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Magnetoconductance oscillations in ballistic semiconductor-superconductor junctions
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The mechanism of the magnetoconductance oscillations in junctions of a ballistic semiconductor and a
superconductor is discussed. The oscillations appear when both the normal and the Andreev reflection occur at
the interface. The interplay between the classical cyclotron motion of a quasiparticle and the phase shift caused
by the magnetic field is the origin of the conductance oscillations.

Conductance oscillations as a function of the appliedandug, respectively, which correspond to the energy differ-
magnetic field in a small ring are a one of fundamental conence between the band edge and the chemical potential. The
sequence of the phase-coherent transp®tte width of the  scalar potential(x,y) involves the hard-wall confinement
ring must be narrow so that the number of the propagatiopotential in they direction and the potential barrier at the
path of an electron wave can be limited. If many propagatiorsm-s interface which is described by(x). The potential

paths are allowed in the ring, the magnetoconductance 0sCilarier height should be determined consistently by the the
lations (MCO) are washed out. In order to observe the MCOgjectronic structure on either sides of the juncfidin this

clearly, at least, we have to either confine the electron wavi
%S |r12tAhe elxp?rlmehlor thﬁ magnetic quE)( as lnf_thedorlgtlr?al eters of Sm-S junctions. We assume that pair potential
l0ea. An electron wave, however, can be confined within aA(x,y) is Ag in S and zero in 2DEG, respectively. This

classical trajectory of the cyclotron motion by its charge de- L . .
. S model is justified when the superconducting segment is cov-
gree of freedom under the relatively strong magnetic fields

which is called the magnetic focusifg.In the ballistic ered with materials with high-magnetic permeability, be-

: - cause the magnetic field is not applied ontd*Since S is
transport regime, we show a possibility to observe the Mcomagnetically shielded, the vector potentialAs=(0,0) for
in simply-connected system.

Z 15 -
In this paper, we discuss the conductance in smalf(20 andA=(0,8x) for x<0.™ In what follows, we mea

) . . sure the energy and the length in units @f and 1kg
semiconductor-superconductgSm-S junctions, where a .
P ¢em-9 | =h2my- uy, respectively.

high-mobility two-dimensional electron gd2DEG) is used b . .
as a semiconductor. Recently S-Sm-S junctions can be real- The wave function in 2DEG and that in S can be obtained

ized in strong magnetic fieldslt has been numerically separately, and are related with each other by using the con-

shown that the sinusoidal MCO appears in relatively weakInuity cpndﬁmn atx=0. T*},e detail of the numerical simu-
magnetic fields when the Andreev reflecfias not perfect. lations is given elsewher€.® Here, we show the expression
To date, however, the mechanism of the sinusoidal MCO ha§f the zero-bias conductance at zero temperatre;
remained unclear. In this paper, we reveal the nature of th& (267N 2 n(8,n =Rz +R;p), wherel and n label the
novel MCO within a simple analysis. We conclude that thePropagation channels in 2DEG under the magnetic fiefd,
interplay between the cyclotron motion of a quasiparticleand Rﬂﬁ are the reflection probability into the electron and
(QP) and the phase shift caused by the magnetic field isole branches witlE— 0, respectively. The summatian,
responsible for the MCO in simply-connected Sm-S junc-=N; runs over the all propagating channels. In the limit of
tions. The MCO is one of the interference effect of the An-E—0, there is no propagating channel in S. The current
dreev reflected QP, which have been focused recémtly.  conservation low implie€/ (RS +R/'®)=1.

Let us consider a two-dimensional wire where electrons In Fig. 1, we show the numerical results of the conduc-
are confined in they direction in the range of-W/2<y  tance in units of 2%/h as a function of8= uy /% ., where
<W/2. The wire consists of 2DEGx0) and S &>0).  w.=eB/cmyandAy/uy=0.02, respectively. Since the pair
The Sm-S junctions are described by the Bogoliubov-depotential in S is typically 1 meV and the Fermi energy in

Baper, however, we treat as one of the independent param-

Gennes equatidh 2DEG is about 100 meV, we fify/uy at 0.02 throughout
this paper. We also fix the width of the wis k- at 40. The
Ho A(xy) | [u u numerical results of the conductance presented here are es-
Axy)*  —HE [\v RV @) sentially the same with those in Ref. 7. There are three pa-

rameters which characterize the Sm-S junctions and the re-
whereu(x,y) andv(x,y) are the wave functions of a quasi- flection probability at the interfacdi) the difference of the
particle. The Hamiltonian is given byHy=—#%2{V Fermi energy,us/uy, (i) the difference of the effective
—ieA(x,y)/hc}?/2m* + U(x,y) — u, where the mass of an mass, mg/my, and (i) the potential barrier, Vy,
electronm* is my for x<0 andmg for x>0, respectively. =2myH/#%2%ke. In the solid line of Fig. 1a), we show the
The chemical potential of the junction is denoted fy In conductance forug/un=1, mg/my=1 andVy,=0. The
what follows we set the chemical potential as an origin of theresults show the conductance step and the conductance de-
energy, i.e.u=0. The Fermi energy in 2DEG and S aig creases with increasing the magnetic field. In this case, we
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2 4 6 8 10 12 14 conductance fopg/uy=mg/my=2.0 in (a) with the dash
line. The MCO disappears and the weak conductance step
again can be seen as well as the solid line. In Fig),we
examine the effects of the potential barrier at the interface,
whereV,;, = 0.5. The potential barrier is one of the origin of
the normal reflection at the interface. We have confirmed for
large Vy, that the MCO appears even wheng/uy
=mg/my. Thus, we conclude that the MCO appears when
both the normal and the Andreev reflection occur at the
Sm-S interface(i.e., ||red2—|rnel2|2< 1), irrespective of the
] origin of the normal reflection. We should note that the
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o~ 2 4 _ S-matrix in the one-dimensional junctions well explains the
) 8 mg/m =40 || - .
N b/ = 1.0 characteristic feature of the normal and Andreev reflection in
Q 4 vs,,h=o_o ] the two-dimensional systems although the dimensionality is
€ 0 ; different in the two systems. The range of the magnetic
73, 12 /\/Q\_ fields, which satisfy the equation
2 8 - i) mg/my=10
S 4 ng/py=4.0 |] W/2<L .<W, (4)
I Vv, =0.0
0 3 is denoted by— in Figs. Ab)—1(d), whereL .=48/kg is the
sl f\«f\f diameter of the cyclotron orbit. The MCO can be seen when
I mg/m, =10 || Eq. (4) holds, which indicates that the cyclotron motion of a
4 e/ =40 | QP plays an important role in the MCO. We have confirmed
1 Vin =0.5 1 that the oscillations range shifts to the lower magnetic fields
0 ra T 1

as increasing the wire width, which has been also reported in
Ref. 7. In fact, we calculate the amplitude of the wave func-
tion reflected into the hole branch,(x,y), as shown in Fig.

FIG. 1. The conductance is numerically calculated asafunctionz' Here we focus on the system in Figidl and fix the

of the inverse of the magnetic field. The number of the propagatinthagdneﬂc field e:,]B_S'O I?(a) e}nd E'S Inr(]b)i resDeCtlvlelyaln
channels in 2DEGN., is plotted by the dotted line if). In (a), € dar .area, t ?Wa.\/e unction has the large amplitu es.. An
the normal reflection does not occur at the Sm-S interface. Wh”@lectronllke QP 'S,'nJ,eCted from the lower left comer. It IS
the normal reflection occurs at the interface and the conductandémjortant that an Inc!dent wave does not have U“”“?rm dis-
oscillations appear ifb), (c), and(d). In (b)—(d), we compare the tribution at_the Sm-_S n_"nterface but has the large amplltl_Jdes at
analytic resultgdashed lingwith the numerical results. several points, as indicated by the arrows. The classical cy-
clotron orbits are represented by the circles, which are drawn
have confirmed that the normal reflection does not occur & fit the interference pattern fgr<0 and to pass the reflec-
the interface from numerical data, i.&S¢=0. This can be fion points at the interface. It is possible to draw other circles
also understood by the S-matrix in the one-dimensionaln the figure. We omit them to avoid complexity. Under the
Sm-S interface magnetic field, it is well known that an electron localizing
near the edge of the wire has the larger velocity in xhe
Fee= V(1—|&[%)%+ (2 Im &)/ (1+]£)?)€ Ih=r¥., (2 direction than that localizing around the center of the wire.
Thus, aty/W=—0.4, the wave is reflected almost perpen-
re=2 Re&/(1+ &2 e ™2=rg,, (3)  dicular to the interface, which corresponds to the fact that the
lowest circle is symmetric about=0 as in(a) and(b). The
where  &=\(my/mg)(us/un) +iVen  and  tard,  waves at another reflection points have the velocity inythe
= 2Vpn/[(Myn/mg) - (s un) —1+Viy]. Here, we solve Eq.  direction, which allows the asymmetric circle about 0.
(1) in one dimension and calculate the reflection coefficientsThe figures of Fig. 2 show that the motion of a QP is char-
in the limit of Ag<uy andE=0. In the present situation, acterized well by the classical cyclotron orbits near the Sm-S
£=1 leads to|red =0, which is equivalent to previous interface when Eq(4) is satisfied"®
results*® By usingRF7=0 and the current conservation low, ~ Based on the numerical results, we make clear the physi-
the conductance results @=(4e?/h)N,, whereN, is plot-  cal picture of the conductance oscillations within a phenom-
ted with the dot line in(a). Next we take into account the enological argument. In the range of the magnetic fields in
difference of the effective mass i) and that of the Fermi Eg. (4), an incident QP from 2DEG can be scattered twice at
energy in(c), respectively. The results show the sinusoidalthe Sm-S interface as shown in Fig. 3. At first an incident
MCO and the conductance is at its minimum whens an  electron is either reflected into the electron or the hole
integer. In(b) and (c), the Andreev reflection is no longer branches at,. After the ballistic motion along the cyclotron
perfect, which can be also explained by the S-matrix in oneerbit (ry), the quasiparticle in each branch is reflected again
dimensional Sm-S junctions, i.&# 1. In one-dimensional into the electron and hole branchesrat Thus, an incident
junctions, the normal reflection can be expected to be zer®P divides into four parts as shown in Fig. 3.(l and(3)
when g/ uny=mg/my andV,,=0. The situation is almost [(2) and (4)], a reflected QP goes across the wire in the
the same even in the two-dimensional junction. We show thelectron(hole) branch. The phase of a QP is changed by the
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magnetic field while traveling along, . When a QP is in the
electron branch, the phase change due to the magnetic field is

% given by ¢>B=(e/ﬁc)f:idrN-A(rN)=—77,8. The phase

change of a QP in the hole branch is given-byg. In the
following, we separate the reflection process into three steps.
We describe the two reflections at the Sm-S interface by
using the S-matrix in one-dimensional junctions. The effects
of the two-dimensionality and those of the magnetic fields
are taken into account through the phase shift by the mag-
netic field. In this way, we estimate the wave function of the
four parts as follows,

L

(a) Ph(x,y) Pe=|r.de'n.e'%e.|r Je ', (5)
py / ho = 8.0 "
. : : -0.50 . . .
40 08 06 -04 02 We=|re ' ™.e7 ¢ |r, Je 12, (6)
uths) 0.50
\Pg:|rhe|eiiw/2'ei¢8'|ree|ei6na (7)
------- - Wi=|rpple 't e % |r e ™2, 8

N The two parts in the electron branch interfere with each other
and |W§+W$|? represents the reflection probability as an
, electron. In the same waj¥' 3+ W42 is the reflection prob-
ability as a hole.

_____ In Fig. 3, we have assumed that the motion of a QP near
(b) Ph(x,y) -0.28 . . 1 . .
‘w.lho =55 o the interface is characterized by the single cyclotron orbit.
N - 04 The amplitude of the reflected wave in Fig. 2, however, show
—1——7——7—————-0.50 a number of the circles. When the magnetic field is weak in
e o8 B 04 Oz Fig. 2a), only the trajectory drawn with the solid circle can
x/W

contribute to the MCO. A QP can return to the interface after

FIG. 2. The amplitudes of the wave function reflected into thethe cyclotron motion along the solid circle. While other

hole branch are shown for the system discussed in Fifj. We fix
the magnetic field ajy /% w.=8.0 (a) and 5.5(b), respectively.
The classical cyclotron orbits are represented by the circles.

circles go across the wire wall before reaching the interface.
Thus, we can neglect the contribution of these orbits to the
MCO. When the magnetic field is relatively strong in Fig.

2(b), most of the reflected wave can contribute to the MCO.

Semiconductor Superconductor The amplitude of the MCO increases with decreasthgs
@ shown in Fig. 1. Within the range of the magnetic fields in
—T - Eq. (4), the contribution ratiop(B), is set to be unity at
10 / i q
l{ffd /{{/// \IJ; «— € 2 W/2=L. and is zero aW=L.. We approximately describe
’ / p(B) by using a linear function of3 as p(B)=2[1

w Pehe¥ —4B/(Wke)]. The conductance can be estimated by
®B 'Y
5] ) G=go[1-p(B) Wi+ W5*+p(B)H W3+ Wi*] (9
)
............ > hole =go[1+4|red’[rnel*p(B)? cog 28— 26,)], 10
h g it W%
¥y <o - where go=(2e?/h)N, and we use the relation|r(d?
—|rned®?<1. In real space, the cyclotron orbits in Fig. 3 do
-i%‘.\ Lz not encircle the magnetic flux. However, the phase shift by
‘\9\2 / the magnetic field in¥$ and \Pg have the opposite sign to
— /% that in WS and W'}, Thus the magnetic field causes the in-
3 @ terference effect. In Fig. 3, we only consider the symmetric

orbits aboutx=0. The numerical results show a number of

FIG. 3. Schematic picture of the reflection process from thethe asymmetric circles. In Fig(@), for instance, an incident
Sm-S interface. The solid and broken lines denote a quasiparticle i@P is reflected into the two branchesydv= —0.28. When
the electron and hole branches, respectively. the QP travels alon@; in the hole branch, the correspond-
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ing part in the electron branch travels alabg. We note that ~ with each other. Here we have to confess that the sign of the
the O, and O, are symmetric with each other about0.  second term in Eq(10) has been changed from to — in
This is because, only the velocity component perpendiculaF'g- 1.

to the interface changes sign in the normal reflection, how-, W€ conclude that the interplay between the classical cy-
clotron motion of a quasiparticle and the phase shift by the

4 : ; ) i \fnagnetic field is the origin of the magnetoconductance os-
reflection” It can be easily confirmed that the difference in gjjjations. The conductance oscillations can be seen even in

the phase shift betwed, in the hole and; in the electron  the simply-connected Sm-S junctions because the charge de-
branches is equivalent to¢iy. Thus, the asymmetric orbits gree of freedom of an electron restricts an electron wave into
contribute to MCO as well as the symmetric orbits and thethe classical cyclotron orbit under the magnetic field and the
phase shift remains constant independent of the inciderituperconductor opens the hole branch in the 2DEG. Finally,

angle of a QP to the Sm-S interface. A possibility of theWe briefly discuss the possibility to observe the MCO in

conductance oscillations was briefly mentioned in Ref. 7 Aexperiments. When the width of the wireW=5x10"° m
y """ as it is in Ref. 5, the MCO can be seen arouBd

part of the argument, however, was not correct. In the ab-_4 0g_0 16 T. We have assumed the perfect screening of
sence of the potential barrief, becomes zero and the con- the magnetic field at S. In experiments, the screened mag-
ductance is at its maximum whehis an integer as shown in netic field is not necessary to be zero. In this case, the phase
Eqg. (10). The numerical results, however, show that the confluctuations in the pair potential are caused by the magnetic
ductance takes its minima at these points. The sign of théeld. However, the phase fluctuations within the length scale

oscillating part is a disagreement between the simple analy-c iS not so large because the coherence length of S is larger
sis and the numerical results. Since we do not explicitly conthan Lc when S is type I. In the absence of the magnetic

sider the two-dimensionality, the disagreement may stenfhielding at S, we can .ShO.W that the MCO is Washed out or
from the wave function in the direction. At present, we can be seen as the noiselike fluctuations when S is type II.

cannot give a satisfactory explanation of the disagreement. I-rl;he details will be given elsewhere.

Figs. 1(b)-1(d), we compare Eq(10) (dashed lingwith the The author is indebted to N. Tokuda, H. Akera, T. Kato,
numerical results. The results show an excellent agreemeand Y. Takane for useful discussion.
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