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Magnetoconductance oscillations in ballistic semiconductor-superconductor junctions
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The mechanism of the magnetoconductance oscillations in junctions of a ballistic semiconductor and a
superconductor is discussed. The oscillations appear when both the normal and the Andreev reflection occur at
the interface. The interplay between the classical cyclotron motion of a quasiparticle and the phase shift caused
by the magnetic field is the origin of the conductance oscillations.
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Conductance oscillations as a function of the appl
magnetic field in a small ring are a one of fundamental c
sequence of the phase-coherent transport.1 The width of the
ring must be narrow so that the number of the propaga
path of an electron wave can be limited. If many propagat
paths are allowed in the ring, the magnetoconductance o
lations~MCO! are washed out. In order to observe the MC
clearly, at least, we have to either confine the electron w
as in the experiment1 or the magnetic flux as in the origina
idea.2 An electron wave, however, can be confined within
classical trajectory of the cyclotron motion by its charge d
gree of freedom under the relatively strong magnetic fie
which is called the magnetic focusing.3,4 In the ballistic
transport regime, we show a possibility to observe the M
in simply-connected system.

In this paper, we discuss the conductance in sm
semiconductor-superconductor~Sm-S! junctions, where a
high-mobility two-dimensional electron gas~2DEG! is used
as a semiconductor. Recently S-Sm-S junctions can be
ized in strong magnetic fields.5 It has been numerically
shown that the sinusoidal MCO appears in relatively we
magnetic fields when the Andreev reflection6 is not perfect.7

To date, however, the mechanism of the sinusoidal MCO
remained unclear. In this paper, we reveal the nature of
novel MCO within a simple analysis. We conclude that t
interplay between the cyclotron motion of a quasiparti
~QP! and the phase shift caused by the magnetic field
responsible for the MCO in simply-connected Sm-S jun
tions. The MCO is one of the interference effect of the A
dreev reflected QP, which have been focused recently.8–11

Let us consider a two-dimensional wire where electro
are confined in they direction in the range of2W/2,y
,W/2. The wire consists of 2DEG (x,0) and S (x.0).
The Sm-S junctions are described by the Bogoliubov
Gennes equation12

S H0 D~x,y!

D~x,y!* 2H0*
D S u

v D 5ES u

v D , ~1!

whereu(x,y) andv(x,y) are the wave functions of a quas
particle. The Hamiltonian is given byH052\2$¹
2 ieA(x,y)/\c%2/2m* 1U(x,y)2m, where the mass of an
electronm* is mN for x<0 andmS for x.0, respectively.
The chemical potential of the junction is denoted bym. In
what follows we set the chemical potential as an origin of
energy, i.e.,m50. The Fermi energy in 2DEG and S aremN
PRB 610163-1829/2000/61~3!/1732~4!/$15.00
d
-

n
n
il-

e

-
s,

ll

al-

-

s
e

is
-
-

s

e

e

andmS , respectively, which correspond to the energy diffe
ence between the band edge and the chemical potential.
scalar potentialU(x,y) involves the hard-wall confinemen
potential in they direction and the potential barrier at th
Sm-S interface which is described byHd(x). The potential
barrier height should be determined consistently by the
electronic structure on either sides of the junction.13 In this
paper, however, we treatH as one of the independent param
eters of Sm-S junctions. We assume that pair poten
D(x,y) is D0 in S and zero in 2DEG, respectively. Th
model is justified when the superconducting segment is c
ered with materials with high-magnetic permeability, b
cause the magnetic field is not applied onto S.14 Since S is
magnetically shielded, the vector potential isA5(0,0) for
x>0 andA5(0,Bx) for x,0.15 In what follows, we mea-
sure the energy and the length in units ofmN and 1/kF

[\A2mN•mN, respectively.
The wave function in 2DEG and that in S can be obtain

separately, and are related with each other by using the
tinuity condition atx50. The detail of the numerical simu
lations is given elsewhere.7,16 Here, we show the expressio
of the zero-bias conductance at zero temperature,17 G
5(2e2/h)( l ,n8 (d l ,n2Rl ,n

ee1Rl ,n
he), where l and n label the

propagation channels in 2DEG under the magnetic field,Rl ,n
ee

and Rl ,n
he are the reflection probability into the electron an

hole branches withE→0, respectively. The summation( l8
5Nc runs over the all propagating channels. In the limit
E→0, there is no propagating channel in S. The curr
conservation low implies( l8(Rl ,n

ee1Rl ,n
he)51.

In Fig. 1, we show the numerical results of the condu
tance in units of 2e2/h as a function ofb[mN /\vc , where
vc5eB/cmN andD0 /mN50.02, respectively. Since the pa
potential in S is typically 1 meV and the Fermi energy
2DEG is about 100 meV, we fixD0 /mN at 0.02 throughout
this paper. We also fix the width of the wireWkF at 40. The
numerical results of the conductance presented here are
sentially the same with those in Ref. 7. There are three
rameters which characterize the Sm-S junctions and the
flection probability at the interface:~i! the difference of the
Fermi energy,mS /mN , ~ii ! the difference of the effective
mass, mS /mN , and ~iii ! the potential barrier, Vbh
[2mNH/\2kF . In the solid line of Fig. 1~a!, we show the
conductance formS /mN51, mS /mN51 and Vbh50. The
results show the conductance step and the conductance
creases with increasing the magnetic field. In this case,
1732 ©2000 The American Physical Society
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have confirmed that the normal reflection does not occu
the interface from numerical data, i.e.,Rl ,n

ee.0. This can be
also understood by the S-matrix in the one-dimensio
Sm-S interface

r ee5A~12uju2!21~2 Imj!2/~11uju2!eiun5r hh* , ~2!

r he52 Rej/~11uju2!e2 ip/25r eh , ~3!

where j.A(mN /mS)(mS /mN)1 iVbh and tanun

.2Vbh /@(mN /mS)•(mS /mN)211Vbh
2 #. Here, we solve Eq.

~1! in one dimension and calculate the reflection coefficie
in the limit of D0!mN and E50. In the present situation
j51 leads to ur eeu50, which is equivalent to previou
results.18 By usingRl ,n

ee50 and the current conservation low
the conductance results inG5(4e2/h)Nc , whereNc is plot-
ted with the dot line in~a!. Next we take into account th
difference of the effective mass in~b! and that of the Ferm
energy in~c!, respectively. The results show the sinusoid
MCO and the conductance is at its minimum whenb is an
integer. In ~b! and ~c!, the Andreev reflection is no longe
perfect, which can be also explained by the S-matrix in o
dimensional Sm-S junctions, i.e.,jÞ1. In one-dimensiona
junctions, the normal reflection can be expected to be z
whenmS /mN5mS /mN andVbh50. The situation is almos
the same even in the two-dimensional junction. We show

FIG. 1. The conductance is numerically calculated as a func
of the inverse of the magnetic field. The number of the propaga
channels in 2DEG,Nc , is plotted by the dotted line in~a!. In ~a!,
the normal reflection does not occur at the Sm-S interface. W
the normal reflection occurs at the interface and the conducta
oscillations appear in~b!, ~c!, and~d!. In ~b!–~d!, we compare the
analytic results~dashed line! with the numerical results.
at
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conductance formS /mN5mS /mN52.0 in ~a! with the dash
line. The MCO disappears and the weak conductance
again can be seen as well as the solid line. In Fig. 1~d!, we
examine the effects of the potential barrier at the interfa
whereVbh 5 0.5. The potential barrier is one of the origin o
the normal reflection at the interface. We have confirmed
large Vbh that the MCO appears even whenmS /mN
5mS /mN . Thus, we conclude that the MCO appears wh
both the normal and the Andreev reflection occur at
Sm-S interface,~i.e., uur eeu22ur heu2u2!1!, irrespective of the
origin of the normal reflection. We should note that t
S-matrix in the one-dimensional junctions well explains t
characteristic feature of the normal and Andreev reflection
the two-dimensional systems although the dimensionality
different in the two systems. The range of the magne
fields, which satisfy the equation

W/2,Lc,W, ~4!

is denoted by↔ in Figs. 1~b!–1~d!, whereLc[4b/kF is the
diameter of the cyclotron orbit. The MCO can be seen wh
Eq. ~4! holds, which indicates that the cyclotron motion of
QP plays an important role in the MCO. We have confirm
that the oscillations range shifts to the lower magnetic fie
as increasing the wire width, which has been also reporte
Ref. 7. In fact, we calculate the amplitude of the wave fun
tion reflected into the hole branch,Ph(x,y), as shown in Fig.
2. Here we focus on the system in Fig. 1~d! and fix the
magnetic field atb58.0 in ~a! and 5.5 in~b!, respectively. In
the dark area, the wave function has the large amplitudes
electronlike QP is injected from the lower left corner. It
important that an incident wave does not have uniform d
tribution at the Sm-S interface but has the large amplitude
several points, as indicated by the arrows. The classical
clotron orbits are represented by the circles, which are dra
to fit the interference pattern fory,0 and to pass the reflec
tion points at the interface. It is possible to draw other circ
in the figure. We omit them to avoid complexity. Under th
magnetic field, it is well known that an electron localizin
near the edge of the wire has the larger velocity in thex
direction than that localizing around the center of the wi
Thus, aty/W520.4, the wave is reflected almost perpe
dicular to the interface, which corresponds to the fact that
lowest circle is symmetric aboutx50 as in~a! and~b!. The
waves at another reflection points have the velocity in thy
direction, which allows the asymmetric circle aboutx50.
The figures of Fig. 2 show that the motion of a QP is ch
acterized well by the classical cyclotron orbits near the Sm
interface when Eq.~4! is satisfied.19

Based on the numerical results, we make clear the ph
cal picture of the conductance oscillations within a pheno
enological argument. In the range of the magnetic fields
Eq. ~4!, an incident QP from 2DEG can be scattered twice
the Sm-S interface as shown in Fig. 3. At first an incide
electron is either reflected into the electron or the h
branches atr1. After the ballistic motion along the cyclotron
orbit (rN), the quasiparticle in each branch is reflected ag
into the electron and hole branches atr2. Thus, an incident
QP divides into four parts as shown in Fig. 3. In~1! and~3!
@~2! and ~4!#, a reflected QP goes across the wire in t
electron~hole! branch. The phase of a QP is changed by
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1734 PRB 61BRIEF REPORTS
FIG. 2. The amplitudes of the wave function reflected into
hole branch are shown for the system discussed in Fig. 1~d!. We fix
the magnetic field atmN /\vc58.0 ~a! and 5.5~b!, respectively.
The classical cyclotron orbits are represented by the circles.

FIG. 3. Schematic picture of the reflection process from
Sm-S interface. The solid and broken lines denote a quasipartic
the electron and hole branches, respectively.
magnetic field while traveling alongrN . When a QP is in the
electron branch, the phase change due to the magnetic fie
given by fB5(e/\c)* r1

r2drN•A(rN)52pb. The phase

change of a QP in the hole branch is given by2fB . In the
following, we separate the reflection process into three st
We describe the two reflections at the Sm-S interface
using the S-matrix in one-dimensional junctions. The effe
of the two-dimensionality and those of the magnetic fie
are taken into account through the phase shift by the m
netic field. In this way, we estimate the wave function of t
four parts as follows,

C1
e5ur eeueiun

•eifB
•ur eeueiun, ~5!

C2
e5ur ehue2 ip/2

•e2 ifB
•ur heue2 ip/2, ~6!

C3
h5ur heue2 ip/2

•eifB
•ur eeueiun, ~7!

C4
h5ur hhue2 iun

•e2 ifB
•ur heue2 ip/2. ~8!

The two parts in the electron branch interfere with each ot
and uC1

e1C2
eu2 represents the reflection probability as

electron. In the same way,uC3
h1C4

hu2 is the reflection prob-
ability as a hole.

In Fig. 3, we have assumed that the motion of a QP n
the interface is characterized by the single cyclotron or
The amplitude of the reflected wave in Fig. 2, however, sh
a number of the circles. When the magnetic field is weak
Fig. 2~a!, only the trajectory drawn with the solid circle ca
contribute to the MCO. A QP can return to the interface af
the cyclotron motion along the solid circle. While oth
circles go across the wire wall before reaching the interfa
Thus, we can neglect the contribution of these orbits to
MCO. When the magnetic field is relatively strong in Fi
2~b!, most of the reflected wave can contribute to the MC
The amplitude of the MCO increases with decreasingb as
shown in Fig. 1. Within the range of the magnetic fields
Eq. ~4!, the contribution ratio,p(b), is set to be unity at
W/25Lc and is zero atW5Lc . We approximately describe
p(b) by using a linear function ofb as p(b)52@1
24b/(WkF)#. The conductance can be estimated by

G.g0@12p~b!2uC1
e1C2

eu21p~b!2uC3
h1C4

hu2# ~9!

.g0@114ur eeu2ur heu2p~b!2 cos~2pb22un!#,
~10!

where g05(2e2/h)Nc and we use the relation (ur eeu2
2ur heu2)2!1. In real space, the cyclotron orbits in Fig. 3 d
not encircle the magnetic flux. However, the phase shift
the magnetic field inC1

e and C3
h have the opposite sign to

that in C2
e and C4

h . Thus the magnetic field causes the i
terference effect. In Fig. 3, we only consider the symme
orbits aboutx50. The numerical results show a number
the asymmetric circles. In Fig. 2~b!, for instance, an inciden
QP is reflected into the two branches aty/W520.28. When
the QP travels alongO1 in the hole branch, the correspond
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ing part in the electron branch travels alongO2. We note that
the O1 and O2 are symmetric with each other aboutx50.
This is because, only the velocity component perpendicu
to the interface changes sign in the normal reflection, ho
ever, all velocity components change sign in the Andre
reflection.3 It can be easily confirmed that the difference i
the phase shift betweenO1 in the hole andO2 in the electron
branches is equivalent to 2fB . Thus, the asymmetric orbits
contribute to MCO as well as the symmetric orbits and t
phase shift remains constant independent of the incid
angle of a QP to the Sm-S interface. A possibility of th
conductance oscillations was briefly mentioned in Ref. 7.
part of the argument, however, was not correct. In the a
sence of the potential barrier,un becomes zero and the con
ductance is at its maximum whenb is an integer as shown in
Eq. ~10!. The numerical results, however, show that the co
ductance takes its minima at these points. The sign of
oscillating part is a disagreement between the simple ana
sis and the numerical results. Since we do not explicitly co
sider the two-dimensionality, the disagreement may st
from the wave function in they direction. At present, we
cannot give a satisfactory explanation of the disagreement
Figs. 1~b!–1~d!, we compare Eq.~10! ~dashed line! with the
numerical results. The results show an excellent agreem
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with each other. Here we have to confess that the sign of
second term in Eq.~10! has been changed from1 to 2 in
Fig. 1.

We conclude that the interplay between the classical c
clotron motion of a quasiparticle and the phase shift by t
magnetic field is the origin of the magnetoconductance o
cillations. The conductance oscillations can be seen even
the simply-connected Sm-S junctions because the charge
gree of freedom of an electron restricts an electron wave in
the classical cyclotron orbit under the magnetic field and t
superconductor opens the hole branch in the 2DEG. Fina
we briefly discuss the possibility to observe the MCO
experiments. When the width of the wire isW5531026 m
as it is in Ref. 5, the MCO can be seen aroundB
;0.08– 0.16 T. We have assumed the perfect screening
the magnetic field at S. In experiments, the screened m
netic field is not necessary to be zero. In this case, the ph
fluctuations in the pair potential are caused by the magne
field. However, the phase fluctuations within the length sca
Lc is not so large because the coherence length of S is lar
than Lc when S is type I. In the absence of the magne
shielding at S, we can show that the MCO is washed out
can be seen as the noiselike fluctuations when S is type
The details will be given elsewhere.

The author is indebted to N. Tokuda, H. Akera, T. Kato
and Y. Takane for useful discussion.
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