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Effects of disorder on conductance oscillations in semiconductor-superconductor junctions
in a magnetic field
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We study the effects of disorder on magnetoconductance oscillations in semiconductor-superconductor
junctions. These conductance oscillations were predicted by recent several theoretical works in ballistic junc-
tions, however, have never been observed yet in experiments. We find that the disorder near the junction
suppresses the conductance oscillations. From the numerical results, we derive a condition that must be
satisfied to find the conductance oscillations in experiments.
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I. INTRODUCTION

In recent years, a study of small hybrid systems consis
of a superconductor in contact with a semiconductor has
tracted much attention.1–4 The unusual reflection from th
normal metal-superconductor interface, known as the
dreev reflection,5 characterizes the transport properties
semiconductor/superconductor (Sm-S) systems.6 In experi-
ments,S-Sm-S junctions are realized in the strong magne
fields by using a superconductor with high-critical magne
field.7,8 The Andreev reflection at each Sm-S interface is the
source of the Josephson current that is carried by the e
states in high-magnetic fields.9,10 These investigations bridg
the quantum Hall effect and the Andreev reflection.

The magnetoconductance oscillations in semiconduc
superconductor (Sm-S) junctions are a consequence of t
Andreev reflection of a quasiparticle under the magne
field. These oscillations were first found in a numeric
simulation.11 In previous papers, we proposed the mec
nism of the conductance oscillations and concluded that
Aharonov-Bohm type interference effect is responsible
the oscillations.12,13 Within a phenomenological argumen
we explained the amplitude, the period, and the phase
of the conductance oscillations. A recent microscopic cal
lation showed the conductance oscillations,14 which are simi-
lar to those in the numerical simulation.11 Unfortunately the
conductance oscillations have never been observed ye
experiments. In the theoretical works, it is assumed that
Sm-S junctions are free from any disorder and that the m
netic field in the superconductor is perfectly excluded by
Meissner effect. If the proposed mechanism of the osci
tions is correct,12 the conductance oscillations are sensit
to disorder near the Sm-S interface. In addition to this, it is
also predicted that the conductance oscillations might
smeared by the magnetic field that penetrates into
superconductor.13 The effects of disorder on the conductan
oscillations should be studied theoretically to find the os
lations in experiments. So far, the effects of the impur
scattering in the semiconductor was briefly discussed i
numerical simulation.15

There are two purposes in this paper. One of them is
check the validity of the proposed mechanism of the cond
tance oscillations.12 Second purpose is to discuss a possib
PRB 620163-1829/2000/62~11!/7477~6!/$15.00
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ity of the conductance oscillations finding in experimen
For these purposes, we perform a numerical simulation
using the recursive Green’s-function method16,17 and calcu-
late the zero-bias conductance based on the Takane-Ebi
formula.18 The numerical results show that the conductan
oscillations disappear when the elastic mean-free path in
semiconductor is smaller than the diameter of the class
cyclotron orbit of a quasiparticle. The effects of the rou
Sm-S interface on the conductance oscillations are studie
terms of the specularity of the interface. We show that
specular reflection at the Sm-S interface is an important in-
gredient for the conductance oscillations. These calcula
results are consistent with the prediction in the phenome
logical theory.12

This paper is organized as follows. In Sec. II, we brie
survey the mechanism of the magnetoconductance osc
tions in Sm-S junction. The effects of the impurity scatterin
in the semiconductor and those of the rough interface on
conductance oscillations are discussed in Sec. III. In Sec.
a possibility of the conductance oscillations in experiment
argued. The conclusion is given in Sec. V.

II. MECHANISM OF THE CONDUCTANCE
OSCILLATIONS

Let us consider a situation where both the normal a
Andreev reflection processes exist at the Sm-S interface, and
the superconductor is one of the type I. In Fig. 1, we sc
matically illustrate the classical trajectories of a quasiparti
near the Sm-S interface in a magnetic field, where th
hatched area denotes the superconductor and the width o
Sm-S junction isW. We assume that the system is free fro
any disorder and that the magnetic field is perfectly exclud
from the superconductor. In Fig. 1~a!, the magnetic field is
sufficiently weak and an incident electronlike quasiparticle
reflected once at the Sm-S interface. In the presence of th
magnetic field, the Andreev-reflected holelike quasiparti
does not trace the trajectory of the incident quasiparticle. T
quasiparticle in the electron branch and that in the h
branch skip along the Sm-S interface in the same direction
This is because the signs of the charge in the two branc
are opposite to each other. At the same time, the signs o
effective mass in the two excitations are opposite to e
7477 ©2000 The American Physical Society
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7478 PRB 62YASUHIRO ASANO AND TAKASHI YUITO
other. The diameter of the classical cyclotron orbit is giv
by

LC5
4

kF

mN

\vc
, ~2.1!

wherekF , mN , andvc5eB/m* c are the Fermi wave num
ber, the Fermi energy, and the cyclotron frequency in
two-dimensional electron gas~2DEG! on the semiconductor
respectively.

In Fig. 1~b!, the magnetic field is slightly stronger tha
that in Fig. 1~a!, where the incident quasiparticle is reflect
twice at the Sm-S interface. The incident quasiparticle
either reflected into the electron or the hole branches ar1
and travels across the wire along the two cyclotron orb
The pair of the quasiparticle waves in the two branches
reflected again into the two branches atr2. After the two
reflections, the incident quasiparticle divides into four pa
The two parts in the electron~hole! branch interfere with
each other. During the trip betweenr1 and r2, the quasipar-
ticle in the electron~hole! branch suffers the phase chan
fB

e (fB
h) from the vector potential. It was shown that th

phase difference between the pair of the wavesfB
e2fB

h is
2pmN /\vc , which is independent of the incident angle
the electronlike quasiparticle. The phase differen
2pmN /\vc is not proportional to the magnetic flux enclos
by the two partial circles betweenr1 andr2 but the magnetic
flux encircled by the single complete cyclotron orbit in un
of f0[2p\c/ueu.12 This is because the phase shift is pr
portional to the charge of the quasiparticle and the signs
the charge in the two branches are opposite to each o
Thus the Aharonov-Bohm type oscillations can be seen
the magnetoconductance.~The Aharonov-Bohm effect is the
interference effect of an electronin the absence of the mag
netic field.19 In this paper, however, we use the ter
‘‘Aharonov-Bohm type interference effect’’ when we ex
plain the mechanism of the conductance oscillations, wh
is the interference effectin the presence of the magnet
field.!

Based on the above idea, we derived the zero-bias dif
ential conductance

FIG. 1. The classical trajectories of a quasiparticle in magn
field are depicted. The hatched area is the superconductor. The
~broken! curves are the cyclotron orbits of a quasiparticle in t
electron~hole! branch. The width of the junction isW andLC is the
diameter of the classical cyclotron motion of a quasiparticle.
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h
NcF12~ ur eeu22ur heu2!2

24ur eeu2ur heu2pS mN

\vc
D 2

cosS 2p
mN

\vc
22 unD G ,

~2.2!

whereur eeu2 (ur heu2) is the normal~Andreev! reflection prob-
ability, un is the phase shift of the normal reflection,Nc is
the number of the propagating channels in the semicond
tor, andp(mN /\vc)52(12LC /W) is the envelope function
given by the phenomenological argument, respectivel12

Note, however, that the sign of the last term in Eq.~2.2! had
to be adjusted by hand, from1 to 2, in order to obtain
agreement with the numerical results.

The conductance expression is valid when the magn
field satisfies a relation

W

2
<LC<W, ~2.3!

where the incident quasiparticle is reflected twice at
Sm-S interface. In the absence of the disorder in the SmS
junction, the analytic expression well explains the amplitu
the period, and the phase shift of the conductan
oscillations.12,13 Thus we concluded that the Aharono
Bohm type interference effect of a quasiparticle is resp
sible for the conductance oscillations even in the simply c
nected Sm-S junctions. In general, in order to observe th
Aharonov-Bohm type conductance oscillations clearly,
have to confine an electron wave as in the experime20

and/or the magnetic flux as in the original idea.19 An electron
wave in the ballistic transport regime, however, is confin
within the cyclotron orbit by its charge degree of freedo
under sufficiently strong magnetic fields.21,22

If the above physical picture of the conductance osci
tions is correct, the oscillations are sensitive to imperfectio
near the Sm-S interface since the quasiparticle in the prese
system is confined only by the magnetic field. In order
find the conductance oscillations, the quasiparticle must s
betweenr1 andr2 in Fig. 1~b! without being scattered by th
impurities. In other words, the mean-free-path in the se
conductor,l, must be larger than the mean orbit length of t
cyclotron motion between the two reflection pointspLC/2.
In addition to this, the conductance oscillations require
specular reflection of the quasiparticle at the Sm-S interface.
In the presence of the roughness at the interface, there wi
the ‘‘diffuse’’ reflection. The pair of the waves that suffer th
diffuse reflection atr1 cannot meet each other again atr2. In
real Sm-S junctions, however, the disorder exists near t
Sm-S interface and may suppress the conducta
oscillations.23

III. EFFECTS OF DISORDER

The Sm-S junction is described by the Bogoliubov-d
Gennes equation24 on the two-dimensional tight-binding
model as shown in Fig. 2~a!, wherej labels the lattice site in
the x direction. The lattice sites forj <0 and j >1 represent
the semiconductor and the superconductor, respectively.
vector potential is chosen to beA5(0,Bx) in the semicon-
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PRB 62 7479EFFECTS OF DISORDER ON CONDUCTANCE . . .
ductor and zero in the superconductor, respectively. We
the hard wall confinement potential in they direction and the
lattice index in this direction ism. The Bogoliubov-de
Gennes equation reads

S ĥ0 D̂

D̂* 2ĥ0*
D f~ j 8,m8!5Ef~ j 8,m8!, ~3.1!

with

ĥ05(
j ,m

~2t j u j ,m&^ j 11,mu1H.c.!1(
j ,m

~2t je
ihBj u j ,m11&

3^ j ,mu1H.c.!1(
j ,m

Ei , j u j ,m&^ j ,mu, ~3.2!

D̂5(
j ,m

D j ,mu j ,m&^ j ,mu, ~3.3!

f~ j ,m!5S uj ,mu j ,m&

v j ,mu j ,m&
D , ~3.4!

whereEj ,m5e j ,m14t j2m j corresponds to the on-site pote
tial and e j ,m is the random potential. The hopping integr
and the Fermi energy aret j5tN andm j5mN in the semicon-
ductor (j <0) and those in the superconductor (j >1) are
t j5tS andm j5mS , respectively. The hopping integral give
the bandwidth and the Fermi energy corresponds to the
ference in energy between the band edge and the chem
potential of the Sm-S junction. We note that the chemica
potential of the Sm-S junction is set to be the origin of th
energy. The pair potentialD j ,m is D0 in the superconducto
and zero in the semiconductor, respectively. The amplit
of the wave function in the electron~hole! branch isuj ,m
(v j ,m). The magnetic field is taken into account through t
Peierls phasehB52pBa2/f0 in the hopping Hamiltonian,

FIG. 2. The Sm-S junction is illustrated. The hatched area d
notes the superconductor. We introduce the square shaped d
dered region~filled area! near the interface in~b!. The disordered
region is limited at the interface in~c!.
se
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wherea is the lattice constant. In what follows, the energy
measured in units ofmN and the length is measured in uni
of the lattice constant. We fix the parameters astN /mN
50.5, mS /mN52.0, andD0 /mN50.005, respectively. The
width of the junction is 30 lattice constant. We numerica
calculate the reflection probability by using the recurs
Green’s-function method16,17 and obtain the zero-bias differ
ential conductance based on the Takane-Ebisawa formu18

A. Disorder in Semiconductor

In Fig. 3~a!, we show the conductance as a function
mN /\vc , where tS /mN51.5. The range of the magneti
field, which satisfies Eq.~2.3!, is denoted by↔. Here there
is no disorder in the Sm-S junction. The analytic expressio
in Eq. ~2.2! ~broken line! is compared with the numerica
results~solid line!, where we estimateur eeu2 and ur heu2 from
the numerical results atB50 andun is set to be zero. The
analytic results agree well with the numerical results.

We introduce the square shaped disordered region in
semiconductor as shown in Fig. 2~b!, where the on-site po-
tential is given randomly in the range of2V/2,e j ,m,V/2,
which represents the impurity potential. The disordered
gion is separated byW/10 from the interface in order to

or-

FIG. 3. The conductance is plotted as a function of the inve
of the magnetic field, wheretN /mN50.5, tS /mN51.5, and
mS /mN52.0, respectively. The width of the Sm-S junctionW is 30
lattice constant. We do not consider any disorder in~a! and compare
the analytic results in Eq.~2.2! ~broken line! with the numerical
results~solid line!. The range of the magnetic field,W/2,LC,W,
is denoted by↔. In ~b!, we introduce the square shaped disorde
region as shown in Fig. 2~b!, whereV/mN50.5. The parametera
5 l /(pLC/2) is the ratio of the elastic mean-free-path in 2DEG a
the mean orbit length of the cyclotron motion. The ensemb
averaged conductance forV/mN50.5 is shown in~c!.
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7480 PRB 62YASUHIRO ASANO AND TAKASHI YUITO
neglect the effects of the rough interface, which will be d
cussed in the next subsection. In Fig. 3~b!, we show the
conductance forV/mN50.5. The parametera is the ratio of
the elastic mean-free-pathl and the mean orbit length of th
cyclotron motion between the two reflection points at t
interfacepLC/2, @i.e., a[ l /(pLC/2)#. Since the diameter o
the cyclotron orbit depends on the magnetic field,a is shown
at the both edges of Eq.~2.3!. The elastic mean-free-path
estimated from the normal conductance of the disordered
gion. The conductance oscillations cannot be seen aro
mN /\vc;10 because the impurity scattering suppresses
interference effect~i.e., a,1.0). On the other hand fo
mN /\vc;5, the oscillations still can be seen because
mean orbit length is slightly smaller thanl. The calculated
results are consistent with the prediction in Sec. II. We c
clude thatl must be larger thanpLC/2 to observe the con
ductance oscillations.

The disorder in the semiconductor suppresses the con
tance oscillations in the two different mechanisms. The
purity scattering suppresses the interference effect as
cussed in Fig. 3~b!. The disordered segment causes
backscattering of an incoming quasiparticle before it reac
at the Sm-S interface, which also leads to the suppression
the conductance oscillations. Actually the amplitudes of
conductance and the conductance oscillations in Fig. 3~b!
decrease in comparison with those in Fig. 3~a!. In order to
separate the two effects clearly, we examine the conducta
in the two different systems as shown in Figs. 4~a! and 4~b!,
whereV/mN51.0. In Fig. 4~a!, the square shaped disorder
region is introduced near the interface as shown in the in
On the other hand in Fig. 4~b!, the disordered segment
separated byW from the interface as shown in the inset. T
amplitude of the incident quasiparticle reaching at the in
face is decreased due to the backscattering in the disord

FIG. 4. We compare the conductance in the two systems in~a!
and~b!, whereV/mN51.0. In insets, the filled area denoted byD is
the disordered region. In~a!, the disordered region is introduce
near the interface. On the other hand in~b!, the disordered region is
separated byW from the interface.
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region in both Figs. 4~a! and 4~b!. In Fig. 4~a!, the
Aharonov-Bohm type oscillations are completely smeared
the impurity scattering near the interface becausea,1.0
holds for all magnetic fields. The aperiodic oscillations of t
universal conductance fluctuations25–28 can be seen instea
of the Aharonov-Bohm type oscillations. In Fig. 4~b!, the
small aperiodic oscillations are caused by introducing
disordered segment but the periodic oscillations still can
seen in the conductance. In this case, the Aharonov-Bo
type oscillations remain because there is no impurities n
the interface. The calculated results in Fig. 4 support
proposed mechanism of the conductance oscillations.

We have shown the conductance of a single sample wi
particular random arrangement of the on-site potentials
Fig. 3~b!. In Fig. 3~c!, we show the conductance averag
over 20 different random configurations forV/mN50.5. In
comparison with Fig. 3~b!, the conductance oscillations see
to be recovered even ifa,1.0 because the aperiodic osc
lations of the magnetofinger print are averaged out. It may
difficult to observe the ensemble-averaged conductanc
experiments, however, Fig. 3~c! implies the difference in the
characteristic behavior between the Aharonov-Bohm ty
oscillations and the magnetofinger print. In the real thr
terminal junctions, the Fermi energy in 2DEG can
changed by the gate voltage.29 It may be possible to find the
oscillations in the ensemble-averaged conductance by tu
the Fermi energy.

B. Roughness at the interface

We introduce disorder on the 2LR3W lattice sites that
satisfy 2LR11< j <LR as shown in Fig. 2~c!. The rough
interface is represented by changing the on-site poten
(Ej ,m) and the pair potential (D j ,m). In the absence of the
roughness, the potentials in the semiconductor areEj ,m
54tN2mN andD j ,m50, respectively. In the presence of th
roughness, these potentials on the lattice sites for2LR11
< j <0 are replaced byEj ,m54tS2mS andD j ,m5D0 with a
probabilitypR . In the same way, the potentials on the latti
sites for 1< j <LR are replaced byEj ,m54tN2mN and
D j ,m50 with a probabilitypR . In this model,pR<0.5 and
LR!W represent the degree of disorder. The random on-
potentiale j ,m is fixed at zero. In Fig. 5, we show the numer
cal results of the conductance~solid line! for three choices of
pR andLR , wheretS /mN51.0.

The roughness at the interface suppresses the conduc
oscillations in the two different mechanisms. The specu
reflection is suppressed by the roughness as discussed in
II. In addition to this, the Andreev reflection probability
also decreased by the roughness at the interface. In ord
consider the two effects separately, we modify the expr
sion of the conductance,

G;
2e2

h
NcF12~^ur eeu22ur heu2&!224^ur eeu2&^ur heu2&^see&

3^she&pS mN

\vc
D 2

cosS 2p
mN

\vc
22unD G , ~3.5!

where^•••& means the ensemble-average value atB50 and
see (she) is the specularity parameter for the normal~An-
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dreev! reflection. Under the periodic boundary condition
the y direction and B50, we calculate the ensemble
averaged values as follows,

^ur eeu2&5K (
l ,l 8

ur l 8,l
ee u2L Y Nc , ~3.6!

^ur heu2&5K (
l ,l 8

ur l 8,l
he u2L Y Nc , ~3.7!

^see&5K (
l

ur l ,l
eeu2L Y Nc^ur eeu2&, ~3.8!

^she&5K (
l , l̃

ur l̃ ,l
heu2L Y Nc^ur heu2&. ~3.9!

The summation( l ,l 8 runs over all propagating channels
the semiconductor andr l 8,l

ee (r l 8,l
he ) is the reflection coefficien

from the l th propagating channel in the electron branch
the l 8th channel in the electron~hole! branch. The signs o
the all velocity components in the hole channel denoted bl̃
are opposite to those in the incoming electron channel
beled by l. In the absence of the roughness, the perf
specular reflection is represented by^see&5^she&51. In Eq.
~3.5!, the specularity of the Sm-S interface is considered
through^see& and ^she&.

FIG. 5. The conductance in the presence of the roughness a
interface is shown. The solid lines are the numerical results and
broken lines are the analytic results in Eq.~3.5!, respectively. In
~a!–~c!, the reflection probabilities arêur eeu2&;0.73 and^ur heu2&
;0.27 as shown in the Table I. The range of the magnetic field
satisfiesW/2,LC,W is denoted by↔.
-
t

In Fig. 5, we compare the analytic results in Eq.~3.5!
~broken line! with the numerical results. In Table I, we sum
marize the reflection probabilities and the specularity para
eters used in Eq.~3.5!. We note that̂ ur eeu2& (^ur heu2&) has
almost the same value in the three choices of (pR ,LR). Thus
the difference in the amplitude of the oscillations amo
Figs. 5~a!–5~c! is stemming from the specularity of the in
terface. The analytic expression agrees well with the all
merical results. The amplitude of the oscillations decrea
with decreasing specularity parameters, which indicates
the specular reflection at the Sm-S interface is an importan
ingredient for the conductance oscillations.

We have calculated the specularity parameters for 0,pR
<0.5 and 1<LR<4. Within our numerical results, we find
an interesting feature in̂see& and^she&. The specularity pa-
rameter in the Andreev reflection tends to be larger than
in the normal reflection for many cases. We cannot giv
convincing argument, however, one explanation for this f
is as follows. The specularity parameters are estimated in
absence of the magnetic field. The retro property of the q
siparticle holds in the presence of the time-reversal sym
try. The Andreev-reflected holelike quasiparticle may tend
trace back the trajectory of the incoming electronlike qua
particle even if the roughness exists at the interface. In a
tion to this, ^see& tends to first decrease then increase w
increasing roughness for largeLR . We find that a relation
^see&^she&.0.2 holds for all cases. In Eq.~3.5!, the ampli-
tude of the conductance oscillations is proportional
^ur eeu2&^ur heu2& and ^see&^she&. Since ^she& remains with
large values, roughly speaking, a relation

^ur eeu2&^ur heu2&<^see&^she& ~3.10!

holds for many cases. The relation in Eq.~3.10! implies that
the reflection at the Sm-S interface is sufficiently specula
when the Andreev reflection probability is sufficiently larg
In this paper, we have considered the suppression of
Andreev reflection and the suppression of the specular re
tion independently. The two effects, however, are clos
related to each other.

IV. DISCUSSION

The perfect screening of the magnetic field in the sup
conductor has been assumed in the theoretical works.11,12,14

The phenomenological theory predicted that the penetra
depth of the superconductorl must be smaller thanW to find
the conductance oscillations.13 This argument is briefly sum
marized as follows. Atr1 in Fig. 1~b!, the incident quasipar-
ticle can penetrate into the superconductor within the len

the
he

at

TABLE I. Values of ^r ee&, ^r he&, ^see&, and ^she& used in Eq.
~3.5! and in Fig. 4. These are the ensemble-averaged values o
number of random configurations atB50.

LR PR ^ur eeu2& ^ur heu2& ^see& ^she&

0 0.0 0.46 0.54 1.00 1.00
~a! 1 0.5 0.72 0.28 0.90 0.84
~b! 2 0.4 0.74 0.26 0.56 0.73
~c! 4 0.3 0.73 0.27 0.32 0.69
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7482 PRB 62YASUHIRO ASANO AND TAKASHI YUITO
scale given byj05\vS /pD0 and can move tor2 through
the superconductor, wherevS is the Fermi velocity in the
superconductor. When the magnetic field penetrates into
superconductor, the quasiparticle reaching atr2 suffers the
phase change that is roughly estimated asfB

S5eBlW/\c.
This phase shift, however, smears the conductance osc
tions because the quasiparticle is not confined within a p
ticular propagation path in the superconductor. Whenl is
much smaller thanW, so thatfB

S!2pmN /\vc , the conduc-
tance oscillations can be seen. From the equationsfB

S

,2pmN /\vc , Eqs. ~2.3! and ~2.1!, a condition l/W
,0.03;0.1 must be satisfied to observe the conductance
cillations. Actually we have confirmed by the numeric
simulation that the oscillations are clearly seen forl/W
,0.05 and disappear forl/W.0.1.

From the numerical results in Sec. III, we derive an i
portant relation to find the conductance oscillations. T
mean-free-path in the semiconductor is larger than the m
orbit length of the cyclotron motion, i.e.,l /(pLC/2).1. The
width of the junction must be much larger than the pene
tion depth in the superconductor, i.e.,l/W<0.05. In addition
to these conditions, the magnetic field is strong enough
satisfy Eq.~2.3!, and the superconductivity holds. A relatio

l .W;LC@l ~4.1!

must be satisfied to find the conductance oscillations in
periments. The mean-free-path in a realS-Sm-S junction is
aboutl;0.8 mm in 2DEG on InAs.7 However,l can be more
than 10mm on GaAs. In the following, we assume thatW
;10 mm. In this case, the penetration depth in the superc
ductor is much smaller thanW sincel is typically 0.1mm.
The magnetic field in Eq.~2.3! is estimated to be 0.08 T
.B.0.04 T. Here we use the parameters such asmN
.

.

he

la-
r-

s-
l

-
e
an

-

to

x-

n-

5100 meV andm* 50.05me , whereme is the bare mass o
an electron. The critical magnetic field of the type I sup
conductor can be larger than 0.04 T in materials such as
Thus it seems to be possible to fabricate the Sm-S junctions
that satisfy the relation in Eq.~4.1!.

V. CONCLUSION

The magnetoconductance oscillations in a semiconduc
superconductor (Sm-S) junction were shown in a numerica
simulation.11 In experiments, however, the conductance
cillations have never been observed yet. In previo
papers,12,13 we proposed the mechanism of the conducta
oscillations and concluded that the oscillations are a con
quence of the Aharonov-Bohm type interference effect. If
proposed mechanism is correct, it was predicted that the c
ductance oscillations would be sensitive to the disorder n
the Sm-S interface and to the magnetic field penetration in
the superconductor.13 In this paper, we perform a numerica
simulation by using the recursive Green’s-function meth
in order to confirm the prediction. The numerical resu
show that the conductance oscillations are suppressed b
disorder near the interface. The calculated results agree
with the prediction even quantitatively, which indicates t
justification of the proposed mechanism of the conducta
oscillations. We also discuss a possibility of the conducta
oscillations in experiments.
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