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Numerical method for dc Josephson current betweerd-wave superconductors
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We develop a numerical method to calculate the dc Josephson current betwegn {aavave supercon-
ductors. The Josephson junctions are described by the Bogoliubov—de Gennes equation on the two-
dimensional tight-binding lattice. The Josephson current is expressed by the Matsubara Green function which
is computed by the recursive Green-function method. We findhivave-superconductor/dirty-normal-metal/
d-wave-superconductor junctions that the ensemble average of the Josephson current disappears for all tem-
perature regimes when the angle between the crystal axis and the normal of the junction intetfdce is
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In recent years, the Josephson effect between the aniso- >
tropic superconductors has attracted much attention because H=—t Z
the highT, superconductors might hadg: _ ,>-wave pairing
symmetry*? In anisotropic superconductors, the sign of the o
pair potentials depends on the direction of a quasiparticle’s -t >
motion, which leads to the zero-energy staféES’'s) (Ref. !
3) at the normal-metal/superconductdd ) interface. The %
ZES'’s are detected in conductance spectraNgf/d-wave + >
superconductor junctiorfsyherel denotes the insulators. So j===m=1
far the dc Josephson effect has been discussedIh .
junctions®=° The critical Josephson current shows anoma- - 2 [A* (), m" j,m)Cjr s 1Cj m, HH.C,
lous dependence on the temperature because of the ZES's. It j'm’bm
is also shown that the roughness at the interface between the (1)
insulator and the superconductor suppresses the anomalous
behavior’® The Josephson current also flows in systems
such asgdcd (Ref. 10 anddNd (Refs. 8, 11, and 2Zunc-
tions, wherec is the constriction. The mesoscopic fluctua-
tions of the critical current is one of the interesting topics
when the normal metals is in the diffusive transport regtthe. y
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the Josephson current between the tawave superconduct-
ors. The Josephson junction is described by the

Bogoliubov—de Gennes equati6ron the two-dimensional Oy, kﬁocR
tight-binding modet>'® The Josephson current is repre- . .
sented by the Matsubara Green functfowhich is numeri- (a)
cally calculated by using the recursive Green-function
method*® The advantage of the method is wide applicability (j-1, m+1) (j, m+1) )
. S . M (j+1, m+1)

to various systems such as, the cléhallistic) junctions, the O - O
dirty (diffusive) junctions, and the junctions in the localiza- T dq
tion regime. dg-. =dy

Let us consider theNd junction on the two-dimensional IR
tight-binding model as shown in Fig(d), where the length G, m) O L r\( —1 O G+t m)

. . oo Jo m)

of the normal segment isay and the width of the junction is do S
Wa,, wherea, is the lattice constant. The pair potential in 2 d Y
the momentum space is schematically depicted in the lower & dg
figures. In thed,2_2-wave superconductor, treeaxis points O ) NG
the direction in which the amplitude of the pair potential (j-1, m-1) (j, m-1) (j+1, m-1)
takes its maximum. The orientation angle betweenxtlu- b)

rection and the axis is«| and the phase of the pair poten-

tial is ¢, in the superconductor on the left-hand side. On the FIG. 1. ThedNd junction is illustrated in(a). The orientation
right-hand side, they arerg and ¢g, respectively. The angle in the leftright) superconductor is, (ag). In (b), the pair
Hamiltonian of the system reads potential in Eq.(6) is depicted on the tight-binding lattice.
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where (,m) is the lattice index,cJ-T’m’(, (Cj.mo) is the cre- -“|-j—+1q,y(j +1)+'T'j+‘1’p(j —1)+|:|?‘I’V(J')=EV‘I’V(]),
ation (annihilation operator of an electron aj (n) with spin (10)
o (=1 or|), tis the nearest-neighbor hopping integral, and
w is the Fermi energy, respectively. Throughout this paperWith
we take units ofi =kg=1, wherekg is the Boltzmann con-

stant. In they direction, the periodic boundary condition is - -t AZ(j)

applied. We assume that the on-site potertja) is zero far T = Az*()) d | (11)
from the interface in the two superconductdis., €m=0 2 U

for j<j_<0 andL+1<jr<]). In the d-wave supercon- . N

ductor the pair potentialA(R,r—r') has the site-off- Fo_ ho()  A4()) 12
diagonal elements, where=(j,m), r'=(j’,m’), R=(r VARG -]’

+r')/2, respectively. In what follows, we assume the uni-
form amplitude of the pair potential in the superconductors

—_— ﬁ i r=1€; +4t_ (S —t 5 ’ +5 ’r_
and neglect the dependence/ofon R. The pair potential is oDlmm ={€m O = WOmam 1% O 1)

given in the Fourier representation —t(0m10m’ Wt Omwom’ 1) (13
A=t )= — f dkA(k.a, ) ). (2) Byl =02(1) (B + 1+ O -1+ O 20 w
H 1 2 2 1 1 -
(27) + SmwOmr 1) (14)

In the case of thel,> > symmetry, the Fourier component
of the pair potential forw=0 anda= /4 can be described A~ (j)|,, v =—0d1(j) Smm T d2(} ) (Smm -1+ Sm16m W)

by
_ _ =da())(Omm +1F OmwOm’ 1), (19
A(k,0,¢)=2Ae'?(cosk,ag— coskyay), ©)
_ o _ di(é,a): j<O
A(k,m/4,¢)=2A€'? sink,a, sinkyay, (4) a,j)=1 0: 1=j=L (16)
where A and ¢ (=¢_ or ¢g) are the amplitude and the di(pr,ar): L+1<j,
phase of the pair potential, respectively. Whenr/4< «
< /4, we describe the pair potential by the linear combina- dy b ,a): j<O
tion of Egs.(3) and(4), ’ X
B difj)=4 0: 1sjsL+1 (17
A(k,a,¢)=cos 22A(k,0,¢) +sin 2aA(k,7/4,p). (5) di A dr,ar): L+2<].
By substituting Eq(5) into Eq.(2), the pair potential in real HereE, is the eigenvalue measured from the chemical po-
space results in tential of the junction. The wave functiolr,(j) is the vector
_ , with 2W components andnth (m+Wth) component is
A(r=r',¢,@)==d1 8/ j|10m' m+ d1 67 S —m| 1 u,(j,m) [v,(j,m)]. The WX W (2Wx 2W) matrices are in-
—da(8) j+18m me1t 8ir | 10mm-1) dicated by (') and the unit matrix is denoted by. The

Matsubara Green function is defined by
+d2( 8 j+10m m-1F )7 j-16m' m+1),

. W, ()Wl
(6) gwn(J!J,):E#

. , (18
. v IOt)r'l_ EV
dy(p,a)=Ae"?cos 2, (7)
. wherew,=(2n+1)7T and T are the Matsubara frequency
dy( ¢, )= (A/2)e'? sin 2a. (8) and the temperature, respectively.
The Josephson current in the normal regioss(¥L) is

The pair potential is schematically illustrated in Figb)l derived from the current conservation low

The Hamiltonian in Eq(1) is diagonalized by the Bogoliu-
bov transformation P

~ —=e, (¢ ()¢ mo(1)+I())=I(j-1)=0, (19
Cjm,1 Yol Jt mo

:
Cjm,|

)

) {uyu,m) —v%(j,m)

v,(J.m)up(am) J 50

wherey! . (7,.,) is creation(annihilation operator of a I = |eT;n TG0, (14 10) =G, (11 T D], (20
Bogoliubov quasiparticle. We omit the spin index of the .

wave function (1,,v,) since we do not consider the spin- wheret and(- - -) denote the time and the thermal average,
dependent potential in this study. The wave function satisfiegespectively. In the dc Josephson effect, we note Ifgt is

the Bogoliubov—de Gennes equation in a matrix form independent of because the first term in EL9) becomes
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zero. When we calculate the current in the superconductors, T/T,
the source term proportional to the order parameter must be 0.0 0.5 1.0
added in Eq(20).7 3 : , .
In order to calculate the Green function in EQ0), we — | -M
apply the recursive Green-function methi8dirst we calcu- ﬁ 2 It _____((%L’(;R) |
late the two initial Green function§” _; andgGf ., for fixed g (w4, m/4) |
SCRY__BL(R)r: 3y © "\ - - - (w8, n/8)
Matsubara frequency. Heafo( )=wa1 )(io.io) is the Green T NN (w8, 8
function of a system in which all lattice sitgs=jo+1 (] :
<jo—1) are deleted. Next we calcula® _, andg}’ ., for
1<jny<L by obeying the recursive formula ;w
8]
Gi=liw i-R)-T/ GE T 17 @y 2
<t::
- Loy RS x _ 33
GF=liw l—H) =T, 1 G T 4170 (22) =
=

starting fromj=j, in Eq.(21) andj =]y in Eq. (22), respec-
tively. The Green functio@wn(j n»Jn) IS computed by using
the formula

. L T T T S oy o FIG. 2. The critical Josephson currentdid junctions is plotted
Gop(11) =llwnl=Hj =Ty Gy T =T, G T 17 as a function of the temperature for several choicesngf, &g). In

(23 (a), the calculated results for cleahid junctions are shown. Iib)

and (c), we consider the roughness at the interface between the
d-wave superconductor and the insulator. The random potential is
introduced on the insulator side ¢h). On the other hand, ifc), the
random potential is introduced on the superconductor side.

for j=jn. Then we obtain the off-diagonal Green functions
in Eq. (20) by the relations

Go (1+1))=G% 1 T/11G, (.0, (24)
—0. The results for ¢, ,agr) =(7/8,7/8) and (m/4,7/4) in-
éwn(j’j +1):gwn(j,j)1“-j—+l“gjﬂ+l (25) crease sharply with decreasing the temperature because of
the ZES at the interface. In the case af (ag)=(#/8,
for j=jy. Finally the Josephson current is calculated by— 7/8), the Josephson current changes its sign arduiig
carrying out the summation with respect to the Matsubara-0.12. The ZES is a source of the sign change in the Jo-
frequency. Here we briefly mention the method to calculatesephson current. The present numerical method reproduces
initial Green functions(i.e., 5471 and QRH), The initial  the characteristic behavior of the Josephson current in the
L IR previous works—® We consider the roughness at the inter-
face between the insulator and the superconductor in Figs.
2(b) and(c). The potentials aj=1 andL are described by

Green functions can be obtained analytically for theave

superconductot’ In the case ofi-wave superconductor for

a#0, however, it seems to be difficult to derive an analytic - - ) s

expression. In this paper, we apply a numerical methodfj,m=4-0+vjm, wherev;, are given randomly in the

which was used to obtain the initial Green function in therange of—v,/2<v; n<v,/2. In the same way, the potential

uniform magnetic field® In this method, it is possible to at j=—1 andL+1 are given randomly in the range of

calculate numerically the initial Green function when the —v/2<¢; ,<uv/2. In Fig. 2b), we introduce the interfacial

system under consideration has the translational symmetry imughness on the insulator sidée., v,=0.5%,v,=0). The

the x direction. In the original papéf, the retarded Green characteristic behavior of the Josephson current is almost the

function is computed. It is possible to apply the method tosame with that in the cleadhld junction in Fig. Za). On the

the Matsubara Green function without any difficulty. other hand in Fig. &), the roughness is introduced on the
At first we apply the present method thid junctions in  superconductor sidgj.e., v,=0p=0.%). In the limit of

order to check the validity of the method. In FigaZ we  T—0, the singular behavior id, is suppressed because the

show the calculated results of the Josephson critical currerES is broadened due to the roughness at the intefface.

as a function of the temperature for several choices oSince the ZES is localized at the interface on the supercon-

(e ,aRr), whereL=5, W=20, u=1.0, andR; is the resis-  ductor side, the random potential in the superconductor sup-

tance of the junction, respectively. We assume that the depresses the low-temperature anomaly.

pendence ofA on the temperature is described by the BCS Next we apply the method to diriyNd junctions. In Fig.

theory and the critical temperatureTig~0.57A,, whereA; 3, we show the Josephson current g4— ¢ =7w/2 as a

is the amplitude of the pair potential &=0 and is 0.1 in  function of the temperature, whete=70, W=20, andA,

Fig. 2. In the normal segment, the barrier potential is choser=0.01, respectively. The results fora{ ,ag)=(0,0) and

to be € ,=4.0 for 1<j<L. In these parameters, the Jo- (x/4,mw/4) are shown ina) and (b), respectively. We intro-

sephson current is proportional to sfig(-¢). The results  duce the barrier potential at the interfaeg,,=4t for j=1

for (a_,ag)=(0,0) show the saturation in the limit of  and L, and the random potential in the normal segment,
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0.04

7771 002 1777
dNd Junctions (o, o) = (w/4, 7/4) T

(7/4,714), the ensemble average balmost vanishes for all
temperature regime as shown in Figb3 The amplitudes of

pl 008 (o, 0) = (0,00 7 0011 o average | the sample-specific Josephson current, however, remain fi-
° 002 4 0.00 bomrrmm— nite values forT/T.<0.5 and show the rapid increase with
P average | decreasing the temperature as well as those irdtdgunc-
E 0.01 -0.01 tions. The sign of the Josephson current can be either posi-
| tive or negative depending on the random configurations.
0.00 =S ) 13 MU PR U R The results indicate an importance of the mesoscopic fluc-
0.0 0.2 0"'11'/%6 08 1.0 00 02 04 06 08 1.0 tuations in the Josephson current. The fluctuatiorgswave
E T/T, junctions increase with decreasifigbecause of the ZES at

the NSinterface in contrast to those in tlsavave junctions,
where the fluctuations saturate in the limit 0. The

(m/4,7/4) in (b), respectively. The lines are the results of severald_'WaVe pairng symmetry of the superconductor is respon-
samples with different random configurations and the open circle§Ible for the dlsappearance of the averaged Josepflson current
are the ensemble average over ten samples. for (77/4,77/4). It is possible to show that the ZES’s do not
contribute to the ensemble average of the Josephson current
) in an analytic calculation. The details will be given else-
—vyf2< € p=v,/2 for 2<j<L—1. The mean free path and \yhere.
the localization length in the normal conductor are about |, summary, we presented a numerical method for the
6.81, and 5%, respectively. In the present method, it is josephson current between tdkvave superconductors. The
possible to calculate the Josephson current of a single Sampj%sephson current is calculated from the Matsubara Green
with specific random configuration. This is one of the advan+ynction of the Bogoliubov—de Gennes equation. The Green-
tages of the present method because the Josephson currengtiction is computed by using the recursive Green-function
a specific sample in the simulation corresponds to that of #ethod. The low-temperature anomaly of the Josephson cur-
specific sample in experiments. The ensemble average of thent ind1d junctions is reproduced in the present method. In
Josephson current is obtained from the results in a number inrty-de junctions, the ensemble average of the Josephson
samples with different random configuration. In Fig. 3, the.rent vanishes when the orientation angle ig (eg)
lines represent the calculated results of several differenL(W/4,7T/4). This fact, however, does not mean the disap-
samples and the open circles denote the ensemble averaggarance of the critical current in experiments because the

over ten samples. The ensemble averagd fiir (a,,ar)  sample-specific critical current remains finite value.
=(0,0) remains finite value as shown in Fig(aB The

sample-to-sample fluctuations exist in the Josephson The author is indebted to N. Tokuda, H. Akera, and Y.
current® as shown with the lines. On the other hand for Tanaka for useful discussion.

FIG. 3. The Josephson current in didyNd junction is plotted
as a function of the temperature fow,(,ag)=(0,0) in (a) and
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