsubara frequenc
and the temperature, respectively.

The Josephson current in the normal region (1< j <L) is
derived from the current conservation low

]

] t̄
e(

m,s
^cj ,m,s

† ~ t̄ !cj ,m,s~ t̄ !&1J~ j !2J~ j 21!50, ~19!

J~ j !52 ieT(
vn

t Tr@ Ǧvn
~ j 11,j !2Ǧvn

~ j , j 11!#, ~20!

where t̄ and^•••& denote the time and the thermal averag
respectively. In the dc Josephson effect, we note thatJ( j ) is
independent ofj because the first term in Eq.~19! becomes
2-2
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BRIEF REPORTS PHYSICAL REVIEW B 63 052512
zero. When we calculate the current in the superconduc
the source term proportional to the order parameter mus
added in Eq.~20!.17

In order to calculate the Green function in Eq.~20!, we
apply the recursive Green-function method.18 First we calcu-
late the two initial Green functionsǦj L21

L andǦj R11
R for fixed

Matsubara frequency. HereǦj 0

L(R)[Ǧvn

L(R)( j 0 , j 0) is the Green

function of a system in which all lattice sitesj > j 011 ( j

< j 021) are deleted. Next we calculateǦj N21
L andǦj N11

R for

1, j N,L by obeying the recursive formula

Ǧj
L5@ ivn1̌2Ȟ j

02Ťj
1 Ǧj 21

L Ťj
2#21, ~21!

Ǧj
R5@ ivn1̌2Ȟ j

02Ťj 11
2 Ǧj 11

R Ťj 11
1 #21, ~22!

starting fromj 5 j L in Eq. ~21! and j 5 j R in Eq. ~22!, respec-
tively. The Green functionǦvn

( j N , j N) is computed by using
the formula

Ǧvn
~ j , j !5@ ivn1̌2Ȟ j

02Ťj 11
2 Ǧj 11

R Ťj 11
1 2Ťj

1 Ǧj 21
L Ťj

2#21,
~23!

for j 5 j N . Then we obtain the off-diagonal Green functio
in Eq. ~20! by the relations

Ǧvn
~ j 11,j !5Ǧj 11

R Ťj 11
1 Ǧvn

~ j , j !, ~24!

Ǧvn
~ j , j 11!5Ǧvn

~ j , j !Ťj 11
2 Ǧj 11

R ~25!

for j 5 j N . Finally the Josephson current is calculated
carrying out the summation with respect to the Matsub
frequency. Here we briefly mention the method to calcul
initial Green functions~i.e., Ǧj L21

L and Ǧj R11
R ). The initial

Green functions can be obtained analytically for thes-wave
superconductor.17 In the case ofd-wave superconductor fo
aÞ0, however, it seems to be difficult to derive an analy
expression. In this paper, we apply a numerical meth
which was used to obtain the initial Green function in t
uniform magnetic field.19 In this method, it is possible to
calculate numerically the initial Green function when t
system under consideration has the translational symmet
the x direction. In the original paper,19 the retarded Green
function is computed. It is possible to apply the method
the Matsubara Green function without any difficulty.

At first we apply the present method todId junctions in
order to check the validity of the method. In Fig. 2~a!, we
show the calculated results of the Josephson critical cur
as a function of the temperature for several choices
(aL ,aR), whereL55, W520, m51.0t, andRJ is the resis-
tance of the junction, respectively. We assume that the
pendence ofD on the temperature is described by the BC
theory and the critical temperature isTc;0.57D0, whereD0
is the amplitude of the pair potential atT50 and is 0.1t in
Fig. 2. In the normal segment, the barrier potential is cho
to be e j ,m54.0t for 1< j <L. In these parameters, the J
sephson current is proportional to sin(fR2fL). The results
for (aL ,aR)5(0,0) show the saturation in the limit ofT
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→0. The results for (aL ,aR)5(p/8,p/8) and (p/4,p/4) in-
crease sharply with decreasing the temperature becaus
the ZES at the interface. In the case of (aL ,aR)5(p/8,
2p/8), the Josephson current changes its sign aroundT/Tc
;0.12. The ZES is a source of the sign change in the
sephson current. The present numerical method reprod
the characteristic behavior of the Josephson current in
previous works.5–9 We consider the roughness at the inte
face between the insulator and the superconductor in F
2~b! and ~c!. The potentials atj 51 andL are described by
e j ,m54.0t1 ṽ j ,m , where ṽ j ,m are given randomly in the
range of2vn/2< ṽ j ,m<vn/2. In the same way, the potentia
at j 521 and L11 are given randomly in the range o
2vs/2<e j ,m<vs/2. In Fig. 2~b!, we introduce the interfacia
roughness on the insulator side,~i.e., vn50.5t,vs50). The
characteristic behavior of the Josephson current is almos
same with that in the cleandId junction in Fig. 2~a!. On the
other hand in Fig. 2~c!, the roughness is introduced on th
superconductor side,~i.e., vn50,vs50.5t). In the limit of
T→0, the singular behavior inJc is suppressed because th
ZES is broadened due to the roughness at the interfa5

Since the ZES is localized at the interface on the superc
ductor side, the random potential in the superconductor s
presses the low-temperature anomaly.

Next we apply the method to dirtydNd junctions. In Fig.
3, we show the Josephson current atfR2fL5p/2 as a
function of the temperature, whereL570, W520, andD0
50.01t, respectively. The results for (aL ,aR)5(0,0) and
(p/4,p/4) are shown in~a! and ~b!, respectively. We intro-
duce the barrier potential at the interface,e j ,m54t for j 51
and L, and the random potential in the normal segme

FIG. 2. The critical Josephson current indId junctions is plotted
as a function of the temperature for several choices of (aL ,aR). In
~a!, the calculated results for cleandId junctions are shown. In~b!
and ~c!, we consider the roughness at the interface between
d-wave superconductor and the insulator. The random potentia
introduced on the insulator side in~b!. On the other hand, in~c!, the
random potential is introduced on the superconductor side.
2-3
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BRIEF REPORTS PHYSICAL REVIEW B 63 052512
2vn/2<e j ,m<vn/2 for 2, j ,L21. The mean free path an
the localization length in the normal conductor are ab
6.8a0 and 59a0, respectively. In the present method, it
possible to calculate the Josephson current of a single sa
with specific random configuration. This is one of the adva
tages of the present method because the Josephson curr
a specific sample in the simulation corresponds to that o
specific sample in experiments. The ensemble average o
Josephson current is obtained from the results in a numbe
samples with different random configuration. In Fig. 3, t
lines represent the calculated results of several diffe
samples and the open circles denote the ensemble ave
over ten samples. The ensemble average ofJ for (aL ,aR)
5(0,0) remains finite value as shown in Fig. 3~a!. The
sample-to-sample fluctuations exist in the Joseph
current13 as shown with the lines. On the other hand f

FIG. 3. The Josephson current in dirty-dNd junction is plotted
as a function of the temperature for (aL ,aR)5(0,0) in ~a! and
(p/4,p/4) in ~b!, respectively. The lines are the results of seve
samples with different random configurations and the open cir
are the ensemble average over ten samples.
a
,
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(p/4,p/4), the ensemble average ofJ almost vanishes for al
temperature regime as shown in Fig. 3~b!. The amplitudes of
the sample-specific Josephson current, however, remai
nite values forT/Tc,0.5 and show the rapid increase wi
decreasing the temperature as well as those in thedId junc-
tions. The sign of the Josephson current can be either p
tive or negative depending on the random configuratio
The results indicate an importance of the mesoscopic fl
tuations in the Josephson current. The fluctuations ind-wave
junctions increase with decreasingT because of the ZES a
theNS interface in contrast to those in thes-wave junctions,
where the fluctuations saturate in the limit ofT→0. The
d-wave pairing symmetry of the superconductor is resp
sible for the disappearance of the averaged Josephson cu
for (p/4,p/4). It is possible to show that the ZES’s do n
contribute to the ensemble average of the Josephson cu
in an analytic calculation. The details will be given els
where.

In summary, we presented a numerical method for
Josephson current between twod-wave superconductors. Th
Josephson current is calculated from the Matsubara G
function of the Bogoliubov–de Gennes equation. The Gre
function is computed by using the recursive Green-funct
method. The low-temperature anomaly of the Josephson
rent indId junctions is reproduced in the present method.
dirty-dNd junctions, the ensemble average of the Joseph
current vanishes when the orientation angle is (aL ,aR)
5(p/4,p/4). This fact, however, does not mean the disa
pearance of the critical current in experiments because
sample-specific critical current remains finite value.

The author is indebted to N. Tokuda, H. Akera, and
Tanaka for useful discussion.
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