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Josephson effect in noncentrosymmetric superconductor junctions
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We discuss the Josephson current between two noncentrosymmetric superconductors. The coexistence of
superconducting order parameters between the spin-singlet �S and the helical p-wave spin-triplet �T enriches
a variety of low-temperature behavior of the Josephson current depending on their relative amplitudes. We will
show that characteristic behaviors of the Josephson current for �S > �T are clearly different from those for
�S < �T. The topologically protected zero-energysurface bound states are responsible for the clear difference.
We conclude that the Josephson current reflects well the character of the topological surface states and the pairing
symmetry of noncentrosymmetric superconductors.
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I. INTRODUCTION

The coexistence of the spin-singlet superconducting order
parameters and the spin-triplet one is the essential feature of
noncentrosymmetric superconductors (NCSs).1–4 The absence
of spatial inversion symmetry leads to spin-orbit coupling large
enough to mix the spin-singlet component and the spin-triplet
component. The amplitude of the spin-singlet component �S

and that of the spin-triplet component �T is a material param-
eter determined by the amplitude of spin-orbit coupling. The
Rashba-type spin-orbit coupling induces the helical p-wave
spin-triplet order parameter, which is the topologically nontriv-
ial superconducting state.4,5 There have been several studies
on coexistent superconducting properties of the spin-singlet
s-wave and the spin-triplet helical p-wave symmetries.6–12 It
is known that topologically protected states with linear disper-
sion appear at a surface of a NCS for �T > �S. Recent papers,
however, have suggested mixed order-parameter spin-singlet
d-wave and spin-triplet p-wave symmetries13,14 that have been
proposed for the interfacial superconductivity.15 Such pairing
symmetry results in a dispersionless surface bound state at
the Fermi level. A similar flat zero-energy-surface state in a
NCS has also been discussed very recently.16 Physical values
originated from the bulk region of a superconductor such as
the specific heat and spin susceptibility4 are expected to be
interpolated from those in the two limits: the pure spin-singlet
case and the pure spin-triplet one. An open question is how
physical values governed by the surface bound states behave
as a function of the relative amplitude between �T and �S.
This paper addresses this issue. A very resent paper has
commented on the drastic change of the tunneling spectra
of NCS depending of the relative amplitudes.17

The surface bound states of unconventional superconduc-
tors have been theoretically discussed in heavy fermionic
superconductors,18 the polar state of 3He,19 and high-Tc

cuprates.20,21 Experimentally, the presence of the surface
bound states has been observed as the zero-bias anomaly21,22 of
the scanning tunneling spectroscopy (STS) of hole-doped23,24

and electron-doped25 high-Tc cuprates. The zero-bias anomaly
has been observed also in the differential conductance of
ramp-edge junctions of hole-doped high-Tc cuprates26 and the
grain-boundary junction of electron-doped high-Tc cuprates.27

The presence of the surface bound states has been reinterpreted

since the proposal for new classification of matter.28 The
surface bound states at zero energy are necessary to naturally
connect a nontrivial topological integer number inside of an
unconventional superconductor with the trivial topological
number outside of the superconductor. The dispersion of the
subgap states depends on the type of the topological number
defined in superconductors. Chiral or helical superconductors
give rise to dispersive surface bound states.29 On the other
hand, dispersionless zero-energy states are formed under
dx2-y2 - and px-wave symmetries.

In the direct current Josephson effect, the surface bound
states result in large JcRN/(�0/e) values and the deviation of
the current-phase relationship from the sinusoidal function
at low temperature,30,31 where Jc is the critical Josephson
current, RN is the normal resistance of a junction, and �0 is the
amplitude of pair potential at zero temperature. Such behavior
is called the low-temperature anomaly of the Josephson current
and is known to be sensitive to spectra of surface bound
states.30–34 So far the Josephson effect between an s-wave
superconductor and a NCS35 and that between two NCSs36

have been studied based on the tunneling Hamiltonian method.
The low-temperature anomaly of the Josephson current has not
yet been discussed.

In this paper, we theoretically calculate the Josephson
current between two NCSs37,38 based on a current formula39 in
terms of the Andreev reflection coefficients of junctions. We
assume an order parameter that is a mixture of the spin-singlet
s-wave and the spin-triplet helical p-wave symmetries. We call
such a state an s + p mixture. For �T < �S, the Josephson
current saturates at low temperature as described by the
Ambegaokar-Baratoff formula.40 On the other hand, for �T >

�S, the Josephson current increases logarithmically with
decreasing temperature (T ). The interfacial bound state causes
the low-temperature anomaly. The characteristic behavior of
the Josephson current does not change gradually as a function
of the relative amplitude between �T and �S. The critical
point �T = �S clearly divides the qualitative feature of the
Josephson current.

In addition to the s + p mixture, we also consider two types
of mixed order parameters between the spin-singlet dxy-wave
and the spin-triplet helical p-wave symmetries. We call such a
state a d + p mixture. The features of the Josephson current are
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FIG. 1. (Color online) Schematic picture of the Josephson junction.

well characterized by the relative amplitude between �T and
�S. In some cases, the Josephson current increases as 1/T with
decreasing temperature due to the dispersionless zero-energy
state. We will discuss the physics behind such clear qualitative
changes of the Josephson effect in terms of topologically
protected zero-energy surface states. It is known that the
excitation of such surface bound states on superconductors
is characterized by the Majorana fermion.29,41,42 Unusual
phenomena peculiar to the Majorana fermion have been
suggested theoretically.43–45

This paper is organized as follows. In Sec. II, we discuss
a theoretical model of the Josephson junction consisting of
two NCSs. In Sec. III, we show the calculated results of
the Josephson current for s + p and d + p mixtures. We
summarize this paper in Sec. IV.

II. MODEL

Let us consider a Josephson junction between two NCSs
as shown in Fig. 1, where the electric current flows in the
x direction and the junction width in the y direction is W .
We apply a periodic boundary condition in the y direction.
The Bogoliubov–de Gennes (BdG) Hamiltonian in momentum
space reads

HBdG(k) =
[

ĥ(k) �̂(k)
−�̂∗(−k) −ĥ∗(−k)

]
, (1)

ĥ(k) = ξkσ̂0 + λg · σ̂ , (2)

ξk = h̄2k2

2m
− μ, (3)

where σ̂j for j = 1–3 are the Pauli matrices, σ̂0 is the unit ma-
trix in spin space, kx(y) is the wave number in the x(y) direction,
kF is the Fermi wave number, μ is the chemical potential,
and λ is the amplitude of the spin-orbit interaction. In this
paper, we assume that λ � μ. We consider the Rashba-type
spin-orbit coupling reflecting the noncentrosymmetry along
the z direction [i.e., g = (ky, − kx,0)/kF ]. Correspondingly,
we choose the d vector in the pair potential as d = g as
discussed in Ref. 4. As a consequence, the spin-triplet part of
the pair potential has helical p-wave symmetry. In this paper,
we consider three types of mixed order parameters, as follows:

�̂(k) =
⎧⎨
⎩

i (�Td · σ + �S) σ̂2, s + p,

i (�Td · σ + �S sin 2γ ) σ̂2, d + p I,
i (�Td · σ + �S) sin 2γ σ̂2, d + p II,

(4)

where γ is the incident angle of a quasiparticle as shown
in Fig. 1 and eiγ = (kx + iky)/kF . The first one consists of
s-wave singlet and helical p-wave triplet components. The
pair potential of d + p II is the order parameter discussed
in interfacial superconductivity.14 Although the pair potential
of d + p I may not have a relation to any real materials, we
consider it for theoretical interest. The energy eigenvalues of
Eq. (1) are E = ±E± with E± =

√
(ξk ± λ)2 + �2

± and

�±(γ ) =
⎧⎨
⎩

�S ± �T, s + p,

�S sin 2γ ± �T, d + p I,
(�S ± �T) sin 2γ, d + p II.

(5)

To represent the wave function of a quasiparticle, we need other
values of the pair potential defined by �̃±(γ ) = �±(π − γ ),

�̃±(γ ) =
⎧⎨
⎩

�S ± �T, s + p,

−�S sin 2γ ± �T, d + p I,
−(�S ± �T) sin 2γ, d + p II.

(6)

The wave function in the left superconductor is obtained as

�L(x,y) = 	̌L

⎧⎪⎨
⎪⎩

⎡
⎢⎣

u+ u−
−ieiγ u+ ieiγ u−
ieiγ v+ −ieiγ v−

v+ v−

⎤
⎥⎦

[
a+
a−

]
eikxx +

⎡
⎢⎣

ṽ+ ṽ−
ie−iγ ṽ+ −ie−iγ ṽ−

−ie−iγ ũ+ ie−iγ ũ−
ũ+ ũ−

⎤
⎥⎦

[
b+
b−

]
e−ikxx

+

⎡
⎢⎣

ũ+ ũ−
ie−iγ ũ+ −ie−iγ ũ−

−ie−iγ ṽ+ ie−iγ ṽ−
ṽ+ ṽ−

⎤
⎥⎦[

A+
A−

]
e−ikxx +

⎡
⎢⎣

v+ v−
−ieiγ v+ ieiγ v−
ieiγ u+ −ieiγ u−

u+ u−

⎤
⎥⎦ [

B+
B−

]
eikxx

⎫⎪⎬
⎪⎭ eikyy, (7)

u± =
√

1

2

(
1 + 
±

E

)
, v± =

√
1

2

(
1 − 
±

E

)
s±, ũ± =

√
1

2

(
1 + 
̃±

E

)
, ṽ± =

√
1

2

(
1 − 
̃±

E

)
s̃±, (8)


± =
√

E2 − �2±, 
̃± =
√

E2 − �̃2±, s± = �±
|�±| , s̃± = �̃±

|�̃±| , 	̌j = diag{eiϕj /2,eiϕj /2,e−iϕj /2,e−iϕj /2}, (9)
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where a± and b± are the amplitudes of incoming
waves, A± and B± are the amplitudes of outgoing
waves, and ϕj for j = L or R is the macroscopic

phase of the superconductor. In the same way, the
wave function in the right superconductor is represented
by

�R(x,y) = 	̌R

⎧⎪⎨
⎪⎩

⎡
⎢⎣

u+ u−
−ieiγ u+ ieiγ u−
ieiγ v+ −ieiγ v−

v+ v−

⎤
⎥⎦[

C+
C−

]
eikxx +

⎡
⎢⎣

ṽ+ ṽ−
ie−iγ ṽ+ −ie−iγ ṽ−

−ie−iγ ũ+ ie−iγ ũ−
ũ+ ũ−

⎤
⎥⎦ [

D+
D−

]
e−ikxx

⎫⎪⎬
⎪⎭ eikyy, (10)

with C± and D± being amplitudes of outgoing waves. At
the junction interface, we introduce the potential barrier
described by V0δ(x). Throughout this paper, we fix z0 ≡
(V0m)/(h̄2kF ) = 5, which leads to the transmission probability
of the insulating barrier TB = ∫ π/2

0 dγ cos3 γ /(z2
0 + cos2 γ )

at about 0.01. By eliminating C± and D± using a boundary
condition, it is possible to obtain the reflection coefficients⎡

⎢⎣
A+
A−
B+
B−

⎤
⎥⎦ =

[
r̂ee r̂eh

r̂he r̂hh

] ⎡
⎢⎣

a+
a−
b+
b−

⎤
⎥⎦ . (11)

The Josephson current can be calculated based on a formula39

after applying the continuation E → iωn = i(2n + 1)πT :

J = e

2h̄

∑
ky

T
∑
ωn

Tr

{[
�+

n+

0

0 �−

n−

]
r̂he −

[
�̃+

̃n+

0

0 �̃−

̃n−

]
r̂eh

}
,

(12)

with 
n± =
√

ω2
n + �2

± and 
̃n± =
√
ω2

n + �̃2
±. We introduce

a parameter 0 � α � 1 to tune the mixing rate between the
spin-singlet and spin-triplet components as

�S = α�, �T = (1 − α)�, (13)

where the dependence of � on temperature T is described by
BCS theory. The energy spectra of a subgap state at a surface
of the NCS is calculated from Eq. (10) with the boundary
condition �R(0,y) = 0.

III. RESULTS

At first, we summarize the energy spectra of the subgap
state at the surface of the superconductor in Fig. 2. In the
s + p mixture, the energy of the bound state satisfies

(E2 − �+�−) cos2 γ + 
+
−(1 + sin2 γ ) = 0. (14)

It is known that the surface bound state is absent for �S > �T,
whereas the surface bound states with the linear dispersion
exist for �S > �T, as shown in Fig. 2(a).

In the d + p I mixture, the energy of the surface bound state
satisfies

E2(1 + cos2 γ ) + sin2 γ (�+�− + 
+
−) = 0. (15)

The equation has two solutions. The first one is E = 0,
which is allowed for | sin γ | � �T/�S, as shown in Fig. 2(b).
The dispersionless zero-energy bound states are a direct

consequence of the dxy-wave symmetry.20 Therefore such a flat
zero-energy state is absent for �S < �T. The second solution
is given by

E = ± sin γ

√
�2

T − �2
S4 sin2 γ (16)

for | tan γ | < �T/(2�S), as shown in Figs. 2(b) and 2(c).
In the d + p II mixture, the energy of the surface bound

states satisfies

E2(1 + sin2 γ ) + cos2 γ (�+�− + 
+
−) = 0. (17)

The equation has two solutions. The first one is E = 0 for all γ ,
which is possible only when �S > �T, as shown in Fig. 2(d).
The second solution is given by

E = ±2 cos2 γ

√
�2

T sin2 γ − �2
S, (18)

which is allowed for | sin γ | <
√

�S/�T, as shown in Fig. 2(e).

 Δ α = 0

Δ

 α= 0.4

 Δ

 α= 0.6

Δ

 α= 0.4

Δ

α = 0.6

ΔS   > ΔT ΔS   < ΔT

FIG. 2. (Color online) The energy spectra of the surface bound
state. (a) s + p at α = 0, (b) d + p I at α = 0.6, (c) d + p I at
α = 0.4, (d) d + p II at α = 0.6, and (e) d + p II at α = 0.4. The
horizontal axis ky/kF corresponds to sin γ .
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FIG. 3. (Color online) Results for the s + p mixture. The critical
Josephson current is plotted as a function of temperature in (a) and
(c). The current-phase relationships are shown in (b) and (d) at a
low temperature (T = 0.001Tc). The transmission probability of the
tunnel junction TB is fixed at about 0.01 throughout this paper.

A. s + p

In Fig. 3, we show the calculated results of the Josephson
current for the s + p mixture. In Fig. 3(a), we plot the
critical Josephson current as a function of temperature for
several choices of α satisfying �S > �T. The Josephson
current is normalized by J0 = π�0/(2eRN ), where RN is
the normal resistance of the junction. In the case of metal-
lic superconductor junctions, the Josephson critical current
becomes J0 at zero temperature. In Fig 3(b), we show the
current-phase relationship (CPR) at a low temperature T =
0.001Tc for α = 1, 0.8, and 0.6, where ϕ = ϕL − ϕR is the
phase difference across the junction. The critical Josephson
current saturates at low temperature and the CPR is sinusoidal
for α = 1, 0.8, and 0.6. Thus the Josephson current for
�S > �T obeys the Ambegaokar-Baratoff relation because
there is no surface zero-energy state. In Figs. 3(c) and 3(d),
respectively, we show the dependence of critical current on
temperature and the CPR at a low temperature for several
choices of α satisfying �S < �T. The results in Figs. 3(c)
and 3(d) show qualitatively different behavior from those in
Figs. 3(a) and 3(b), respectively. The critical Josephson current
in Fig. 3(c) increases with decreasing temperature even far
below Tc. This behavior is called the low-temperature anomaly
of the Josephson current. The resonant tunneling through
the surface bound state at zero energy is responsible for the
anomaly.30,31 Such a zero-energy state (sin γ = 0) is possible,
as shown in Fig. 2(a). According to previous papers,32,33

the Josephson critical current increases logarithmically with
decreasing temperature for α = 0. The results for α = 0.2
and 0.4 also show the logarithmic low-temperature anomaly.
Correspondingly, the contribution of higher harmonics slightly

 ϕ / π

α =0.0

α = 0
 0.2
 0.4

 ϕ / π

α =  1

α = 1
 0.8
 0.6

ΔS   > ΔT ΔS   < ΔT

FIG. 4. (Color online) Result for d + p I. The critical Josephson
current is plotted as a function of temperature in (a) and (c). The
current-phase relationship is shown in (b) and (d) at low temperature
(T = 0.001Tc).

deviates the CPR from the sinusoidal relation, as shown in
Fig. 3(d). Thus the characteristic feature of Josephson current
qualitatively changes at the singular point of �S = �T.

B. d + p I

Next, we show the calculated results of the Josephson
current for the d + p I mixture as shown in Fig. 4. The
temperature dependence of critical current for α =1, 0.8, and
0.6 satisfying �S > �T shows a low-temperature anomaly, as
shown in Fig. 4(a). The critical current increases as T −1 with
decreasing temperature at α = 1.30 The results for α = 0.8 and
0.6 also show such a power-law-like low-temperature anomaly.
The corresponding CPR shown in Fig. 4(b) indicates a jump
at ϕ = π because of the contributions of higher harmonics. In
this case, the surface bound states are energetically localized at
E = 0, as shown in Fig. 2(b). The resonant tunneling through
such zero-energy states causes the strong low-temperature
anomaly. For �S < �T, on the other hand, the Josephson
current in Figs. 4(c) and 4(d) has properties similar to those in
Figs. 3(c) and 3(d), respectively. The critical current indicates
the logarithmic low-temperature anomaly. The presence of
the zero-energy surface bound state at sin γ = 0 in Fig. 2(c)
explains the similarity. Thus the characteristic feature of
the Josephson current for the d + p I mixture also changes
qualitatively around the point of �S = �T.

The large deviation of the CPR from the sinusoidal function
in Fig. 4(b) can be seen only at low temperature. According to
an analytical expression of the Josephson current for α = 1,
the higher harmonics contribute to the Josephson current when
the temperature is much smaller than

√
TB�0. Here TB is the

transmission probability of the tunnel junction and is about
0.01 in the present calculation. In Fig. 5, we show the CPR for
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 ϕ / π

α = 0

 ϕ / π

α = 1

FIG. 5. (Color online) Current-phase relationships in Figs. 4(b)
and 4(d) calculated for a higher temperature (T = 0.1Tc).

a higher temperature at T = 0.1Tc. In both Figs. 4(a) and 4(b),
the CPR deviates from the sinusoidal relation only slightly at
T = 0.1Tc. On the other hand, the amplitudes of the Josephson
current remain at a sufficiently larger value than J0.

C. d + p II

Finally, we show the calculated results of the Josephson
current for the d + p II mixture as shown in Fig. 6. The
temperature dependence of critical currents for several α sat-
isfying �S > �T indicates a strong low-temperature anomaly,
as shown in Figs. 6(a) and 6(b). The critical current increase
with decreasing temperature as T −1 and the CPR at a low
temperature shows the jump at ϕ = π . The zero-energy surface
bound states are possible for all γ , as shown in Fig. 2(d). The
presence of the flat zero-energy states explains the similarity
of the results in Figs. 6(a) and 6(b) to those shown in Figs. 4(a)
and 4(b), respectively. The calculated results for α = 0.4, 0.2,
and 0 satisfying �S < �T are shown in Figs. 6(c) and 6(d). In

 ϕ / π

α = 0

α=1
 0.8
 0.6

α=0
 0.2
 0.4

 ϕ / π

α=1

ΔS   > ΔT ΔS   < ΔT

FIG. 6. (Color online) Results for d + p II. The critical Josephson
current is plotted as a function of temperature in (a) and (c).
The current-phase relationship is shown at low temperature (T =
0.001Tc).

contrast, the results for �S < �T in Figs. 6(c) and 6(d) have
properties similar to those in Figs. 3(a) and 3(b). Namely, the
Josephson current saturates at low temperature and the CPR is
sinusoidal at low temperature. The zero-energy state at sin γ =
±1 exists, as shown in Fig. 2(e). Although this zero-energy
state appears as a result of the resonant Andreev reflection,22

it does not significantly affect the Josephson current. The
wave number sin γ = ±1 means kx = cos γ = 0. Thus a
quasiparticle does not have momenta in the current direction
in the zero-energy state. When we consider huge spin-orbit
coupling, it has been pointed out that13,46,47 the flat zero-energy
states appear for sin γ > (1 − 2λ/μ). In such cases, the flat
zero-energy state may cause the low-temperature anomaly.
This statement, however, is still unclear in realistic junctions
with a thick insulating barrier because the contribution of
a quasiparticle with sin γ ≈ ±1 to the Josephson current
becomes exponentially small. Within the approximation of
λ/μ � 1, there is no effective zero-energy state that causes
the low-temperature anomaly for �S < �T. Therefore, the
Josephson current in Figs. 6(c) and 6(d) shows qualitatively
the same behavior as those in Figs. 3(a) and 3(b), respectively.
Thus the characteristic feature of the Josephson current for
d + p II also qualitatively changes around the point �S = �T.

At �S = 0, the subgap state with linear dispersion appears
around sin γ = 0, as mathematically shown in Eq. (18). This
zero-energy state, however, is not a result of the resonant
Andreev reflection22 but is a result of a node in the pair
potential. Thus �S = 0 cannot be a critical point. Actually,
the results for α = 0 in Fig. 6(c) show the saturation of the
Josephson critical current at low temperature.

IV. CONCLUSION

In summary, we have theoretically studied the Josephson
current between two noncentrosymmetric superconductors
based on the Bogoliubov–de Gennes equation and a general
current formula. We have assumed three types of order parame-
ters that consist of spin-singlet �S and spin-triplet components
�T at the same time. The Josephson current for �S > �T

shows clearly the different characteristic behavior from those
for �S < �T for all pairing symmetries. The clear difference
can be understood by analyzing the topologically protected
zero-energy states at a surface of the noncentrosymmetric
superconductor. The dispersionless zero-energy bound states
are responsible for the strong low-temperature anomaly of
the Josephson current in which the Josephson critical current
increases as 1/T with decreasing temperature. The surface
state with linear dispersion causes the weak low-temperature
anomaly in which the Josephson critical current increases
logarithmically with decreasing temperature. When the surface
zero-energy state is absent, the Josephson current obeys the
Ambegaokar-Baratoff formula.
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