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Effects of disorder on conductance oscillations in semiconductor-superconductor junctions
in a magnetic field
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We study the effects of disorder on magnetoconductance oscillations in semiconductor-superconductor
junctions. These conductance oscillations were predicted by recent several theoretical works in ballistic junc-
tions, however, have never been observed yet in experiments. We find that the disorder near the junction
suppresses the conductance oscillations. From the numerical results, we derive a condition that must be
satisfied to find the conductance oscillations in experiments.

[. INTRODUCTION ity of the conductance oscillations finding in experiments.
For these purposes, we perform a numerical simulation by
In recent years, a study of small hybrid systems consistingising the recursive Green’s-function methdt and calcu-
of a superconductor in contact with a semiconductor has atate the zero-bias conductance based on the Takane-Ebisawa
tracted much attentioh:* The unusual reflection from the formula® The numerical results show that the conductance
normal metal-superconductor interface, known as the Anoscillations disappear when the elastic mean-free path in the
dreev reﬂectioﬁ-" characterizes the transport properties insemiconductor is smaller than the diameter of the classical
semiconductor/superconductor (S-system$. In experi- ~ Cyclotron orbit of a quasiparticle. The effects of the rough
ments,S-Sm-S junctions are realized in the strong magnetic SM-S interface on the conductance oscillations are studied in
fields by using a superconductor with high-critical magnetict€™ms of the specularity of the interface. We show that the
field.”® The Andreev reflection at each S&interface is the sPecular reflection at the SBiinterface is an important in-
source of the Josephson current that is carried by the ed edient for the_conduc_tance oscnl_atl_ons_. These calculated
states in high-magnetic field$° These investigations bridge eS.UItS are COQS'Stem with the prediction in the phenomeno-
the quantum Hall effect and the Andreev reflection. '°9'C"’?' theory?_ . .
The magnetoconductance oscillations in semiconductoré This paper is org_amzed as follows. In Sec. II, we bneﬂy
) : urvey the mechanism of the magnetoconductance oscilla-
superconductor_(Srﬁ) Junct|on§ aré a consequence of th?tions in SmS junction. The effects of the impurity scattering
Andreev reflection of a quasiparticle under the magnetiGy yhe semiconductor and those of the rough interface on the
field. T_heff oscillations were first found in a numerical .54y ctance oscillations are discussed in Sec. IIl. In Sec. IV,
simulation:™ In previous papers, we proposed the mechay possibility of the conductance oscillations in experiments is
nism of the conductance oscillations and concluded that thﬁrgued. The conclusion is given in Sec. V.
Aharonov-Bohm type interference effect is responsible for
the oscillations®** Within a phenomenological argument,

we explained the amplitude, the period, and the phase shift Il. MECHANISM OF THE CONDUCTANCE

of the conductance oscillations. A recent microscopic calcu- OSCILLATIONS

lation showed the conductance oscillatidfishich are simi-

lar to those in the numerical simulatidhUnfortunately the Let us consider a situation where both the normal and

conductance oscillations have never been observed yet ifndreev reflection processes exist at the Sinterface, and
experiments. In the theoretical works, it is assumed that théhe superconductor is one of the type I. In Fig. 1, we sche-
Sm-S junctions are free from any disorder and that the mag+matically illustrate the classical trajectories of a quasiparticle
netic field in the superconductor is perfectly excluded by thenear the Sn® interface in a magnetic field, where the
Meissner effect. If the proposed mechanism of the oscillahatched area denotes the superconductor and the width of the
tions is correct? the conductance oscillations are sensitiveSm-S junction isW. We assume that the system is free from
to disorder near the Si8-interface. In addition to this, it is any disorder and that the magnetic field is perfectly excluded
also predicted that the conductance oscillations might bérom the superconductor. In Fig(d), the magnetic field is
smeared by the magnetic field that penetrates into theufficiently weak and an incident electronlike quasiparticle is
superconductot’® The effects of disorder on the conductancereflected once at the S@interface. In the presence of the
oscillations should be studied theoretically to find the oscil-magnetic field, the Andreev-reflected holelike quasiparticle
lations in experiments. So far, the effects of the impuritydoes not trace the trajectory of the incident quasiparticle. The
scattering in the semiconductor was briefly discussed in guasiparticle in the electron branch and that in the hole
numerical simulatior® branch skip along the Si&-interface in the same direction.
There are two purposes in this paper. One of them is tdhis is because the signs of the charge in the two branches
check the validity of the proposed mechanism of the conducare opposite to each other. At the same time, the signs of the
tance oscillation$? Second purpose is to discuss a possibil-effective mass in the two excitations are opposite to each
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ot ol given by the phenomenological argument, respectilely.
electron ole

Note, however, that the sign of the last term in E32) had

to be adjusted by hand, fromt to —, in order to obtain
FIG. 1. The classical trajectories of a quasiparticle in magnetigggreement with the numerical results.

field are depicted. The hatched area is the superconductor. The solid The conductance expression is valid when the magnetic

(broken curves are the cyclotron orbits of a quasiparticle in thefjq|q satisfies a relation

electron(hole) branch. The width of the junction &/ andL is the

diameter of the classical cyclotron motion of a quasipatrticle.

V?V <LcsW, (2.3
other. The diameter of the classical cyclotron orbit is given
by where the incident quasiparticle is reflected twice at the
Sm- interface. In the absence of the disorder in the Sm-
L :i BN 2.1) junction, the analytic expression well explains the amplitude,
€ ke hog’ ' the period, and the phase shift of the conductance

oscillations!?*® Thus we concluded that the Aharonov-
wherekg, uy, andw.=eB/m*c are the Fermi wave num- Bohm type interference effect of a quasiparticle is respon-
ber, the Fermi energy, and the cyclotron frequency in thesible for the conductance oscillations even in the simply con-
two-dimensional electron gd&DEG) on the semiconductor, nected Sns junctions. In general, in order to observe the
respectively. Aharonov-Bohm type conductance oscillations clearly, we
In Fig. 1(b), the magnetic field is slightly stronger than have to confine an electron wave as in the experiffient
that in Fig. 1a), where the incident quasiparticle is reflected and/or the magnetic flux as in the original id€an electron
twice at the Sn® interface. The incident quasiparticle is wave in the ballistic transport regime, however, is confined
either reflected into the electron or the hole branches, at within the cyclotron orbit by its charge degree of freedom
and travels across the wire along the two cyclotron orbitsunder sufficiently strong magnetic fieléfs??
The pair of the quasiparticle waves in the two branches are |f the above physical picture of the conductance oscilla-
reflected again into the two branchesrat After the two  tions is correct, the oscillations are sensitive to imperfections
reflections, the incident quasiparticle divides into four partsnear the Sn$ interface since the quasiparticle in the present
The two parts in the electrothole) branch interfere with  system is confined only by the magnetic field. In order to
each other. During the trip betweep andr,, the quasipar-  find the conductance oscillations, the quasiparticle must skip
ticle in the electron(hole) branch suffers the phase change betweerr; andr, in Fig. 1(b) without being scattered by the
b§ (¢f) from the vector potential. It was shown that the impurities. In other words, the mean-free-path in the semi-
phase difference between the pair of the waygs- ¢g is  conductor), must be larger than the mean orbit length of the
27un/hoe, Which is independent of the incident angle of cyclotron motion between the two reflection points /2.
the electronlike quasiparticle. The phase differencdn addition to this, the conductance oscillations require the
27N/ hwe 1S not proportional to the magnetic flux enclosed specular reflection of the quasiparticle at the Shimterface.
by the two partial circles betweean andr, but the magnetic In the presence of the roughness at the interface, there will be
flux encircled by the single complete cyclotron orbit in units the “diffuse” reflection. The pair of the waves that suffer the
of ¢po=2mhcl|e|.X? This is because the phase shift is pro- diffuse reflection at, cannot meet each other agairratin
portional to the charge of the quasiparticle and the signs ofeal SmS junctions, however, the disorder exists near the
the charge in the two branches are opposite to each otheé8m-S interface and may suppress the conductance
Thus the Aharonov-Bohm type oscillations can be seen imscillations?
the magnetoconductano@he Aharonov-Bohm effect is the
interference effect of an electran the absence of the mag- IIl. EEEECTS OF DISORDER
netic field® In this paper, however, we use the term
“Aharonov-Bohm type interference effect” when we ex-  The SmS junction is described by the Bogoliubov-de
plain the mechanism of the conductance oscillations, whiclsennes equatiéfh on the two-dimensional tight-binding
is the interference effedn the presence of the magnetic model as shown in Fig.(d), wherej labels the lattice site in
field.) the x direction. The lattice sites fgr<0 andj=1 represent
Based on the above idea, we derived the zero-bias diffetthe semiconductor and the superconductor, respectively. The
ential conductance vector potential is chosen to &= (0,Bx) in the semicon-
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FIG. 2. The SmS junction is illustrated. The hatched area de- L !
notes the superconductor. We introduce the square shaped disor- 2+ ensemble average
dered region(filled area near the interface itth). The disordered 1
region is limited at the interface ic). 0 L
g ) 2 4 6 8 10 12

. . Iha
ductor and zero in the superconductor, respectively. We use A

the hard wall confinement potential in thelirection and the FIG. 3. The conductance is plotted as a function of the inverse
lattice index in this direction ism. The Bogoliubov-de of the magnetic field, wherety/uy=0.5, ts/uy=1.5, and

Gennes equation reads wsl un=2.0, respectively. The width of the SBijunction W is 30
lattice constant. We do not consider any disorddajrand compare

hg A . _ the analytic results in Eq(2.2) (broken ling with the numerical
A% _pr f(j',m")=Ef(j’,m"), (3.9 results(solid ling). The range of the magnetic fieldy/2<L o<W,
0 is denoted by—. In (b), we introduce the square shaped disordered
with region as shown in Fig.(B), whereV/uy=0.5. The parametex

=1/(mL/2) is the ratio of the elastic mean-free-path in 2DEG and
. ) ) T the mean orbit length of the cyclotron motion. The ensemble-
ho= ;n (—t]i,m)(j+1,m|+H.c)+ % (—t;€"8|j,m+1)  averaged conductance folu=0.5 is shown in(c).

] ] . wherea is the lattice constant. In what follows, the energy is
X(] :m|+H-C-)+§;41 Eijli,m)(i.ml, (32 measured in units of.y and the length is measured in units
3 of the lattice constant. We fix the parameters taduy
=0.5, ug/un=2.0, andAy/uny=0.005, respectively. The
A=2 Aj,m|j ,my(j,m|, (3.3  width of the junction is 30 lattice constant. We numerically
j,m calculate the reflection probability by using the recursive
Green’s-function methd@'’ and obtain the zero-bias differ-

(j.m)= ( U, ,m)) (3.4 ential conductance based on the Takane-Ebisawa forffula.
' vjmli,m/’
whereE; = €; m+4t; — u; corresponds to the on-site poten- A. Disorder in Semiconductor

tial and €; , is the random potential. The hopping integral  In Fig. 3@, we show the conductance as a function of
and the Fermi energy ate=ty andu; = uy in the semicon-  uy/fiw., wherets/uny=1.5. The range of the magnetic
ductor (=<0) and those in the superconductge=(1) are field, which satisfies E¢2.3), is denoted by—. Here there
tj=tsandu;= ug, respectively. The hopping integral gives is no disorder in the Sr-junction. The analytic expression
the bandwidth and the Fermi energy corresponds to the difin Eq. (2.2) (broken ling is compared with the numerical
ference in energy between the band edge and the chemicadsults(solid line), where we estimatl ®9? and|r"¢? from
potential of the Sn® junction. We note that the chemical the numerical results &=0 and 6, is set to be zero. The
potential of the Sn® junction is set to be the origin of the analytic results agree well with the numerical results.
energy. The pair potentia; , is A, in the superconductor We introduce the square shaped disordered region in the
and zero in the semiconductor, respectively. The amplitudgemiconductor as shown in Fig(l2, where the on-site po-
of the wave function in the electrothole) branch isu; ,,  tential is given randomly in the range efV/2<e; ,<V/2,
(vj,m). The magnetic field is taken into account through thewhich represents the impurity potential. The disordered re-
Peierls phasdig=27Ba? ¢, in the hopping Hamiltonian, gion is separated byV/10 from the interface in order to
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region in both Figs. &) and 4b). In Fig. 4a), the
Aharonov-Bohm type oscillations are completely smeared by
the impurity scattering near the interface becausel.0
holds for all magnetic fields. The aperiodic oscillations of the
universal conductance fluctuatiéhs’® can be seen instead
of the Aharonov-Bohm type oscillations. In Fig(b4, the
small aperiodic oscillations are caused by introducing the
disordered segment but the periodic oscillations still can be
0=0.17 seen in the conductance. In this case, the Aharonov-Bohm
1 type oscillations remain because there is no impurities near
the interface. The calculated results in Fig. 4 support the
proposed mechanism of the conductance oscillations.

We have shown the conductance of a single sample with a
particular random arrangement of the on-site potentials in
Fig. 3(b). In Fig. 3c), we show the conductance averaged
over 20 different random configurations fo¥ uy=0.5. In
comparison with Fig. @), the conductance oscillations seem
to be recovered even #<1.0 because the aperiodic oscil-
lations of the magnetofinger print are averaged out. It may be

u ! ho, difficult to observe the ensemble-averaged conductance in
experiments, however, Fig(§ implies the difference in the

FIG. 4. We compare the conductance in the two systenfg)in Characteristic behavior between the Aharonov-Bohm type
and(b), whereV/uy=1.0. In insets, the filled area denotedbys  oscillations and the magnetofinger print. In the real three-
the disordered region. Ifa), the disordered region is introduced terminal junctions, the Fermi energy in 2DEG can be
near the interface. On the other handli, the disordered region is changed by the gate voltag&lt may be possible to find the
separated byV from the interface. oscillations in the ensemble-averaged conductance by tuning
the Fermi energy.

neglect the effects of the rough interface, which will be dis-
cussed in the next subsection. In Figh)3 we show the B. Roughness at the interface

conductance foW/un=0.5. The parametet is the ratio of . . . .
the elastic mean-free-pathand the mean orbit length of the We introduce 'd|sorder on theL%xW lattice sites that
satisfy —Lg+1<j<Lg as shown in Fig. ). The rough

cyclotron motion between the two reflection points at the; : . ; .
interfacewL /2, [i.e., a=1/(wL/2)]. Since the diameter of interface is repre;ented b.y changing the on-site potential
the cyclotron orbit depends on the magnetic fields shown (Ei~mr)] and tkt'ﬁ palrtpo:_erlltla_lﬁ(j,tﬂ). In th_e al::jser}[ce g the

at the both edges of E@2.3). The elastic mean-free-path is "0U9NNess, e potentials in the semiconductor &y,

estimated from the normal conductance of the disordered re- 4in—#n @nd4; =0, respectively. In the presence of the

gion. The conductance oscillations cannot be seen arour@”ghness’ thelse gogentials on the Iat;[jicAe siie;—fbrs:;l
un!fw.~10 because the impurity scattering suppresses the ) =<0 are replaced b§; = A4ts— us andd; n=Ao with a
interference effect(i.e., «<1.0). On the other hand for p_robab|I|tpr_. In the same way, the potentials on the lattice
un/ho.~5, the oscillations still can be seen because thesnes_for kj=<Lg are replaced byEi'm:4tN_<'“N and
mean orbit length is slightly smaller thanThe calculated 2i.m=0 With a probabilitypg.. In this model,pg<0.5 and
results are consistent with the prediction in Sec. Il. We conLr<W represent the degree of disorder. The random on-site
clude thatl must be larger thanrL /2 to observe the con- potentiale; , is fixed at zero. In F|g_. 5, we show the_numen-
ductance oscillations. cal results of the conductanésolid line) for three choices of

The disorder in the semiconductor suppresses the conduPr @NdLgr, wherets/uy=1.0.
tance oscillations in the two different mechanisms. The im- € roughness at the interface suppresses the conductance

purity scattering suppresses the interference effect as di@scillations in the two different mechanisms. The specular
cussed in Fig. ). The disordered segment causes thereflect|on_|_s suppre_ssed by the roughness.as dlscussgd in Sec.
backscattering of an incoming quasiparticle before it reacheld: In @ddition to this, the Andreev reflection probability is

at the SmS interface, which also leads to the suppression oftlso Qecreased by the roughness at the |nterface. In order to
the conductance oscillations. Actually the amplitudes of th&onsider the two effects separately, we modify the expres-
conductance and the conductance oscillations in Fig) 3 Sion of the conductance,

decrease in comparison with those in Figa)3In order to

separate the two effects clearly, we examine the conductanceGN Z_EZN
in the two different systems as shown in Fig&)4dand 4b), h ¢
whereV/un=1.0. In Fig. 4a), the square shaped disordered 5
region is introduced near the interface as shown in the inset. x(she)p(ﬂ) cos( o MN Py
On the other hand in Fig.(d), the disordered segment is hw ho, n
separated byV from the interface as shown in the inset. The

amplitude of the incident quasiparticle reaching at the interwhere(- - - ) means the ensemble-average valuBat0 and
face is decreased due to the backscattering in the disorderst® (s"®) is the specularity parameter for the norntan-

Conductance [ 2¢”/ h ]

1= ((|red2=[r"2) 2= 4(Ireq2)(Ir"%) (s

}, 3.9
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TABLE I. Values of (r®®, (r"®, (s®9, and(s"® used in Eq.
(3.5 and in Fig. 4. These are the ensemble-averaged values over a
number of random configurations Bt=0.

Le  Pr (9 (M%) (%) (8™

0.0 0.46 0.54 1.00 1.00
0.5 0.72 0.28 0.90 0.84
0.4 0.74 0.26 0.56 0.73
0.3 0.73 0.27 0.32 0.69

@
(b)
(©

A NP O

In Fig. 5, we compare the analytic results in Eg.5
(broken ling with the numerical results. In Table I, we sum-
marize the reflection probabilities and the specularity param-
eters used in Eq3.5. We note that|re92) ((|r"?)) has
almost the same value in the three choicespgf,Lg). Thus
| L4 _— ] the difference in the amplitude of the oscillations among
Figs. §a)-5(c) is stemming from the specularity of the in-
terface. The analytic expression agrees well with the all nu-
merical results. The amplitude of the oscillations decreases

— - - Analytical © ] with decreasing spgcularity parameters, W_hich ipdicates that
oy T the specular reflection at the Ssninterface is an important
9 4 6 8 10 192 ingredient for the conductance oscillations.
n/ h"’c We have calculated the specularity parameters fopR
=<0.5 and Xk=Lg=<4. Within our numerical results, we find

FIG. 5. The conductance in the presence of the roughness at t interesting feature its®® and(s"®). The specularity pa-
interface is shown. The solid lines are the numerical results and theameter in the Andreev reflection tends to be larger than that
broken lines are the analytic results in HS.5), respectively. In  in the normal reflection for many cases. We cannot give a
(a@—(c), the reflection probabilities argr®92)~0.73 and(|r"4?)  convincing argument, however, one explanation for this fact
~0.27 as shown in the Table I. The range of the magnetic field thais as follows. The specularity parameters are estimated in the
satisfiesW/2<L-<W is denoted by-. absence of the magnetic field. The retro property of the qua-

siparticle holds in the presence of the time-reversal symme-
dreey reflection. Under the periodic boundary condition in try. The Andreev-reflected holelike quasiparticle may tend to
the y direction and B=0, we calculate the ensemble- trace back the trajectory of the incoming electronlike quasi-

Conductance [2e*/h]

AV s =0.32 [
R v~ s =069 |]
Numerical

O N O L O N R 0O N R O ®

averaged values as follows, particle even if the roughness exists at the interface. In addi-
tion to this, (s®® tends to first decrease then increase with
increasing roughness for lardg;. We find that a relation
2\ 2
(|req >—<2 el > / (3.6 (s*9(s"®>0.2 holds for all cases. In E¢3.5), the ampli-

tude of the conductance oscillations is proportional to
(Ire92)(|r"¥?) and (s*®(s"®). Since (s"®) remains with

he|2> <E |r |2> / 3.7 large values, roughly speaking, a relation
"l ' :
(Irea2)(|r?)=(s*)(s") (3.10
(528 = > |reg2 / Ng(|re92) (3.9 holds for many cases. The relation in Eg§.10 implies that
™ ¢ ' the reflection at the Sr8-interface is sufficiently specular

when the Andreev reflection probability is sufficiently large.

In this paper, we have considered the suppression of the
> / «Ir"?) (3.9  Andreev reflection and the suppression of the specular reflec-
tion independently. The two effects, however, are closely
related to each other.

<s“e>=<2 et

1,1

The summatior®, |, runs over all propagating channels in
the semiconductor antf, | (rl, ) is the reflection coefficient
from the Ith propagating channel in the electron branch to IV. DISCUSSION

the I’th channel in the electrothole) branch. The signs of  The perfect screening of the magnetic field in the super-
the all velocity components in the hole channel denoted by conductor has been assumed in the theoretical works:*

are opposite to those in the incoming electron channel laThe phenomenological theory predicted that the penetration
beled byl. In the absence of the roughness, the perfectlepth of the superconductarmust be smaller thaw to find
specular reflection is represented 5% =(s"®)=1. In Eq.  the conductance oscillatiodThis argument is briefly sum-
(3.5, the specularity of the Sr8-interface is considered marized as follows. At in Fig. 1(b), the incident quasipar-
through(s®® and(s"®). ticle can penetrate into the superconductor within the length
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scale given byt,=%vs/7A, and can move ta, through =100 meV andn* =0.05m,, wherem, is the bare mass of
the superconductor, wherss is the Fermi velocity in the @n electron. The critical magnetic field of the type | super-
superconductor. When the magnetic field penetrates into thfgPhductor can be larger than 0.04 T in materials such as Pb.
superconductor, the quasiparticle reaching asuffers the  1hus it seems to be possible to fabricate the Sjunctions
phase change that is roughly estimateddg@s-eBA\W/#ic.  that satisfy the relation in Ed4.1).

This phase shift, however, smears the conductance oscilla-

tions because the quasiparticle is not confined within a par- V. CONCLUSION

ticular propagation path in the superconductor. Wheris
much smaller thaiV, so thatq5§<27r,uN/hwc, the conduc-
tance oscillations can be seen. From the equatigs
<2munlhoe, Egs. (2.3 and (2.1), a condition N/W
<0.03~0.1 must be satisfied to observe the conductance o
cillations. Actually we have confirmed by the numerical

The magnetoconductance oscillations in a semiconductor/
superconductor (Sr8) junction were shown in a numerical
simulation? In experiments, however, the conductance os-
cillations have never been observed yet. In previous
Papers213we proposed the mechanism of the conductance
. . o oscillations and concluded that the oscillations are a conse-
simulation that the oscillations are clearly seen 1MW ,0nce of the Aharonov-Bohm type interference effect. If the
<0.05 and dlsappe_ar for/w=> 01 . . proposed mechanism is correct, it was predicted that the con-

From the numerical results in Sec. lll, we derive an im- 4, ctance oscillations would be sensitive to the disorder near
portant relation to find the conductance oscillations. Thethe SmS interface and to the magnetic field penetration into

mean-free-path in the semiconductor is larger than the meafle gperconductd? In this paper, we perform a numerical
orbit length of the cyclotron motion, i.e/(7Lc/2)>1. The g 1ation by using the recursive Green’s-function method

width of the junction must be much larger than the penetras, o qer to confirm the prediction. The numerical results

tion depth in the superconductor, i.8/\W<=0.05. In addition g0y that the conductance oscillations are suppressed by the

to these conditions, the magnetic field is strong enough tQisorger near the interface. The calculated results agree well
satisfy Eq.(2.3), and the superconductivity holds. A relation \yit the prediction even quantitatively, which indicates the

|>W~Lc>\ (4.1) justification of the proposed mechanism of the conductance

oscillations. We also discuss a possibility of the conductance
must be satisfied to find the conductance oscillations in exescillations in experiments.

periments. The mean-free-path in a r&a6m-S junction is
aboutl ~0.8 wm in 2DEG on InAs’ However,| can be more
than 10um on GaAs. In the following, we assume thAt
~10 um. In this case, the penetration depth in the supercon- The authors are indebted to N. Tokuda and H. Akera for

ductor is much smaller thaw sinceX is typically 0.1 um.  useful discussion. The computations have been carried out at
The magnetic field in Eq(2.3) is estimated to be 0.08 T the Supercomputer Center, Institute for Solid State Physics,
>B>0.04 T. Here we use the parameters such as University of Tokyo.
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