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The injection of Cooper pairs into a normal medium such as a semiconductor is known as the proximity effect at the superconductor/normal

interface. We confirm this injection as well as the contribution of Cooper pairs to a drastic enhancement of inter-band optical transitions in

semiconductor heterostructures. In this paper we investigate and clarify the relation of internal quantum efficiencies and radiative lifetimes in

Cooper-pair light emitting diodes (CP-LEDs). A quantitative description of the dynamic photon generation processes is given, and the contribution

of the Cooper-pair recombination relative to normal-electron recombination in CP-LEDs is discussed in detail.

# 2012 The Japan Society of Applied Physics

1. Introduction

Superconductivity is expanding its global position because
of the scientific and technological importance. Quantum
information processing is one potential application field with
superconducting qubits as promising candidates as the basic
elements/building blocks in such devices.1–4) As another
example, quantum cryptography is believed to approach
the stage of practical application,5–8) and furthermore, the
expansion to more complex quantum information networks
based on photon qubits is expected. For such an expansion, a
reliable conversion from superconducting qubits to ‘‘flying’’
photon qubits and vice versa is an essential requirement
for the connection of information-processing and transfer.
Quantum gates based on the manipulation of superconduct-
ing qubits with low energy photons, such as microwaves,
have been actively studied and demonstrated.1–4) However,
the interaction of superconducting states with photons for
optical-fiber communication has been much less studied due
to the lack of basic interdisciplinary technologies connecting
superconductivity and optoelectronics.

In the field of quantum optics, entangled photon pairs
(EPPs) are getting more and more important for quantum
information processing and communication. As a principal
protocol of quantum key distribution (QKD) for quantum
cryptography, an entanglement-based protocol called
BBM929) and related applications10) have been proposed in
addition to single-photon-based protocols such as BB84.11)

Quantum teleportation was proposed by Bennett12) and was
demonstrated employing EPPs.13) EPPs employed for these
experiments were generated with parametric down conver-
sion (PDC),14) which became a standard method in the
related fields. Lasers are generally used as sources for PDC
and the directionality of the generated EPPs facilitates
the application of EPPs to relevant purposes. However

the coherence of the excitation laser sources results in
a Poissonian statistics of the generated photon number
states,15) which is why the generation sequence of EPPs
cannot be regulated. This drawback has triggered the
research toward ‘‘on-demand operation’’ of regulated EPP
sources. To date, mainly semiconductor quantum dot (QD)
based sources have been extensively studied.16–19) The
main scheme to generate EPPs from QDs is the cascaded
recombination process of biexcitons and excitons which
results in the emission of photon pairs with a time separation
(delay) on the order of 1 ns, which is determined by the
exciton lifetime.16,17)

The possibility of simultaneously generating EPPs from
semiconductors has been demonstrated with parametric
scattering of biexciton polaritons in CuCl.20,21) However,
the excitation source is a laser, resulting again in a
Poissonian distribution of the generated EPPs. In semicon-
ductors the two-photon absorption process is well known,
which is the second-order process of simultaneous absorp-
tion of two photons with photon energies of half the energy
gap each. The generation of EPPs with a two-photon emis-
sion process, which is the reverse process of two-photon
absorption, has been demonstrated employing a GaInP/
AlGaInP waveguide.22) This is a spontaneous generation
process of EPPs and is thus not suffering the aforementioned
Poisson statistics issue. The remaining problem is that the
first-order process of single-photon generation dominates the
recombination process, and thus the two-photon emission
probability is comparably low—on the order of 10�5 of the
one-photon process.22)

We have proposed another possibility to generate
EPPs employing Cooper-pair radiative recombination proc-
esses.23,24) This new possibility of involving Cooper pairs
in the photon generation process is also a step toward
develping basic technologies to connect superconducting
and photon qubits. The role of Cooper pairs in radiative
recombination processes has been demonstrated with�E-mail address: isuemune@es.hokudai.ac.jp
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Cooper-pair injection from niobium (Nb) superconducting
electrodes into an InGaAs light emitting diode (LED).25)

Drastic enhancement of electroluminescence (EL) output
was observed below the Nb superconducting critical tem-
perature (TC). This phenomenon was theoretically explained
by a Cooper-pair recombination with a pair of normal holes,
which leads to a simultaneous generation of one EPP.26) The
essential role of Cooper-pairs is found in the enhancement of
radiative recombination via the condensation of electrons
near the Fermi level into superconducting states. This
enhancement was directly observed via the reduction of
the radiative lifetime below Nb TC.

27) The EL enhancement,
which indicates the enhancement of the internal quantum
efficiency (IQE), and the reduction of radiative lifetimes (or
enhancement of radiative recombination rates) are correlated
with one another. However the mutual relations given in the
previous reports25,27) are quite different and apparently not
simple.

In this paper the relation of IQE and radiative lifetimes
is formulated from a general viewpoint, and the mutual
relation of the previous reports and the role of Cooper pairs
in both circumstances are clarified. The transient photon
emission processes are apparently more involved with
additional factors; consequently, a fundamental formulation
dealing with the transient response is given which makes a
self-consistent interpretation of our observations possible.
Based on these analyses, the Cooper-pair recombination
process relative to the normal recombination process in the
LED operation is quantitatively evaluated.

2. Fundamental Scheme of Cooper-Pair LED and

Cooper-Pair Injection

The fundamental band diagram of the proposed Cooper-pair
LED (CP-LED) is shown in Fig. 1. It is a conventional p–i–n
heterostructure except for the Cooper-pair injection into the
central active layer. In this diagram the electron Cooper-pair
injection is assumed from a superconducting electrode
formed on the n-type semiconductor surface. The Cooper-
pair injection at the superconductor–semiconductor (S–Sm)
junction is known as the proximity effect.28) The key issue is
the Cooper-pair penetration into the active layer without
energy relaxation at the n-type barrier/active layer hetero-
interface.24) Injected Cooper pairs recombine with a pair of
holes which are injected from the counter-side p-type barrier
through a normal metal electrode and are expected to
generate EPPs simultaneously.

The top view of a typical CP-LED device is shown in
Fig. 2(a). The employed semiconductor is an n-type InGaAs
heterostructure [a 10-nm-thick n-In0:7Ga0:3As contact layer,
a 20-nm-thick n-In0:53Ga0:47 barrier layer, and a 10-nm-thick
n-In0:6Ga0:4As quantum well (QW) layer in ref. 25; the QW
layer was replaced with a 10-nm-thick n-In0:53Ga0:47 barrier
layer in ref. 27] grown on a p-type InP substrate as shown in
Fig. 2(c), whose surface is covered with a SiN insulating
layer. The Nb electrode is formed in ‘‘H shape’’ and is
connected with four gold (Au) pads. The pairwise arrange-
ment of Au pads on the left (right) side is for the purpose of
measuring Nb TC, and a narrow slit is formed at the center of
the Nb electrode as shown in the expanded view [Fig. 2(b)].
This part of the Nb electrode is in direct contact with
the n-InGaAs surface, where the contact area is either

50� 50 �m2 (ref. 25) or 20� 40 �m2 (ref. 27) which is
defined by the SiN insulating mask.

The injection of electron Cooper pairs into the InGaAs
semiconductor is examined by measuring the current–
voltage (I–V ) characteristics through the S–Sm–S junction
defined by the Nb slit. Details of the measurements are
reported in ref. 29, but one example of the observed
Josephson junction property is shown in Fig. 3. This data
was measured on the sample with a slit width of 110 nm and
the critical supercurrent was �1 �A at the extremely low
temperature of 30mK.30) Our recent developments of Nb
nano-patterning technology allow reducing the Nb slit width
down to 20 nm.31) With a slit width of only 80 nm, an
increased critical supercurrent up to 50 �A was observed for
temperatures below 1K and the Josephson junction property
was observable up to almost TC of 8.7K.31)

In addition to these DC Josephson junction characteristics,
electron Cooper pair injection was confirmed with measure-
ments of the AC Josephson effect. By irradiating micro-
waves, voltage steps (usually called Shapiro steps) were
observed in the I–V characteristics32) with the incremental
voltage step �V proportional to the irradiated frequency

Injection of Electron
Cooper Pairs

Injection
of Holes

Simultaneous
generation of
Polarization-
entangled Photon
Pairs

N-type
P-type

Fig. 1. (Color online) Fundamental band diagram and operation principle

of a CP-LED.

SiN Au

Nb

Au

Nb

InGaAs

Nb

SiN Nb
Au

p-electrode (Au/Cr)

p-InP sub

n-InGaAs

(a) (b)

(c)

Fig. 2. (Color online) (a) Top view of a typical CP-LED structure. (b) Its

expansion around the slit formed in the Nb electrode. (c) Cross-sectional

view of the CP-LED. Electron Cooper-pair injection from the Nb electrodes

into the n-InGaAs and recombination with a pair of holes injected from the

p-electrode through the p-InP substrate is schematically shown.
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f according to the following relation, �V=f ¼ h=2e ¼
2:1 �V/GHz, where h is the Plank constant and e is the
electron charge. These steps occur due to the absorption
of microwave photons by Cooper pairs and are another
evidence of Cooper pair injection into the InGaAs
semiconductor.

In the following paragraph, the reason why InGaAs is
selected for the CP-LED is discussed. According to the
Blonder–Tinkham–Klapwijk (BTK) theory,33) the super-
current through a S–N junction is sensitively dependent on
the tunnel barrier at the interface. In this simple model, a
delta-functional barrier with the barrier height of Z was
assumed and the results were critically dependent on the
value of Z. In our experiments, the S–Sm junction barrier
height corresponding to Z is the Schottky barrier at the metal-
semiconductor interface. The conduction-band barrier height
at metal/n-InxGa1�xAs interface is given by �EC ¼ 0:95�
1:90xþ 0:90x2 (eV)34) and nonalloyed Ohmic contacts are
possible for x � 0:8. This makes reproducible Cooper-pair
injection into the n-InGaAs possible. The Schottky barrier
height at Nb/p-InGaAs is much higher. Hole Cooper-pair
injection is still possible;35) however, in this case the critical
supercurrent is one order of magnitude lower than that in the
Nb/n-InGaAs case with electron Cooper pairs.24)

The above observations demonstrate that electron Cooper-
pairs are successfully injected and flow in the n-InGaAs
layers through the S–Sm–S junction formed on the CP-LED
surface. Since this device has three terminals including
the two n-type electrodes and a back p-type electrode, it
operates as a junction field-effect transistor (J-FET) at
room temperature.36) Reverse bias on the back p-type (gate)
electrode increases the depletion layer width at the p–n
junction (p-InP and n-InGaAs heterojunction) and reduces
the n-type channel width for the electron transport in the
n-InGaAs layer. Moderate forward bias of the back gate
cancels the internal built-in field at the p–n junction and
reduces the depletion layer width and therefore increases the
n-type channel width. In low-temperature operation below
TC, the increase of the critical supercurrent in the Josephson
junction property was observed with a gate forward bias up
to 0.8 V.27) This demonstrates that electron Cooper pairs
are flowing in the area very close to the depletion layer at
the p–n junction and that an enhanced forward bias leads
to the injection of electron Cooper pairs into the CP-LED
active layer.

3. Theoretical Treatment of Cooper-Pair Radiative

Recombination

For the discussion of the relation of IQE and radiative
lifetimes measured on CP-LEDs, the main points of the
theoretical analysis of Cooper-pair radiative recombina-
tion26) are given as follows. In a p-type Sm–S junction under
local equilibrium, radiative recombination between an
electron Cooper pair and a pair of holes is considered.
The expectation number of photons is calculated based on
the second-order perturbation theory including a perturba-
tion Hamiltonian due to the corresponding optical dipole
transition. The superconductivity was included with the
Bogoliubov transformation, which is the conversion from
normal creation and annihilation operators into Bogoliubov
quasiparticle creation and annihilation operators.37) Among
twelve terms derived from the theoretical treatment, the
most dominant term is schematically illustrated in Fig. 4.
An electron with momentum k and spin " forms a spin
singlet state with an electron with momentum �k and spin
#. They recombine with a pair of holes with momentum
k� q and spin + and momentum �kþ q and spin *.
This generates an indistinguishable pair of photons with
momentum of q and �q. The spin-singlet pair of electrons
corresponds to the formation of an electron Cooper pair
and the complete process describes the recombination of
an electron Cooper pair with a pair of holes. This term
shows singular behavior under momentum and energy
conservation and is evaluated by introducing a finite
relaxation time.26)

Figure 5 displays the luminescence intensity calculated
with the relaxation time � due to elastic impurity scattering
(inelastic scattering is also considered in ref. 26). �0 is half
the superconducting energy gap (pair potential) at zero
temperature. The enhancement of the luminescence intensity
for lowering the temperature below TC is clearly shown in
Fig. 5, and the radiative recombination rate is analytically
expressed in the following form:26)

W ¼ 1

�rad,super

� jMj4N0

�2ðT Þ
T

exp � 2LW

�NðT Þ
� �X

q;�

�

�

� A
�2ðT Þ
T

exp � 2LW

�NðT Þ
� �

; ð1Þ

where �rad,super is the minority carrier (hole) lifetime due to
their radiative recombination with electron Cooper pairs in
the active layer, M is the optical dipole transition amplitude,
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Fig. 3. I–V characteristic measured through the S–Sm–S junction (width

of 20�m) formed on the surface of a CP-LED.

Fig. 4. (Color online) Schematic illustration of the dominant

recombination process where an electron Cooper-pair recombines with a

pair of holes.
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N0 is the normal density of states in a superconductor at
the Fermi energy, �ðT Þ is the temperature dependent half
of the superconducting energy gap, � is a relaxation time
(either elastic or inelastic) related to the optical transitions,
and � is a more generalized relaxation term including the
transfer process of Cooper pairs from the barrier layer to the
active layer. The term of exp½�2LW=�NðT Þ� is phenome-
nologically introduced to take the proximity effect into
account; LW is the distance from the S–Sm interface to the
active layer and �N is the coherence length of Cooper pairs
in the normal medium (InGaAs semiconductor). This term
is also derived with a Green function formalism (refs. 38
and 39). In the present CP-LEDs, LW is �40 nm, which is
much shorter than �N in the main part of the temperature
range.27,30) Among the several terms in eq. (1), the tem-
perature dependence is dominated by �ðT Þ near TC40) and
by 1=T for the lower temperature range. The other param-
eters were merged to one single fitting parameter A in
ref. 30.

4. Transient Lifetime Measurements of CP-LED

One of the key methods to discuss the optical properties of a
device, such as optical efficiencies or recombination rates, is
the measurement of their radiative lifetime. One possible
approach is to measure the luminescence transient decay
after pulsed photo-excitation. This is the method employed
in ref. 30. A more direct correlation with LED operations
is possible with electrical measurements. However, this is
experimentally more challenging because the circuit capa-
citance–resistance (CR) time delay has to be taken into

account. The method to derive the intrinsic luminescence
decay from the electrical measurements was briefly
discussed in ref. 27; more details will be discussed later in
this section.

Our LED in the cryostat is connected with an external
pulse generator and DC bias circuits via a coaxial cable and
electric wires. These connected circuits result in a CR
time delay of the pulsed current injected into the LED. The
photon generation process in the n-type InGaAs active layer
is limited by the minority carrier (hole) injection, and the
dynamics of the hole injection is given by the following rate
equation:

dpðtÞ
dt

¼ GðtÞ � pðtÞ
�LED

; ð2Þ

where pðtÞ is the time-dependent hole concentration and the
current term is given by

GðtÞ ¼
J0 for t 	 0

J0 exp � t

�CR

� �
for t 
 0

8<
: ð3Þ

J0 is the steady-state carrier injection rate, which is the
injection current divided by the electron charge and �LED is
the hole recombination lifetime in the LED. For the transient
measurements, the constant carrier injection rate J0 for t 	 0

is turned off at t ¼ 0, but the circuit CR time delay gives the
transient exponential decay. During the steady state for t 	 0

the carrier injection rate becomes

J0 ¼ p0
�LED

; ð4Þ

and therefore the steady-state hole concentration is given
by

p0 ¼ J0�LED: ð5Þ
For t 
 0, the solution of the differential eq. (2) is given by

pðtÞ ¼ a exp � t

�LED

� �
þ J0

�LED�1 � �CR�1
exp � t

�CR

� �
:

ð6Þ
Considering the initial condition at t ¼ 0, the constant a is
determined as

a ¼ J0�LED � J0
�LED�1 � �CR�1

: ð7Þ

Consequently, the LED output (output photon number,
which is the EL integrated intensity divided by the photon
energy) is given by

IELðtÞ ¼ �int�det
pðtÞ
�LED

¼ J0�int�det 1� 1

1� �LED

�CR

0
BBB@

1
CCCA exp � t
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� �
þ 1
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� �
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Fig. 5. (Color online) Theoretically calculated normalized luminescence

intensity versus temperature below the superconducting critical temperature

TC.
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where �int and �det are the LED IQE and the external photon
detection efficiency, respectively. For the purpose of
estimating the LED decay time �LED, it is important to find
an appropriate way how to determine the circuit CR constant
�CR. If we assume the case where the LED has an extremely
fast decay so that �LED � �CR, eq. (8) can be simplified to

IELðtÞ ¼ J0�int�det exp � t

�CR

� �
: ð9Þ

In this case the transient response is not limited by the LED
but by the circuit CR delay time. This situation has been
reported in ref. 41, where the flat-band condition under
forward bias is changed with step-wise voltage drop and
electrons and holes in the active layer suddenly become
exposed to the internal built-in field. This internal field
induces the Stark effect and the electrons and holes are
swiftly separated in space. In the case of ref. 41, the LED
decay of 2.14 ns under forward bias is reduced to 0.18 ns
with this Stark effect. The latter decay time of 0.18 ns is
limited by the CR time constant of the system.

The above discussion on the LED decay time originates
from the fact that LED responses are generally limited by the
dynamics of injected minority carriers. This situation is the
same in the present CP-LED regardless of whether the Nb
electrodes are in the superconductive state or not. CP-LED
EL output was observed from the slit opening shown in
Fig. 2. The black open circles in Fig. 6 were measured with
zero offset voltage for t 
 0 and the solid line is the fit with
eq. (9) for the time range of t 
 0. The CR time constant
was measured to be 2.70 ns and was much longer than the
0.18 ns in ref. 41. This is because the experimental setup of
ref. 41 is open to air and can minimize the electrical wiring
to the LED. In our case the CP-LED is mounted in a cryostat
to enable cooling to 0.3K for measuring the superconducting
properties. This requires significantly longer wiring to
prevent heat transfer to the CP-LED as well as additional

connectors and therefore results in the longer CR time
constant. This CR time constant originates from electrical
connections to the external pulse generator and DC bias
circuits with most of them not much cooled. Therefore
the temperature dependence of the CR time constant was
negligible within our measurement errors below and above
TC (not shown but experimentally confirmed).

Since �CR is evaluated and fixed as demonstrated above,
the LED decay time �LED is determined by the fit to the
measurement data using eq. (8). The offset bias was deter-
mined such that the p–n junction is almost in flat-band
condition with only a minimal forward current remaining;
then it was changed to the diode forward bias of 600mV.
The blue solid line is the fit to the measurement data at 10K
shown by the closed circles with �LED of 2.27 ns. From these
kinds of fits it is possible to reproduce the intrinsic time
response of the LED from each data set by employing
eq. (8); the results are shown in Fig. 7. The Nb super-
conducting TC is 7.3K in this device and the CP-LED decay
at 3 and 10K shows substantial difference below and above
TC.

5. Relation of IQE and Radiative Lifetime

In this section the relation of the temperature dependence
of CP-LED EL decay and integrated EL intensity, which is
proportional to IQE, is discussed in detail.

5.1 General formula for IQE and radiative lifetime

The steady-state EL integrated intensity measured from the
CP-LED divided by the photon energy is the output photon
number and is given by

IEL ¼ J0�int�det; ð10Þ
where the definition of J0, �int, and �det are the same as those
in eq. (8). The IQE of the CP-LED is given by

�int ¼
�rad

�1

�rad�1 þ �nonrad�1
; ð11Þ

where �rad and �nonrad are the radiative and nonradiative
lifetimes, respectively. The relation to the measured CP-
LED decay time �LED is given by

�LED
�1 ¼ �rad

�1 þ �nonrad
�1; ð12Þ
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In the present case, �rad has two contributions, one from
normal electron recombination and the other from electron
Cooper-pair recombination, i.e.,

�rad
�1 ¼ �rad,normal

�1 þ �rad,super
�1; ð13Þ

where �rad,super is given by eq. (1) and is highly temperature
dependent below TC.

5.2 CP-LED with low internal quantum efficiency

In 2008, we observed drastic enhancement of integrated
EL intensity from a CP-LED at temperatures below Nb
TC.

25) The measurement of the CP-LED decay time was
not possible with this device due to the lower total EL
output. Therefore, the luminescence decay was measured
with ps-pulsed photoexcitation.30) The major results are
summarized in Fig. 8(a). Under the constant injection
current of 250 �A, drastic enhancement of the EL output
was observed below TC of 8.3 K as shown in Fig. 8(b).
However the observed lifetime was on the order of 100 ps
and the temperature dependence was moderate above and
below TC. The lifetime measured on the Nb-slit surface
(designated as Nb/InGaAs) was on the same order as the one
measured on the same CP-LED device surface passivated
with the SiN layer shown in Fig. 2 (designated as SiN/
InGaAs).

Following the formalism given in x5.1, the observed short
lifetime suggests

�LED
�1 ¼ �rad

�1 þ �nonrad
�1

� �nonrad
�1 or �rad � �nonrad: ð14Þ

Then the IQE is given by

�int ¼
�rad

�1

�rad�1 þ �nonrad�1

� �rad,normal
�1 þ �rad,superðT Þ�1

�nonrad�1
: ð15Þ

The temperature dependence (T ) was added to the term
�rad,super to highlight the temperature dependence introduced
in eq. (1). Since the temperature dependence of this term
dominates the other terms, the increase of IQE is directly
transferred to the increase of the integrated EL intensity that
is given by

IEL ¼ J0�int�det

� J0�det�nonrad½�rad,normal
�1 þ �rad,superðT Þ�1�; ð16Þ

where the second term in the parentheses dominates below
TC. The total CP-LED lifetime is dominated by �nonrad
as shown in eq. (14) and is thus almost insensitive to a
temperature change across TC as shown in Fig. 8(a).

The IQE of this CP-LED can be evaluated by quantitative
measurements of the integrated EL outputs and lifetimes
of the CP-LED based on the relations of eqs. (1) and (10)–
(13).30) The solid line in Fig. 8(b) is the theoretical fit to the
measured integrated EL intensity and IQE was estimated to
be less than 12% in the measured temperature range.

5.3 CP-LED with high internal quantum efficiency

(�100%)

The optical quality of the CP-LEDs could be successfully
improved in 2009 and much higher EL output was obtained.
This made the electrical pulsed lifetime measurements
discussed in x4 possible. The CP-LED EL decay times
�LED (hole lifetimes) measured above TC were �2:25 ns
and were almost the same as those measured on a reference
LED without Nb electrodes as shown in Fig. 9(a). Concern-
ing InGaAs layers lattice matched to InP there have been
active studies of related lifetimes. The B coefficient
for a series of p- and n-type doped InGaAs has been
determined to be 1:43� 10�10 cm�3 s�1, with the normal
radiative lifetime given by �rad,normal ¼ 1=ðBNÞ.42) The
majority-carrier (electron) concentration N in n-InGaAs
layers with �rad,normal � 2:25 ns is 3:1� 1018 cm�3 s�1
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which is in a reasonable range considering the doping level
of the respective layers of the CP-LED samples.25,27) The
measured CP-LED lifetime now shows an abrupt decrease
below TC. Equations (12) and (13) are rearranged as

�LED
�1 ¼ ð�rad,normal

�1 þ �nonrad
�1Þ þ �rad,superðT Þ�1; ð17Þ

where the terms in parenthesis correspond to the reference
LED and the abrupt decrease of the lifetime below TC is the
contribution of �rad,superðT Þ. The solid line is the theoretical
fit to the measured lifetime using eq. (17) together with
eq. (1). The huge error bar shown for the value at 0.8 K is
due to our continuous flow He-3 cryostat. In the temperature
range down to 3K, the CP-LED was cooled with a con-
ventional pulse-tube refrigerator. Below 3K our cryostat
employs a liquid He-3 pot which cools the sample down to
0.3K with the heat of vaporization of the liquid He-3.
However this cooling power is limited. Also we are injecting
current into the CP-LED and heating of the device is not
negligible especially due to the 50-Ohm terminations used
for the high-speed pulse current injection. This limited our
measurement time and the accuracy of the measured �LED
values at 0.8K.

In spite of the abrupt change of lifetime below TC, the
CP-LED EL output was almost insensitive below and above
TC as shown in Fig. 9(b). The IQE in this case is

�int ¼
�rad

�1

�rad�1 þ �nonrad�1

� �rad,normal
�1 þ �rad,superðT Þ�1

�rad,normal
�1 þ �rad,superðT Þ�1

¼ 1: ð18Þ
Thus the EL output under constant injection current is given
by

IEL ¼ J0�int�det � J0�det; ð19Þ

and the EL output does not depend on the change of
�rad,superðT Þ. This explains the nearly constant EL output
across TC. The equivalent relation of �rad � �nonrad is
rationalized by the above discussion based on the known B
coefficient and therefore becomes

�LED
�1 ¼ �rad

�1 þ �nonrad
�1 � �rad

�1

¼ �rad,normal
�1 þ �rad,superðT Þ�1: ð20Þ

We want to discuss the slight increase of the EL
output with temperature in Fig. 9(b), where the EL output
increases about 10% at 14K relative to that at 0.3K. If
this is due to a remaining contribution of the �nonrad term
in eq. (18), the difference of the numerator and denomi-
nator in eq. (18) becomes larger for higher tempera-
tures, and consequently, the EL output (or IQE) decreases.
This trend is opposite to the observation of the temperature
dependence of the higher IQE shown in Fig. 9(b). In the
present CP-LEDs without tight quantum confinement, the
recombination area is defined by the minority hole injec-
tion and hole diffusion in the n-InGaAs layer. This
spatial diffusion of injected holes modifies the present
EL output from the Nb slit opening with a width of
�100 nm and also induces the residual temperature de-
pendence.

6. Transient Photon Emission from CP-LED

During the pulsed measurements of CP-LEDs, many
parameters such as the diode bias, the built-in field across
the p–n junction, the depletion layer width at the p–n
junction, electron Cooper-pair injection, and hole injec-
tion are transiently modified, and the situation is concep-
tually not simple. Especially in view of Fig. 7, the integrat-
ed EL intensity (photon number) emitted during the
transient decay is reduced at 3K (about half of that at
10K).
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The EL decay for t 
 0 shown in Fig. 7 is given by

IELðtÞ ¼ IELðt ¼ 0Þ exp � t

�LED

� �
t 
 0: ð21Þ

The total photon number emitted during the transient decay
is given by the integration of eq. (21), which is,

Nphoton ¼
Z 1

0

IELðtÞ dt ¼ IELðt ¼ 0Þ�LED: ð22Þ

This equation shows that the total photon number Nphoton

emitted during the transient decay is proportional to the CP-
LED lifetime because the steady state EL output IELðt ¼ 0Þ
is constant regardless of the variation of �LED, as discussed
with eqs. (18) and (19). Therefore Nphoton naturally de-
creases when �LED decreases, as can be seen in Fig. 7.

Following the discussion in x5.3, �LEDðT Þ � �radðT Þ and
the steady-state minority hole concentration is related to the
carrier injection rate J0 with eq. (4), which is,

J0 ¼ p0
�LED

� p0ðT Þ
�radðT Þ : ð23Þ

Under constant J0, the EL output remains constant, too.
When the lifetime �radðT Þ decreases below TC, p0ðT Þ also
decreases in accordance with eq. (23), which leads to

p0ð3KÞ ¼ p0ð10KÞ �LEDð3KÞ
�LEDð10KÞ : ð24Þ

This equation shows that the steady-state hole concentra-
tion at 3K is reduced with the reduction of the CP-LED
lifetime. This results in the reduction of the emitted photon
number during the transient decay at 3K. This simple rate
equation analysis shows the self-consistency of our observa-
tions.

7. Electron Cooper-Pair Recombination vs Normal

Electron Recombination

Concerning the case discussed in x5.3, the contribution of
electron Cooper pairs and normal electrons to the EL output
is quantitatively discussed. Reorganizing eqs. (10) and (11)
as well as considering the condition given by eq. (18), the
EL intensity can be given as

IEL � J0�det�LED½�rad,normal
�1 þ �rad,superðT Þ�1�

� IEL,Normal þ IEL,Cooper-pair: ð25Þ
Therefore the ratio of normal-electron and Cooper-pair
contributions can be directly determined by the respective
radiative lifetimes. According to the data displayed in Fig. 9
the radiative lifetime related to normal electrons �rad,normal is
�2:25 ns. This value could be obtained from both the data of
the reference LED and the data of CP-LED above TC, and it
is, furthermore, temperature independent within the meas-
urement errors. Therefore it can be fixed to 2.25 ns. The
Cooper-pair radiative lifetime �rad,super is calculated from the
measured CP-LED lifetime �LED employing eq. (20). The
contributions of electron Cooper-pairs and normal electrons
to the radiative recombination are determined from these
lifetime data and are shown in Fig. 10. The solid lines are
calculated from the theoretical fit (solid line) in Fig. 9(a).
The Cooper-pair contribution dramatically increases below
TC and is at least comparable to the normal electron
contribution at 2K in this CP-LED.

8. Conclusions

The relation of IQE and radiative lifetime in a CP-LED was
formulated and the mutual relation was clarified. The drastic
enhancement of EL output observed below TC was due to the
higher Cooper-pair-based radiative recombination rate, but
this observation was only possible when the IQE was low
and the CP-LED lifetime was dominated by nonradiative
recombination. For CP-LEDs with higher IQE, the reduction
of radiative lifetime due to the Cooper-pair recombination
was directly observable, but the EL output remained con-
stant due to the high IQE close to 100%. These apparently
quite different LED performances were clearly explained
with the presented formulation. The contribution of the
Cooper-pair recombination to the EL output was quantita-
tively evaluated and found to be at least equivalent to that of
normal electrons in the case of low temperature.

Before our research the interaction of high-energy photons
(photon energy � 1 eV) with Cooper pairs was limited to
destructive absorption processes.43) The main difference in
CP-LED is that Cooper-pairs are the initial state for radiative
recombination with holes and coherent dipole interactions
are possible. The successful operation of CP-LEDs represents
an essential step toward developing an interdisciplinary field
connecting superconductivity and optoelectronics as well as
quantum optics. Recently, a more phase-sensitive Josephson
LED was theoretically proposed.44) Our Josephson junction
measurements on CP-LEDs showed some correlations of
the critical supercurrent and photon generation inside the
CP-LED.29) More detailed experimental studies will clarify
this phase sensitivity in the near future.
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