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Andreev Reflection and Cyclotron Motion of a Quasiparticle

in High Magnetic Fields
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We discuss the magnetoconductance oscillations in small junctions of a ballistic semiconductor
and a superconductor. The conductance is calculated both numerically and analytically based
on the Bogoliubov-de Gennes equation. The conductance oscillations appear when the Andreev
reflection is not perfect at the interface and the diameter of the cyclotron motion of a quasiparticle
is comparable to the width of the junction. An interplay between the cyclotron motion of a
quasiparticle near the interface and the phase shift by the magnetic field is the origin of the
conductance oscillations.
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§1. Introduction

Magnetoconductance oscillations of a small ring are
a one of fundamental consequence of the phase-coherent
transport.1) An electron wave traveling along one arm ac-
quire a phase change, and an electron wave in the other
arm suffer a different phase change because of the mag-
netic field. The conductance oscillates as a function of
the magnetic flux encircled by a pair of electron waves
traveling the different arms. The width of the arms must
be narrow so that the number of the propagation path
of an electron wave can be limited. If many propaga-
tion paths are allowed in the arms, the conductance os-
cillations are washed out. In order to observe the con-
ductance oscillations clearly, at least, we have to either
confine an electron wave as in the experiment1) or the
magnetic flux as in the original idea.2) An wave,
however, is confined within the cyclotron orbit by its
charge degree of freedom under sufficiently strong mag-
netic fields, which is called the magnetic focusing.3, 4) In
ballistic transport regime, it may be possible to observe
the conductance oscillations without any artificial con-
finement of the electron wave and/or the magnetic flux.
In this paper, we discuss the Aharonov-Bohm type con-
ductance oscillations in a simply connected system.5)

In recent years, study of small hybrid systems consist-
ing of a superconductor in contact with a semiconductor
has attracted much attention.6-10) The unusual reflection
from the normal metal-superconductor interface, known
as the Andreev reflection,11, 12) characterizes the trans-
port properties in semiconductor-superconductor (Sm-S)
systems. In recent experiments, S-Sm-S junctions are re-
alized in the strong magnetic fields by using a high Hc2

superconductor.13, 14) The Josephson current is a con-
sequence of the Andreev reflection at each Sm-S inter-
face and is carried by the edge states in high magnetic
fields.15, 16) Thus the Andreev reflection in the presense

electron
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of the magnetic field is one of the important topics in the
mesoscopic Sm-S and S-Sm-S systems.

In this paper, we discuss the magnetoconductance os-
cillations in small Sm-S junctions, where a normal con-
duction occurs on high mobility two dimensional electron
gas (2DEG) in a semiconductor. In real Sm-S junctions,
the normal reflection is caused by several origins, such
as the potential barrier at the Sm-S interface, the mis-
match of the Fermi velocity on each side of the junction.
In such situation, it is numerically shown that the sinu-
soidal oscillations appear the magnetoconductance.17)

The authour mentioned that the conductance oscillations
are to the Shubnikov-de Haas oscillations.17) The
mechanism, however, was not argued. We have revealed
the nature of these novel magnetoconductance oscilla-
tions.18) An interplay between the cyclotron motion of a
quasiparticle and the phase shift by the magnetic field
is responsible for the conductance oscillations in ballistic
Sm-S junctions. The magnetoconductance oscillations
are one of the interference effect of a quasiparticle and
can be interpreted as the Aharonov-Bohm type effect in
simply connected systems. In this paper, we show the
detail of the numerical method and discuss the mech-
anism of the conductance oscillations in a phenomeno-
logical way. The amplitude and the period of the con-
ductance oscillations are obtained analytically and show
a good agreement with the numerical results. We also
discuss the conditions to observe the conductance oscil-
lations in experiments.

This paper is organized as follows. In §2, we explain
the theoretical model and the method to calculate the
conductance. The numerical results are shown in §3. The
mechanism of the conductance oscillations is discussed
and the analytic expression of the conductance is derived
phenomenologically in §4. We discuss a possibility of
observing the conductance oscillations in experiments in
§5. The conclusion is given in §6. In Appendix, we derive
the S-matrix of the one-dimensional Sm-S junctions.
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In the semiconductor, the electronlike and the holelike
excitations are decoupled because the pair potential is
zero. When an electronlike quasiparticle is injected into
the Sm-S interface from the nth propagating channel,
the wavefunction in the 2DEG is given by

Ψ̂N
n (x, y) =

(
1
0

)
eik+

nxfn(y) exp

(
i
eB

h̄c
xy

)
+
∑
l

Al,n

(
1
0

)
e−ik+

l
xgl(y) exp

(
i
eB

h̄c
xy

)

§2. Conductance of Sm-S Junctions

Let us consider a two-dimensional wire where electrons
are confined in the y direction in the range of −W/2 <
y < W/2. The wire consists of a 2DEG (x < 0) and a
superconductor (x > 0) as shown in Fig. 1. The Sm-
S junctions are described by the Bogoliubov-de Gennes
equation19)(

H0 ∆(x, y)

∆(x, y)∗ −H∗0

)(
u
v

)
= E

(
u
v

)
, (2.1)

where u(x, y) and v(x, y) are the wavefunctions of a
quasiparticle. The Hamiltonian is given by

H0 = −
h̄2

2m∗

{
∇−

ieA(x, y)

h̄c

}2

+ U(x, y)− µ, (2.2)

where the effective mass of an electron m∗ is mN for
x ≤ 0 and mS for x > 0, respectively. The chemical po-
tential of the junction is denoted by µ. In what follows we
set the chemical potential as an origin of the energy, i.e.,
µ = 0. The Fermi energy in the 2DEG is µN which cor-
responds to the energy difference between the band edge
and the chemical potential as shown in Fig. 1, where we
schematically illustrate the dispersion relation on each
side of the Sm-S junction in the absence of the magnetic
field. The subband structure can be seen because of the
confinement potential in the y direction. The Fermi en-
ergy in the superconductor is µS . The scalar potential
U(x, y) involves the hard wall confinement potential in
the y direction and the potential barrier at the Sm-S
interface which is described by Hδ(x). The potential
barrier height should be determined consistently by the
electronic structure on each side of the junction.20) In
this paper, however, we treat H as one of the indepen-
dent parameters of the Sm-S junctions. We assume that
pair potential ∆(x, y) is ∆0 in the superconductor and
zero in the semiconductor, respectively. This model is
justified when the superconducting segment is magnet-
ically shielded. It is possible to realize this situation,
for instance, by covering the superconducting segment
with materials with high magnetic permeability. Here
we assume that the superconductor is the type I. Since
the magnetic field is not applied onto the superconduc-
tor, the vector potential is A = (0, 0) for x ≥ 0. The
vector potential in the 2DEG (x < 0) is A = (0, Bx).
In this model, we do not consider the self-consistency in
the amplitude of the pair potential. In what follows, we
measure the energy and the length in units of µN and
1/kF ≡ h̄/

√
2mNµN , respectively.

+
∑
l

Bl,n

(
0
1

)
eik−

l
xhl(y) exp

(
−i
eB

h̄c
xy

)
,

(2.3)

where Al,n (Bl,n) is the reflection amplitude from the
nth propagating channel in the electron branch to the
lth channel in the electron (hole) branch. In the absence
of the magnetic field, the wavefunction in the y direction
and the wavenumber in the lth channel are given by

χl(y) =

√
2

W
sin

{
lπ

W

(
y +

W

2

)}
, (2.4)

k±l =

√
2mN (µN ± E)

h̄2 −

(
lπ

W

)2

, (2.5)

where k+ and k− represent the wavenumber of the elec-
tronlike and holelike excitations, respectively. In the
presence of the magnetic field, the wavefunction in the
y direction, fn(y), gl(y) and hl(y), are described by the
linear combination of χl(y)’s. Here we first compute the
wavefunction in magnetic field under the vector poten-
tial A = (−By, 0) by using a numerical method.21) Then
we apply the gauge transformation from A = (−By, 0)
to (0, Bx). The phase factor in eq. (2.3) stems from the
gauge transformation.

In the superconductor, the wavefunction is

Ψ̂S
n(x, y) =

∑
l

Cl,n

(
u0

v0

)
eiq+

l
xχl(y)

+
∑
l

Dl,n

(
v0

u0

)
e−iq−

l
xχl(y), (2.6)

Fig. 1. The system under consideration is depicted in the upper
figure. The Sm-S interface is at x = 0. In the y direction, an
electron is confined in the range of −W/2 < y < W/2 by the
hard wall potential. The dispersion relation on each side of the
junction an absence of the magnetic are illustrated in the
lower figure.
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of the wavefunction at x = 0,[
Ψ̂N
n − Ψ̂S

n

]∣∣∣
x=0

= 0, (2.13)

d

dx

[
Ψ̂N
n −

mN

mS
Ψ̂S
n

]∣∣∣∣
x=0

= −
2mNH

h̄2 Ψ̂S
n

∣∣∣∣
x=0

. (2.14)

From the amplitudes, Al,n and Bl,n, we can calculate
the reflection probability as

Reel,n(E) = |v+
l /v

+
n | |Al,n|

2
, (2.15)

Rhel,n(E) = |v−l /v
+
n | |Bl,n|

2
, (2.16)

where v
+(−)
l is the velocity in the lth propagating channel

in the electron (hole) branch. At the zero temperature,
the differential conductance is given by

G(eV ) =
2e2

h

∑
l,n

′ (
δl,n −R

ee
l,n +Rhel,n

)
, (2.17)

with E = eV ,22) where the summation
∑′

= Nc runs
over the all propagating channels in the 2DEG under
the magnetic field and V is the bias voltage. When
E = eV < ∆0, there is no propagating channel in the
superconductor. Thus the current conservation low im-
plies ∑

l

′
Reel,n +Rhel,n = 1. (2.18)

superconductor is typically 1 meV and the Fermi energy
in a semiconductor is about 100 meV, we fix ∆0/µN at
0.02 throughout this paper. Here we fix the width of the
wire WkF at 40. The numerical results here are essen-
tially the same with those in the previous paper.17) We
consider the ratio of the effective mass and the poten-
tial barrier at the Sm-S interface in addition to the ratio
of the Fermi energy. There are three parameters which
characterize the transparency of the Sm-S junctions: (i)
the ratio of the Fermi energy, µS/µN , (ii) the ratio of the
effective mass, mS/mN , and (iii) the potential barrier at
the Sm-S interface, Vbh ≡ 2mNH/h̄

2kF . In Fig. 2(a), we
show the results for µS/µN = 1.0, mS/mN = 1.0 and
Vbh = 0.0, where we do not consider the difference of
the effective mass, the difference of the Fermi energy nor
the potential barrier at the interface. The results show
the conductance step for µN/h̄ωc > 5 and the conduc-
tance decreases with increasing the magnetic field. In
this case, we confirm that the normal reflection does not
occur at the interface from numerical data, i.e., Reel,n ' 0.
This can be also understood by the S-matrix in the one-

for E > ∆0 and

h̄2q±l
2

2mS
= µS −

h̄2

2mS

(
lπ

W

)2

± i
√

∆2
0 − E

2, (2.8)

for E < ∆0, respectively. The coefficients Cl,n and Dl,n

are transmission amplitude from nth propagating chan-
nel in the 2DEG to the lth channel in the superconduc-
tor. The amplitudes of the wavefunction are given by

u0 = 1/
√

2, (2.9)

v0 =
E − i

√
∆2

0 − E
2

√
2∆0

, (2.10)

for E < ∆0 and

u2
0 =

1

2

(
1 +

√
E2 −∆2

0

E

)
, (2.11)

v2
0 =

1

2

(
1−

√
E2 −∆2

0

E

)
, (2.12)

for E > ∆0, respectively. The amplitudes, Al,n, Bl,n,
Cl,n andDl,n, are determined by the continuity condition

( )
§3. Numerical Results

In Fig. 2, we show the numerical results of the zero-
bias differential conductance (eV → 0) in units of 2e2/h
as a function of µN/h̄ωc, where ωc = eB/cmN and
∆0/µN = 0.02, respectively. Since the pair potential in a

where the wavenumber of a quasiparticle satisfies the
equation

h̄2q±l
2

2mS
= µS −

h̄2

2mS

(
lπ

W

)2

±
√
E2 −∆2

0, (2.7)

Fig. 2. The conductance is numerically calculated as a function
of the inverse of the magnetic field. Here the width of the wire
and the pair potential are fixed atWkF = and ∆0/µN = .02,
respectively. The number of the propagating channels in 2DEG
is plotted by a dash line in (a). In (a) and (e), the normal
reflection at the Sm-S interface is negligible. On the other hand,
the normal reflection occurs at the interface and the conductance
oscillations appear in (b), (c) and (d). We compare the analytic
expression of the conductance (dash line) with the numerical
results in (b)-(d). The range of the magnetic fields which satisfy
W/2 < Lc < W is denoted by ↔ in (b).

40 0
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line. For µN/h̄ωc < 6, the oscillatory behavior can be
seen in the conductance. These oscillations appear only
when the Andreev reflection is perfect and are periodic
as a function of h̄ωc/µN .17)

Next we consider the difference of the effective mass
in Fig. 2(b) and the difference of the Fermi energy in
Fig. 2(c), where µS/µN = 1.0, mS/mN = 4.0 and
Vbh = 0.0 in (b) and µS/µN = 4.0, mS/mN = 1.0 and
Vbh = 0.0 in (c), respectively. The results show the si-
nusoidal conductance oscillations and the conductance is
at its minimum when µN/h̄ωc is an integer. In the pres-
ence of the mismatch in the effective mass or that in the
Fermi energy, the Andreev reflection is no longer per-
fect, which can be also described by the S-matrix in one-
dimensional Sm-S junctions, i.e., ξ 6= 1. In Fig. 2(d), we
exiamine the effects of the potential barrier at the inter-
face, where µS/µN = 1.0, mS/mN = 1.0 and Vbh = 1.0.
The results show the conductance oscillations as well as
those in (b) and (c). Here we note the fact that the con-
ductance does not take its minimum when µN/h̄ωc is an
integer. The potential barrier causes the phase shift in
the conductance oscillations. The author of the previ-
ous paper17) has been pointing out a similarity between
the conductance oscillations and the Shubnikov-de Haas
oscillations because the conductance takes its maximum
when one of the propagating channel in 2DEG is mag-
netically depopulated. Their suggestion, however, is not
true since the maxima in the conductance are shifted
by introducing the potential barrier at the interface. In
addition, there is no disorder in the present system.

As shown in eqs. (A.14)–(A.22), the normal reflection
is expected to be zero in one-dimensional Sm-S junctions
when µS/µN = mS/mN and Vbh = 0. The situation is
almost the same even in the two-dimensional junctions
under the magnetic field. We show the conductance for
µS/µN = mS/mN = 2.0 in Fig. 2(e), where Vbh = 0.0.
The sinusoidal oscillations disappear and the weak con-
ductance step again can be seen as well as in Fig. 2(a).
Thus we conclude that the magnetoconductance oscil-
lates when both the normal and the Andreev reflection
occur at the Sm-S interface irrespective of the origin of
the normal reflection. We should note that the S-matrix
in the one-dimensional junctions well describes the char-
acteristic feature of the Andreev reflection probability in
the two-dimensional systems although the dimensional-
ity in the two systems are different. One explanation for
this is as follows. The amplitudes of the normal and the
Andreev reflections are determined by the microscopic
parameters, such as µS/µN , mS/mN and Vbh. These
parameters, however, do not include the dimensionality
explicitly in our simple model.

dimensional Sm-S junctions given by eqs. (A.14)–(A.22)
in the Appendix. In the present situation, ξ = 1 leads to
ree = 0. With using eq. (2.18), the conductance results
in G = 4e2/h

∑
l
′
. The conductance is changed by 4e2/h

when one of the propagating channels is depopulated by
the magnetic field. In Fig. 2(a), the number of the propa-
gating channels in the 2DEG, Nc, is plotted with dotthe

In Fig. 3, we show the zero-bias conductance for sev-
eral choices of the width of the wire, where µS/µN = 4.0,
mS/mN = 1.0 and Vbh = 0.5. The width of the wire is

satisfy the equation

W

2
< Lc < W, (3.1)

Lc ≡
4

kF

µN
h̄ωc

, (3.2)

is denoted by↔ in Figs. 3 and 2(b). Here Lc is the diam-
eter of the classical cyclotron motion of a quasiparticle
in the 2DEG. The results show that the conductance
oscillations appear when the magnetic field is satisfying
eq. (3.1), which indicates that the cyclotron motion of a
quasiparticle plays an important role in the conductance
oscillations. We calculate the amplitude of the wavefunc-
tion which is reflected into the electron and hole branches
as shown in Fig. 4. Here we focus on the system shown
in Fig. 3(b) and fix the magnetic field at µN/h̄ωc = 8.0.
The amplitudes of the wavefunction are defined by

WkF = 20, 40 and 60 in Figs. 3(a), 3(b) and 3(c), respec-
tively. The conductance oscillates as a function of the
magnetic field because both the normal and the Andreev
reflection occur at the interface in the present situation.
The range of the magnetic fields in which the oscillations
can be seen shifts to the higher region of µN/h̄ωc with
increasing W . The range of the magnetic fields which

Fig. 3. The conductance is numerically calculated as a function
of the inverse of the magnetic field for several choices of the
with of wire, where WkF = 20, 40 and 60 in (a), (b) and
(c), respectively. The range of the magnetic fields which sat-
isfy W/2 < Lc < W is denoted by ↔.
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x = 0. At the upper left corner, the amplitude in the
electron branch is much smaller than that in the hole
branch, which reflects the fact that the conductance is
around one of its maxima at µN/h̄ωc = 5.5 as shown
in Fig. 3(b). In upper left corner, several skipping orbits
running away from the interface can be seen clearly. The

Under the magnetic field, an electron localizing near the
edge of the wire has the larger velocity in the x direction
than that localizing around the center of the wire. Thus
at y/W = −0.4, the wave is reflected almost perpendic-
ular to the interface, which corresponds to the fact that
the lowest circle is symmetric about x = 0. The waves
at another reflection points have the momentum in the
y direction, which allows the asymmetric circles about
x = 0. The amplitude in the electron branch at the upper
left corner is much larger than that in the hole branch,
which reflects the fact that the conductance is around
its minimum at µN/h̄ωc = 8.0 as shown in Fig. 3(b). In
Fig. 5, we show the amplitudes of a quasiparticle at the
higher magnetic field, where µN/h̄ωc = 5.5. At the Sm-S
interface, an incident quasiparticle has the large ampli-
tudes around y/W = −0.4 and −0.28 as indicated by
the two arrows. The circle passing y/W = −0.4 seems
to be symmetric about x = 0 because the velocity in
the x direction is much larger than that in the y di-
rection. At y/W = −0.28, it may be possible to draw
two circles, which are symmetric with each other about

Pe(x, y) =

∣∣∣∣∣∑
n

′∑
l

Al,ne−ik+
l
xgl(y)

∣∣∣∣∣
2

, (3.3)

Ph(x, y) =

∣∣∣∣∣∑
n

′∑
l

Bl,neik−
l
xhl(y)

∣∣∣∣∣
2

, (3.4)

and are represented in Figs. 4(a) and 4(b), respectively.
In the dark area, Pe(h)(x, y) has the large amplitudes. An
electronlike quasiparticle is injected from the lower left
corner. It is important that an incident wave does not
have uniform amplitudes at the Sm-S interface but has
the large amplitudes at several points, such as y/W ∼
−0.4,−0.26,−0.13 and −0.005 as indicated by the ar-
rows. The classical trajectories of the cyclotron motion
of a quasiparticle are represented by the circles which
are drawn to fit the interference pattern for y < 0 and to
pass the reflection points at the interface. It is possible
to draw another circles in the figure. We omit them to
avoid complexity. The amplitudes of the wavefunction
seems to be characterized well by the cyclotron orbits
for y < 0. For 0 < y, however, it is difficult to find the
classical trajectories because of the interference effect.

Fig. 4. The amplitudes of the wavefunction reflected into the
electron (a) and hole (b) branches are shown, where WkF =
∆0/µN = 0.02, mS/mN = 1.0 and µS/µN = 4.0, Vbh = 0.5,
respectively. We fix the magnetic field at µN/h̄ωc = 8.0. The
classical trajectory of a cyclotron motion is represented by the
circles.

40,

Fig. 5. The amplitudes of the wavefunction reflected into the
electron (a) and hole (b) branches are shown, where we fix the
magnetic field at µN/h̄ωc = .5.5
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Ψh
3 = |rhe|e

−iπ/2 · eiφB · |ree|e
iθn , (4.4)

Ψh
4 = |rhh|e

−iθn · e−iφB · |rhe|e
−iπ/2. (4.5)

In the analysis, we use relations ∆0 ¿ µN and E = 0.
The phase shift of the Andreev reflection is −π/2 and
that of the normal reflection is θn. The two parts in the
electron branch in eqs. (4.2) and (4.3) interfere with each
other and |Ψe

1 +Ψe
2|

2 represents the reflection probability
into the electron branch. In the same way, |Ψh

3 + Ψh
4 |

2

is the reflection probability into the hole branch. The
conductance is roughly estimated by

G ∼ g0

[
1−|Ψe

1 + Ψ2
2|

2 + |Ψh
3 + Ψh

4 |
2
]

(4.6)

= g0

[
1−

(
|ree|

2 −| rhe|
2
)2

+ 4|ree|
2|rhe|

2 cos

(
2π

µN
h̄ωc
− 2θn

)]
, (4.7)

where g0 = 2e2/h
∑
n
′
. In real space, the cyclotron orbits

of the two waves, for instance Ψe
1 and Ψe

2, do not encir-
cle the magnetic flux. However, the phase shift by the
magnetic field in Ψe

1 has the opposite sign to that in Ψe
2.

This is because a quasiparticle traverses the wire in the
electron branch in Ψe

1 and in the hole branch in Ψe
2, re-

spectively. This argument can be also applied to Ψh
3 and

Ψh
4 . The magnetic field causes the interference effect and

the conductance oscillates as a function of the magnetic

φB =
e

h̄c

∫ r2

r1

drN ·A(rN ) = −π
µN
h̄ωc

, (4.1)

where rN is the integration path along the cyclotron or-
bit between r1 and r2. On the other hand, the phase
change of a quasiparticle in the hole branch is given by
−φB because the sign of the charge in the holelike exci-
tation is opposite to that in the electronlike excitation.
In the following, we separate the scattering process into
three process. We describe the two reflections at the
Sm-S interface by using the S-matrix in one-dimensional
junctions which is given in the Appendix. The effects of
the two-dimensionality and those of the magnetic field
are taken into account through the phase shift which
should be multiplied to the wavefunction while traveling
across the wire along the cyclotron orbit. In this way,

results show that the motion of a quasiparticle is char-
acterized well by the classical cyclotron orbits near the
Sm-S interface. We note that the concept of the classical
cyclotron motion is not valid in quite strong magnetic
fields µN/h̄ωc < 1 where the magnetic length,

√
h̄c/eB,

is comparable to Lc.
Before turning into the phenomenological analysis, we

summarize the characteristic feature of the magnetocon-
ductance oscillations. (i) The oscillations appear when
the both the normal and Andreev reflection occur at the
interface. (ii) The conductance oscillates periodically as
a function of the inverse of the magnetic field. (iii) The
potential barrier at the interface causes the phase shift
in the conductance oscillations. (iv) The oscillations ap-
pear when the magnetic fields satisfy eq. (3.1).

§4. Mechanism of the Conductance Oscillations

In the range of the magnetic fields described by
eq. (3.1), an incident quasiparticle from the electron
branch on the semiconductor side can be scattered twice
at the Sm-S interface as shown in Fig. 6. At first an inci-
dent electron is either reflected into the electron branch
by the normal reflection or the hole branch by the An-
dreev reflection. In the presence of the magnetic field,
the trajectories of the reflected wave are characterized
by the cyclotron orbits. After the ballistic cyclotron mo-
tion, the quasiparticle in each branch is reflected again
into the electron and hole branches. After suffering the
two reflections at the Sm-S interface, an incident electron
divides into four parts as shown in Fig. 6. In Figs. 6(a)
and 6(c) (Figs. 6(b) and 6(d)) an incident quasiparticle is
first reflected into the electron (hole) branch at r1. Then
in Figs. 6(a) and 6(b) (Figs. 6(c) and 6(d)) a quasiparti-
cle is reflected into the electron (hole) branch at r2. The
phase of a quasiparticle is changed by the magnetic field
while traveling along the cyclotron orbit near the inter-
face. When a quasiparticle is in the electron branch, the
phase shift due to the magnetic field can be calculated
as

we phenomenologically estimate the wavefunction of the
four parts as follows,

Ψe
1 = |ree|e

iθn · eiφB · |ree|e
iθn , (4.2)

Ψe
2 = |reh|e

−iπ/2 · e−iφB · |rhe|e
−iπ/2, (4.3)

Fig. 6. Schematic picture of the reflection process from the Sm-

S interface. The width of the junction is W and the diameter
of the cyclotron motion is Lc. The shaded area represents the
superconducting segment. The solid and broken lines denote a
quasiparticle in the electron and hole branches, respectively.
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field. The mechanism of the interference effect in the
present system is analogous to the Aharonov-Bohm type
interference effect in a small ring.1) Let us draw a virtual
cyclotron orbit on the right hand side of the junction as
shown in Fig. 7(a). Here we draw the virtual orbit in the
electron branch which corresponds to the original orbit in
the hole branch in Ψe

2. The virtual orbit must be drawn
to be symmetric with the original orbit about x = 0. The
phase shift along the original cyclotron orbit in the hole
branch is exactly equal to that along the virtual orbit in
the electron branch. An incident quasiparticle is sepa-
rated into two orbits at r1: one is the real cyclotron orbit
in Ψe

1 (semi-circle on the left in Fig. 7(b)), the other is the
virtual orbit in Ψe

2 (semi-circle on the right). These two
waves come across at r2 after suffering the different phase
shift. Thus the situation is almost equivalent to the small
ring in the experiment.1) The magnetic flux in the gray
area in Fig. 7(b) in units of φ0 = hc/e is correspond-
ing to µN/h̄ωc. The diameter of the cyclotron motion
Lc itself depends on the magnetic fields, the oscillations
become periodic as a function of the inverse of the mag-
netic field. In the absence of the potential barrier at the
Sm-S interface (i.e., Vbh = 0), θn becomes zero as shown
in eq. (A.22) and the conductance is at its maximum
when µN/h̄ωc is an integer as shown in eq. (4.7). The

When the magnetic field is weak as shown in Fig. 4,
only the orbit drawn with the solid circle can contribute
to the conductance oscillations. Along the solid circle,
a quasiparticle can return to the interface after the cy-
clotron motion. On the other hand, another orbits rep-
resented with the dash lines go across the wire wall at
y/W = 0.5 before reaching the interface. Thus such
orbits do not contribute to the conductance oscillations

analysis and the numerical results. In our analysis, we
do not explicitly consider the two-dimensionality of the
system. The disagreement may stem from the wavefunc-
tion in the y direction. At present, we can not give a
satisfactory explanation of the disagreement within the
phenomenological argument. A recent microscopic cal-
culation may explain this point clearly.23) The simple
analysis also explain the phase shift of the oscillations in
the presence of the potential barrier at the Sm-S interface
as shown in Fig. 2(d).

In Fig. 6, we assume that the motion of a quasiparticle
near the Sm-S interface is characterized by semi-circles
of the cyclotron orbit. For instance in Figs. 5(c) and
5(d), however, the asymmetric circles about x = 0 can
be seen ( O1 and O2 ). Here we show that the asymmet-
ric orbits give the same contribution to the conductance
oscillations with the symmetric orbits. In Figs. 7(c)
and 7(d), we show the classical motion of a quasipar-
ticle whose incident angle is not perpendicular to the
interface. The cyclotron orbits O1 and O2 in Fig. 5 cor-
respond to those in Figs. 7(c) and 7(d). In Fig. 7(c),
a quasiparticle is injected to the interface with positive
velocity in the y direction and is scattered into the elec-
tron and hole branches. The reflected quasiparticle in
the electron branch travels along O2, whereas the corre-
sponding part in the hole branch traverse the wire along
O1. This is because only the velocity component perpen-
dicular to the interface changes in the normal reflec-
tion, however, all velocity components change sign in the
Andreev reflection.11) The phase difference, φeB − φ

h
B, is

equal to 2φB independent of the incident angle. This can
be easily confirmed when we draw a virtual cyclotron or-
bit corresponding to O1 on the right hand side of the
junction. The asymmetric cyclotron orbits, therefore,
can contribute to the conductance oscillations as well as
the symmetric orbits. From Figs. 7(c) and 7(d), it is pos-
sible to understand that the two incident wave (c) and
(d) do not interfere with each other. This is because the
cyclotron orbits of the outgoing wave in electron branch
in (c) is separated from that in (d) in space. The same
argument can be applied to the outgoing cyclotron or-
bits in the hole branch. Those feature of a quasiparticle
near the Sm-S interface are natural consequence of the
Andreev reflection in high magnetic fields. Thus we con-
clude that the Aharonov-Bohm type conductance oscilla-
tions can be seen even in the simply connected systems.
A possibility of the Aharonov-Bohm type conductance
oscillations was briefly mentioned.17) A part of their ar-
gument, however, was incorrect, which leads to negative
conclusion.

sign

numerical results, however, show that the conductance
takes its minimum at µN/h̄ωc is an integer. The sign of
the oscillating part is a disagreement between the simple

Fig. 7. The phase shift along the original cyclotron orbit in the
hole branch is equal to that along the virtual cyclotron orbit in
the electron branch (a). The magnetic flux in gray region in units
of φ0 is corresponding to µN/h̄ωc in (b). The cyclotron orbits
of a quasiparticle whose incident angle is not perpendicular to
the Sm-S interface are depicted in (c) and (d). The two incident
waves in (c) and (d) are the source of the asymmetric orbits
about x = in Fig. 5.0
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lations. The amplitude of the conductance oscillations
is expected to be increase with increasing the magnetic
field. The contribution ratio is roughly estimated as fol-
lows. We focus on the range of the magnetic fields in
eq. (3.1). When W/2 = Lc, the contribution ratio is set
to be unity. On the other hand, the contribution ratio
may be zero at W = Lc. Thus we approximately de-
scribe the contribution ratio by using a linear function
of µN/h̄ωc

p

(
µN
h̄ωc

)
= 2

(
1−

Lc
W

)
= 2

(
1−

4

WkF

µN
h̄ωc

)
. (4.8)

The wavefunction in eqs. (4.2)–(4.5) should be multiplied

by p
(
µN
h̄ωc

)
and the conductance in eq. (4.7) should be

rewriten as

and we have to neglect these orbits. When the magnetic
field is relatively strong as shown in Fig. 5, most of the
reflected wave can contribute to the conductance oscil-

Fig. 8. The differential conductance at the finite bias voltage is
plotted as a function of µN/h̄ωc, where WkF = 40, ∆0/µN =
0.02, µS/µN = 4.0, mS/mN = 1.0 and Vbh = 1.0, respectively.
The bias voltage is given by eV/∆0 = .5 and 1.5.0

§5. Discussion

In Figs. 2 and 3, we have studied the zero-bias dif-
ferential conductance. Here we show the results of
the differential conductance at the finite bias voltage in
Fig. 8, where WkF = 40, ∆0/µN = 0.02, µS/µN = 4.0,
mS/mN = 1.0 and Vbh = 1.0, respectively. The bias volt-
age are given by eV/∆0 = 0.5 and 1.5, respectively. The
conductance oscillations can be seen even at the finite
bias voltage for eV < ∆0. The Fermi energy effectively
increases (decreases) by eV for an electronlike (holelike)
quasiparticle in the 2DEG. Consequently, the diameter of
the cyclotron motion is slightly changed to Lc(1+eV/µN )
in the electron branch and Lc(1 − eV/µN ) in the hole
branch, respectively. In the situation eV < ∆0 << µN ,
however, the diameter of the cyclotron motion, therefore,
the magnetic flux encircled by the cyclotron orbits al-
most remain unchanged. Thus the oscillations appear in
the finite bias conductance for eV < ∆0. The oscillations
disappear in the differential conductance at eV/∆0 = 1.5
since the amplitude of the Andreev reflection decreases
rapidly with increasing eV for eV > ∆0.12) The results
in Fig. 8 are consistent with the phenomenological argu-

G ∼ g0

[
1 + 4|ree|

2|rhe|
2p

(
µN
h̄ωc

)2

× cos

(
2π

µN
h̄ωc
− 2θn

)]
. (4.9)

We have neglected
(
|ree|2 −| rhe|2

)2
because this is much

smaller than unity when both the normal and Andreev
reflection occur at the Sm-S interface. In Fig. 2, we
compare eq. (4.9) (dash line) with the numerical results,
where |ree| and |rhe| are calculated by using eqs. (A.14)–
(A.22), and Nc is shown in Fig. 2(a) with the dash line.
The results show an excellent agreement with each other.
Here we have to confess that the sign of the second term
in eq. (4.9) has been changed from + to − in Fig. 2.
Except for the sign of the oscillating part, the analyti-
cal results in eq. (4.9) explain the characteristic behavior
of the conductance oscillations which are summarized in
the end of §3.

eq. (3.1) can be estimated to be B = 0.1 ∼ 0.2 T. We use
the parameters such as µN = 100 meV, mN/me = 0.05,
where me is the bare mass of an electron. We have ne-
glected the Zeeman spin splitting in the 2DEG which
can be taken into account in the same way with the ex-
change potential in ferromagnetic metals.24) In the pres-
ence of the Zeeman splitting, the diameter of the cy-
clotron orbit in the electron (hole) branch is estimated
to be Lc(1+(−)gµBB/2µN ), where g and µB are Lande’s
factor and Bohr magneton, respectively. The correction
is also quite small in semiconductors such as InAs and
GaAs when the magnetic field is smaller than 1 T.

The theoretical model used in this study is justified in
a situation where the superconducting segment is mag-
netically shielded. We have not considered the phase
fluctuations of the pair potential due to the magnetic
field. When the magnetic screening is not perfect, the
phase fluctuations may affect the conductance oscilla-
tions because a quasiparticle acquires the local phase of
the pair potential at the Andreev reflection points. In
such situation, the argument should be slightly modi-
fied. Let us assume that the phase of the pair potential
at r1 and r2 in Fig. 6 are θ1 and θ2, respectively. In this
case the oscillating part of the conductance in eq. (4.9)
is modified to

δG ∝ cos (F + 2θn) , (5.1)

F ≡ 2φB + θ1 − θ2. (5.2)

ment.
When the width of the wire is W = 5×10−6 m as in a

experiment,13) the range of the magnetic fields given by

When the superconductor is type I, the phase difference
θ1 − θ2 is expected to be small or weakly depending on
the magnetic field. This is because the width of wire in
experiment13) is 1-5×10−6 m and the coherence length
of the type I superconductors is of the order of microme-
ters. The coherence length is comparable or larger than
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rents in the superconductor are calculated as

J =
cB

4πλ
e−λxŷ, (5.6)

where λ =
√
mSc2/4πnse2 is the penetration depth in

the superconductor. Here we solve eq. (5.4) with one of
the Maxwell equation

∇×B =
4π

c
J . (5.7)

The right hand side of eq. (5.5) can be rewritten

F = 4πΦ/φ0 −
2mS

ensh̄

∫ y2

y1

dy Jy, (5.8)

where Φ is the magnetic flux encircled by rN and rS .
Since the penetration depth is of the order of 10−7 m,
the wire width is larger than the penetration depth and
the supercurrents path is localized near the interface as
shown in Fig. 9(a). The last term is independent of
the magnetic field because the supercurrents are propor-
tional to B and y1−y2 is proportional to 1/B. The con-
ductance oscillations can be seen because the magnetic
flux in the superconductor is much smaller than that in
a semiconductor. Strictly speaking, the conductance is
no longer periodic function of the inverse of the magnetic
field because the magnetic flux in the superconductor is
proportional to the magnetic field. When the screened
magnetic field is larger than Hc1 as in the experiment,
the supercurrents flows far from the interface as shown
in Fig. 9(b) and the magnetic flux Φ depends on the su-
percurrents path and on the position of the vortices.9)

The conductance oscillations may be washed out since it
is impossible to determine the dominant supercurrents
path uniquely.

The conductance oscillations are sensitive to imperfec-
tions near the Sm-S interface, such as impurities, because
a quasiparticle is diffused from the cyclotron orbit by the
impurity scattering. In a recent paper, however, it is nu-

Lc. Thus it is possible to observe the conductance oscil-
lations.

When the superconductor is type II, the phase differ-
ence can described by

θ2 − θ1 =

∫ r2

r1

d r∇θ(r). (5.3)

By using the expression of the supercurrents in the
Ginzburg-Landau theory

J(r) = ens

[
h̄

2mS
∇θ(r) +

e

mSc
A(r)

]
, (5.4)

eq. (5.2) is estimated to be

F =
2e

h̄c

∫ r2

r1

drNA(rN )−
2e

h̄c

∫ r2

r1

drSA(rS)

−
2mS

ensh̄

∫ r2

r1

drSJ(rS), (5.5)

where ns is the density of electrons and rS is a dominant
path of the supercurrents between r1 and r2 in the su-
perconductor. First we consider the situation where the
screened magnetic field is smaller than Hc1 . When the
magnetic field is applied in the z direction, the supercur-

simulation. We conclude that the interplay between the
classical cyclotron motion of a quasiparticle and the in-
terference effect due to the magnetic field is the origin
of the magnetoconductance oscillations. Although there
is no artificial confinement in the propagation path of a
quasiparticle, the charge degree of freedom of an electron
restricts an electron wave into the classical trajectory of
the cyclotron motion under the magnetic field. In addi-

merically shown that the conductance oscillations can
be seen when the semiconductor near the interface is in
the quasi-ballistic transport regime.25) In addition to the
imperfection in the 2DEG, the specular reflection at the
Sm-S interface is an important ingredient to observe the
conductance oscillations. In order to make clear the ef-
fects of disorder, a further study must be necessary. The
investigation in this direction is now in progress and the
results will be given elsewhere.26)

§6. Conclusion

We have studied the magnetoconductance oscillations
in small ballistic semiconductor-superconductor (Sm-S)
junctions. These conductance oscillations were first
shown in a previous numerical study.17) However the
mechanism of the oscillations has been unclear. In
this paper, we reveal the nature of the magnetoconduc-
tance oscillations based on the phenomenology of the
Aharonov-Bohm type interference effect. A possibility of
observing the conductance oscillations is also discussed.
The analytic expression of the conductance well explains
the period, the amplitude and the phase shift of the con-
ductance oscillations which are shown in the numerical

Fig. 9. The path of the supercurrents (rS) is illustrated when
the magnetic field is smaller than Hc1 in (a). In (b), we draw
one of the supercurrents paths when the magnetic field is larger
than Hc1 . The gray circles in (b) denote the vortices.
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tan δ =
∆0

µS
, (A.8)

u0 = 1/
√

2, (A.9)

v0 = −i/
√

2, (A.10)

where A, B, C and B denote the amplitudes of the out-
going waves from the interface, and a, b, c and d denote
those of the incoming waves. The amplitudes of the out-
going waves are connected with those of the incoming
waves by the continuity condition at x = 0,

(A.5)

with

k =

√
2mNµN

h̄2 , (A.6)

q =

√
2mS

h̄2 (µ2
S + ∆2

0)1/4eiδ/2, (A.7)

Ψ̂N (x) = a

(
1
0

)
eikx +A

(
1
0

)
e−ikx

+b

(
0
1

)
e−ikx +B

(
0
1

)
eikx, (A.4)

Ψ̂S(x) = C

(
u0

v0e−iθS

)
eiqx +D

(
v0eiθS

u0

)
e−iqx

+c

(
u0

v0e−iθS

)
e−iqx + d

(
v0eiθS

u0

)
eiqx,

tion, the superconductor opens the hole conducting chan-
nels in the semiconductor. We show that the character of
the Andreev reflection in magnetic field naturally leads
to the Aharonov-Bohm type conductance oscillations in
the simply connected Sm-S junctions.
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Appendix: S-matrix in One-Dimensional Sm-S
Junctions

In the appendix, we summarize the S-matrix in one-
dimensional Sm-S junctions. The junction consists of a
normal conductor (x < 0) and a superconductor (x > 0).
The Bogoliubov-de Gennes equation reads,(

H0 ∆(x)

∆(x)∗ −H∗0

)(
u(x)
v(x)

)
= E

(
u(x)
v(x)

)
, (A.1)

where u(x) and v(x) are the wavefunctions of a quasi-
particle. The Hamiltonian is given by

H0 = −
h̄2

2m∗
d2

dx2
+Hδ(x)− µ, (A.2)

where the mass of an electron m∗ is mN for x ≤ 0 and
mS for x > 0, respectively. The chemical potential of
the junction is denoted by µ. We set the chemical po-
tential as an origin of the energy, (i.e., µ = 0). The
Fermi energy in a normal conductor is µN which corre-
sponds to the energy difference between the band edge
and the chemical potential. The Fermi energy in super-
conductor is µS . The potential barrier at the interface is
described by Hδ(x). The pair potential is given by the
step function

∆(x) = Θ(x)∆0eiθS , (A.3)

where θS is the phase of the pair potential. Since we
focus on the zero-bias conductance in this paper, we es-
timate the S-matrix for E = 0. The wavefunction on
either sides of the junction are described by

[
Ψ̂N − Ψ̂S

]∣∣∣
x=0

= 0, (A.11)

d

dx

[
Ψ̂N
n −

mN

mS
Ψ̂S
n

]∣∣∣∣
x=0

= −
2mNH

h̄2 Ψ̂S

∣∣∣∣
x=0

. (A.12)

When E = 0, there is no propagating channel in the su-
perconductor. Therefore an incoming quasiparticle from
a normal conductor is alternatively reflected into the
electron branch or the hole branch. The S-matrix in this
case is reduced to a 2× 2 matrix which connects (A,B)
with (a, b),(

A
B

)
=

(
ree reh
rhe rhh

)(
a
b

)
, (A.13)

Here θn is the phase shift of the normal reflection. In
the limit of ∆0 ¿ µN , ξ and tan θn are approximately
estimated as

with

ree =

√
(1−| ξ|2)2 + (2Imξ)2

1 + |ξ|2
eiθn (A.14)

rhe = 2
Reξ

1 + |ξ|2
e−iπ/2e−iθS , (A.15)

rhh =

√
(1−| ξ|2)2 + (2Imξ)2

1 + |ξ|2
e−iθn , (A.16)

reh = 2
Reξ

1 + |ξ|2
e−iπ/2eiθS , (A.17)

ξ =
mN

mS

√
2mS

h̄2k2
(µ2
S + ∆2

0)1/4eiδ/2 + iVbh, (A.18)

Vbh =
2mNH

h̄2k
, (A.19)

tan θn = −
2Imξ

1−| ξ|2
. (A.20)

where vSF and vNF are the Fermi velocity in the supercon-
ductor and the semiconductor, respectively. As shown
in eqs. (A.14), (A.16) and (A.21), the normal reflection
coefficient becomes zero when ξ = 1. The condition is
satisfied when mS/mN = µS/µN and Vbh = 0.

ξ '

√
mN

mS

µS
µN

+ iVbh =
vSF
vNF

+ iVbh (A.21)

tan θn '
2Vbh

mN

mS

µS
µN
− 1 + V 2

bh

, (A.22)



2000) Andreev Reflection and Cyclotron Motion. . . . 1135

1) R. A. Webb, S. Washburn, C. P. Umbach and R. B. Laibowitz:
Phys. Rev. Lett. 54 (1985) 2696.

2) Y. Aharonov and D. Bohm: Phys. Rev. 115 (1959) 485.
3) H. van Houten, B. J. van Wees, J. E. Mooij, C. W. J.

Beenakker, J. G. Williamson and C. T. Foxon: Europhys.
Lett. 5 (1988) 721; H. van Houten, C. W. J. Beenakker, J. G.
Williamson, M. E. I. Broekaart, P. H. M. van Loosdrecht,
B. J. van Wees, J. E. Mooij, C. T. Foxon and J. J. Harris:
Phys. Rev. B 39 (1989) 8556.

4) P. A. M. Benistant, H. van Kempen and P. Wyder: Phys.

Rev. Lett. 51 (1983) 817.
5) C. W. J. Beenakker and H. van Houten: Solid State Physics

44 (Academic Press, New York, 1991), Chap. 4, and refereces
there in.

6) B. J. van Wees and H. Takayanagi: Mesoscopic Electron
Transport, ed. L. L. Sohn, L. P. Kouwenhoven and G. Schön,
NATO ASI Series, (Kluwer Academic, Dordrecht, 1996).

7) C. W. J. Beenakker: Rev. Mod. Phys. 69 (1997) 731, and
references there in.

8) A. F. Morpurgo, S. Holl, B. J. van Wees, T. M. Klapwijk and
G. Borghs: Phys. Rev. Lett. 78 (1997) 2636.

9) F. W. J. Hekking and Yu. V. Nazarov: Phys. Rev. Lett. 71
(1993) 1625.
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