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We discuss electric transport through a point contact which bridges Majorana fermion modes appearing

at edges of two helical superconductors. The contents focus on the effects of interference and interaction

unique to the Majorana fermions and the role of spin-orbit interaction (SOI). Besides the Josephson

current, the quasiparticle conductance depends sensitively on the phase difference and relative helicity

between the two superconductors. The interaction among the Majorana fermions causes the power-law

temperature dependences of conductance for various tunneling channels. Especially, in the presence of

SOI, the conductance always increases as the temperature is lowered.
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Fractionalization of electrons attracts recent intensive
interest. A chiral fermion at an edge of quantum Hall
system is an example of fractionalized electrons. A fully
gapped bulk state spatially separates a right-going and left-
going chiral fermion, which leads to the absence of the
backward scattering [1]. The robustness against disturban-
ces such as disorder and interaction is a common feature of
the fractionalized states. Therefore the fractionalized states
are expected to have a dissipationless feature which is a
key property on application to quantum information pro-
cesses [2]. The Majorana fermions (MF) are another ex-
ample of the fractionalized electron and has been recently
discussed in the context of condensed matter physics [3].
Since its field operator in real space satisfies a relation � ¼
�y, MF are often called real fermions and are regarded as a
half (fraction) of a usual complex fermions.

Superconductors and superfluids are the most promising
candidates which host MF because the particle number is
not a good quantum number in these systems as required by
the MF field. Actually the existence of MF has been dis-
cussed in a vortex core or at an edge of the chiral pþ ip
superconductor [4], 3He and Bose-Einstein condensates
[5,6], at an interface between a superconductor and a
topological insulator [7], and in a quantum Hall edge
(state) with � ¼ 5=2 [8]. Chiral fermion modes appear
only when the time-reversal symmetry T is broken [1].
Under preserving T symmetry, the partner with the oppo-
site chirality always coexists. In this case, the edge chan-
nels are referred to as helical. Along the edge of the two-
dimensional quantum spin Hall systems, the helical fermi-
ons appear [9]. Analogously, at the edge of the helical
superconductors, the helical Majorana fermions appear as
the Andreev bound states [10–12]. Noncentrosymmetric
superconductors with dominant spin-triplet p-wave order
parameter are a realistic playground of helical Majorana
fermions [10,11]. In addition, MF excitations are expected
in topological superconductors [13]. Thus, understanding

of novel phenomena peculiar to MF is highly desired [14].
Although all of the recent developments have assumed
noninteracting MF; effects of interaction among MF have
been an important open question.
In this Letter, we study theoretically low energy electric

transport through the MF modes appearing at edges of two
helical superconductors with taking into account the inter-
action among MF. The model of four interacting MF
modes can be mapped into the spinless Tomonaga-
Luttinger model by introducing two fictitious chiral fermi-
ons. This enables us to analyze low energy physical phe-
nomena of MF by using the bosonization technique. We
show that the conductance depends sensitively on the
relative helicity of two helical superconductors, the phase
difference of two superconductors, and the spin-orbit cou-
pling at the point contact. These are the features of the
interference effect unique to Majorana Josephson junc-
tions. Our main results are summarized in Eqs. (9), (12),
(14), and (15), and Table I.
Before going into the detailed description, let us explain

the physical picture for the results obtained in this Letter.
In contrast to the MF in high-energy physics, e.g., neutri-
nos, those in condensed matter physics can interact with
the electromagnetic field even though they are neutral. This
is because the phases of the superconducting order parame-
ters enter into the relation between the electron operator
and MF operator as given in Eq. (1). In the tunneling
Hamiltonian in Eq. (5) in terms of the original electron
operators, there are two Hermitian conjugate terms as

�y
1��2�0 and �y

2�0�1�. These two terms act successively

in the tunneling processes, and hence the phase factors of
the tunneling matrix element usually cancel out for the
quasiparticle tunneling. On the other hand, when �’s are
expressed by MF operators in Eq. (1), these two terms are
combined into a single term with the coefficient depending
on the phase difference between the two superconductors
(’) as described in Eqs. (5) and (6). This interference

PRL 105, 056402 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
30 JULY 2010

0031-9007=10=105(5)=056402(4) 056402-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.105.056402


unique to the MF is the basic reason why the quasiparticle
tunneling is sensitive to ’. The tunneling process is also
sensitive to the relative helicities of the two superconduc-
tors. The reason is that the forward tunneling terms remain
marginal in the scaling analysis. On the other hand, the
backward tunneling terms can be either relevant or irrele-
vant depending on the sign of interaction. In the equal
helicity configuration, the forward tunneling suffers spin
flip as shown in Fig. 1. On the other hand in the opposite
helicity configuration, the backward tunneling requires
spin flip.

We consider the interacting helical edge channels [15] as
shown in Fig. 1. By using solutions of the Bogoliubov–
de Gennes equation, Majorana fermions at the edge of the
helical superconductors are described by [12] H0 ¼
iv
P

j¼1;2

R
dx½�LjðxÞ@x�LjðxÞ � �RjðxÞ@x�RjðxÞ�, where

��ðxÞ for � ¼ ðR1; L1; R2; L2Þ are the four species of

Majorana fermion field satisfying the anticommutation
relation f��ðxÞ; ��0 ðx0Þg ¼ ð1=2Þ��;�0�ðx� x0Þ. The elec-
tron operator is expressed in the low energy sector as

�j;�ðxÞ ¼ ei’j=2ei’���j;�ðxÞ; (1)

� ¼
�
ei�=4; ðj; �Þ ¼ ð1; "Þ and ð2; #Þ
e�i�=4; ðj; �Þ ¼ ð1; #Þ and ð2; "Þ; (2)

where ’j is the phase of superconducting order parameter

for the two superconductors indicated by j ¼ 1 and 2,
� ¼" , # represents pseudospin index, and ’� is the rela-
tive phase of the pair potential for the two pseudospins. In
Eq. (1), we have considered pair potential in two-

dimensional 3He-B phase as an example of the helical
edge state. As shown in Fig. 1, the pseudospin index
� ¼" , # is related to the moving direction of the chiral
Majorana fermions (R, L), which are basically determined
by the pair potential and the spin-orbit interaction (SOI) in
the bulk region.
In addition to H0, we consider the two terms in

the Hamiltonian. At first, the interaction Hint: screened
by the bulk states comes from the short-range

electron-electron interaction as given by Hel-int: ¼R
dx

R
dx0Cy

�ðxÞCy
	ðx0ÞVðx� x0ÞC	ðx0ÞC�ðxÞ=2, where

C�ð	Þ is the electron operator with � and 	 labeling the

electron spin. The original electron spin � is expressed by
the linear combination of pseudospin � in the presence of
the SOI. We take only the possible relevant terms, and
neglect the irrelevant interactions including the spatial

derivatives. Considering also the fact that �y
i��i� /

ð�i�Þ2 ¼ const:, and assuming that the interaction should
conserve the electron number in each superconductor, the
only remaining interactions derived from Hel-int. in low
energy are [16]

H1 ¼ U1

Z
dx½�y

1;"�1;#�
y
2;"�2;# þ H:c:�

H2 ¼ U2

Z
dx½�y

1;"�1;#�2;"�
y
2;# þ H:c:�:

(3)

Note here that more than four species of Majorana fermi-
ons and SOI are indispensable to having effective interac-
tion [17] and that interaction terms including spatial
derivatives are irrelevant in the low-energy limit.
Expressing Eqs. (3) by Eqs. (1) and (2), we obtain

Hint: ¼ g
Z

dx�R1ðxÞ�R2ðxÞ�L2ðxÞ�L1ðxÞ; (4)

with g ¼ �2U1 cosð2’sÞ þ 2U2.
The last term is the tunneling Hamiltonian between the

two edges represented by

HT ¼ �ta
X
�;�0

½�y
1;�ð0Þf�0 þ i� � �g�;�0�2;�0 ð0Þ

þ�y
2;�ð0Þf�0 � i� � �g�;�0�1;�0 ð0Þ�; (5)

¼ 2ita½cosð’=2ÞA� þ 
3 sinð’=2ÞAþ
� cosð’=2Þ
�Bþ þ sinð’=2Þ
þB��; (6)

Equal Helicity

1 2

x

y

z

Opposite Helicity

2a

a

FIG. 1 (color online). Schematic picture of helical Majorana
excitations at edges of two helical superconductors.

TABLE I. The temperature dependence of the most dominant
terms in conductances given in Eqs. (12) and (15) at low
temperature, where ’ is the phase difference between the two
helical superconductors, � represents spin-orbit interaction at a
point contact, and ‘‘const’’ means the conductance independent
of temperature. Here K ¼ 1 ðg ¼ 0Þ represents no interacting
case, while K < 1 ðg > 0Þ and K > 1 ðg < 0Þ are the interacting
cases. The conductance depends on the relative helicity of the
two superconductors: the equal helicity configuration (upper
column) and the opposite one (lower column)

� ¼ 0 � � 0

Equal helicity

’ ¼ 0 K ¼ 1 0 const

K < 1 0 T2K�2

K > 1 0 const

’ � 0 K ¼ 1 const const

K < 1 T2=K�2 ! 0 T2K�2

K > 1 T2=K�2 T2=K�2

Opposite helicity

’ ¼ 0 K ¼ 1 0 const

K < 1 0 const

K > 1 0 T2=K�2

’ � 0 K ¼ 1 const const

K < 1 const T2K�2

K > 1 const T2=K�2
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with A� ¼ �1;"�2;" � �1;#�2;#, B� ¼ �1;"�2;# � �1;#�2;",

� ¼ 
1 cos’s � 
2 sin’s and 
þ ¼ 
1 sin’s þ

2 cos’s, where ’ ¼ ’1 � ’2 is the macroscopic phase
difference, ’s ¼ ’" � ’# is the difference in the spin-

dependent phases, � ¼ ð�1; �2; �3Þ are the Pauli matrices,
and�0 is the 2� 2 unit matrix. The width and the length of
a point contact is indicated by a. In Eq. (5), we consider the
SOI at the point contact described by � ¼ ð
1; 
2; 
3Þ. By
applying electric fields at the point contact, it is possible to
induce the Rashba-type SOI as� ¼ gsoð�Ez; 0; ExÞ, where
gso is a coupling constant, Ex and Ez correspond to the
potential gradient in the x and z direction, respectively.
When the Dresselhous-type SOI can be introduced, 
2

also becomes nonzero value. The operator of the electric

current is calculated from the equation J ¼
e@t

P
�

R
dx�y

1;�ðxÞ�1;�ðxÞ. We find that a relation Jð’Þ ¼
eHTð’þ �Þ always holds. We assume that the pseudospin
of the right(left)-mover is " ( # ) at the edge 1 as shown in
Fig. 1. Therefore we choose �1;" ¼ �R1 and �1;# ¼ �L1. At

the edge 2, we choose �2;" ¼ �L2 and �2;# ¼ �R2 for the

equal helicity configuration, and �2;" ¼ �R2 and �2;# ¼
�L2 for the opposite helicity configuration.

To analyze the Hamiltonian, we introduce a complex

fermion field by c AðxÞ ¼ �A1ðxÞ þ i�A2ðxÞ and c y
AðxÞ ¼

�A1ðxÞ � i�A2ðxÞ with A ¼ R and L. These operators sat-
isfy the usual fermion anticommutation relations:

fc AðxÞ; c A0 ðx0Þg ¼ 0 and fc AðxÞ; c y
A0 ðx0Þg ¼ �A;A0�ðx�

x0Þ. We rewrite the Hamiltonian H0 þHint: in terms of
these complex fermion operators as

H0þHint:¼�iv
Z
dx½c y

RðxÞ@xc RðxÞ�c y
LðxÞ@xc LðxÞ

þg

4
c y

RðxÞc RðxÞc y
LðxÞc LðxÞ�þconst: (7)

This Hamiltonian is exactly that of the massless
Tomonaga-Luttinger model. It is extremely simple as com-
pared to that of interacting helical edge fermion sys-
tems [18]. In the standard bosonization method,

ð@x=2�Þ�LðRÞðxÞ ¼: c y
LðRÞðxÞc LðRÞðxÞ, �ðxÞ ¼ �RðxÞ þ

�LðxÞ, and �ðxÞ ¼ �RðxÞ ��LðxÞ, Eq. (7) is transformed
into

H0 þHint: ¼ ~v

8�

Z
dx

f@x�ðxÞg2
K

þ Kf@x�ðxÞg2; (8)

where ~v ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~g2

p
and K ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� ~gÞ=ð1þ ~gÞp

with
~g ¼ g=ð8�vÞ [19,20].
We first discuss the tunneling effect in the equal helicity

configuration. By using the bosonization technique, the
tunneling Hamiltonian becomes

HT ¼ ta

�

�

þ
2

sin

�
’

2

�
@x�ðxÞ�
�

2
cos

�
’

2

�
@x�ðxÞ

�
x¼0

þ iRLta

��0

�
cos

�
’

2

�
sin�ð0Þ�
3 sin

�
’

2

�
sin�ð0Þ

�
;

where R and L are the Klein factor. In the above equa-
tion, the terms including @x�ðxÞ and @x�ðxÞ represent the
forward tunneling process: hopping of the left(right) mover
to the left(right) mover. On the other hand, the terms
including sin�ð0Þ and sin�ð0Þ represent the backward tun-
neling: hopping of the left(right)-mover to the right(left)-
mover. Before turning into the conductance, the Josephson
current should be clarified. Within the second-order per-
turbation expansion, we find

J ¼ e�

�
at

�v

�
2
sin’

�
1� 
2

3 �
1

K

2þ þ K
2�

�
; (9)

where we have used ðRLÞ2 ¼ �1, ð�0Þ�1 ¼ kF � �=v,
and � is the amplitude of pair potential at sufficiently low
temperature T � Tc with Tc being superconducting tran-
sition temperature. The ground state of junction is at’ ¼ 0
for � ¼ 0 [21]. Equation (9) does not recover a usual
relation J / ð1þ �2Þ expected in s-wave Josephson junc-
tion even in the absence of interaction, (i.e.,K ¼ 1). This is
a characteristic feature of Majorana fermion excitation.
On the basis of the linear response theory, we calculate

DC conductance of the point contact using the standard
Kubo formula, � ¼ �lim!!0þ½QRð!Þ �QRð0Þ�=ði!Þ,
where the correlation function is obtained by QRð!Þ¼
Qði!n!!þ i�Þ with Qð!nÞ¼�R1=T

0 d�ei!n�hJð�ÞJð0Þi,
� is the imaginary time, and!n is theMatsubara frequency.
The following four terms contribute to Qð!nÞ,
hJð�ÞJð0Þi¼hF2

�@x�ð�Þ@x�ð0ÞþF2
�@x�ð�Þ@x�ð0Þix¼0

þhB2
�sin�ð�Þsin�ð0ÞþB2

�sin�ð�Þsin�ð0Þix¼0;

where F� ¼ cosð’=2Þ
þ=2, F� ¼ sinð’=2Þ
�=2, B� ¼
sinð’=2Þ=�0 and B� ¼ cosð’=2Þ
3=�0. From the scaling

analysis [22–24], it is concluded that B� and B� are

relevant for K > 1 (g < 0) and K < 1 (g > 0),
respectively.
The forward tunneling terms are calculated to be

h@xBðx; �Þ@xBðx; 0Þjx¼x0i ¼ Xð�Þ; (10)

Xð�Þ ¼ 8kF
v

�ð�Þ � 4�

v2
T
X
!n

e�i!n�j!nj: (11)

where B ¼ ffiffiffiffiffiffiffi
K�

p
or �=

ffiffiffiffi
K

p
. Finally, we reach the dc con-

ductance for the equal helicity configuration

�

G0
¼�


2þ
K

cos2
�
’

2

�
þsin2

�
’

2

�
D�

�
T

T0

�
2=K�2

þ�
2�Ksin2
�
’

2

�
þ
2

3cos
2

�
’

2

�
D�

�
T

T0

�
2K�2

; (12)

where G0 ¼ ðtae=�vÞ2 and DAðT0Þ ¼
�2

0

R1=T0

0 d��hsinAð�Þ sinAð0Þi for A ¼ � and � are

the correlation function at T ¼ T0 < Tc. Remarkably, the
conductance depends on the phase difference between the
two superconductors. This stems from a peculiar feature of
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Majorana fermion. At ’ ¼ 0, the conductance vanishes in
the absence of the SOI, (i.e., � ¼ 0). In the presence of the
SOI at’ ¼ 0, the last term is relevant forK < 1 in addition
to the first term. The first term is independent of T, whereas
the last term increases with decreasing T as T2K�2 for K <
1. For ’ � 0, the second term is relevant for K > 1 even in
the absence of the SOI. Finally for ’ � 0 and � � 0, all
terms contribute to the conductance. The argument above
is summarized in Table I.

The total current through a Josephson junction is de-
scribed by the so-called resistively and capacitively
shunted junction model

J ¼ C

2e

d2’

dt2
þ 1

2eRð’Þ
d’

dt
þ J0 sinð’Þ; (13)

with C being the capacitance of a junction. In the present
junction, the resistance R ¼ 1=� depends on ’. Thus
Majorana fermion excitation would modify dynamics of
a Josephson junction. The phase’may be determined self-
consistently so that the current can be optimized. Such an
issue is a natural extension of this Letter.

We show the Josephson current and the conductance in
the opposite helicity configuration as follows:

hJi ¼ e�

�
at

�v

�
2
sin’

�
1

K
� 
2

3K � 
2þ þ 
2�
�
; (14)

�

G0

¼�
sin2ð’=2Þ

K
þ
2þcos2

�
’

2

�
D�

�
T

T0

�
2=K�2

þ�
3Kcos
2ð’=2Þþ
2�sin2

�
’

2

�
D�

�
T

T0

�
2K�2

: (15)

For � ¼ 0, the conductance proportional to sin2ð’=2Þ is
independent of temperature, which is in sharp contrast to
that in the equal helicity case given in Eq. (12). The
behaviors of the conductance � are summarized in the
Table I.

In summary, we have studied electric transport through a
point contact which connects Majorana fermion modes
appearing at the edges of two helical superconductors by
taking into account the interaction among Majorana fermi-
ons and the spin-orbit interaction (SOI) at a point contact.
By introducing a fictitious fermion consisting of two
Majorana fermions, the Majorana fermion model is trans-
formed into the Tomonaga-Luttinger model. The applica-
tion of the standard bosonization technique enables to
analyze low energy physical phenomena of a Majorana
fermion. It is found that several novel features appear due
to the Majorana fermions such as (i) the conductance is
sensitive to the phase difference of two superconductors,
(ii) tunneling with SOI gives quite distinct behavior from
that without SOI, (iii) the transport phenomena depend
on relative helicity of two superconductors as shown in
Eqs. (12) and (15), and (iv) the interactions leads to the
power-law temperature or voltage dependences.
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