
Josephson � State in a Ferromagnetic Insulator

Shiro Kawabata,1 Yasuhiro Asano,2 Yukio Tanaka,3 Alexander A. Golubov,4 and Satoshi Kashiwaya5

1Nanotechnology Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), and JST-CREST,
Tsukuba, Ibaraki, 305-8568, Japan

2Department of Applied Physics, Hokkaido University, Sapporo, 060-8628, Japan
3Department of Applied Physics, Nagoya University, Nagoya, 464-8603, Japan

4Faculty of Science and Technology and MESA+ Institute of Nanotechnology, University of Twente,
7500 AE, Enshede, The Netherlands

5Nanoelectronics Research Institute (NeRI), AIST, Tsukuba, Ibaraki, 305-8568, Japan
(Received 14 December 2009; published 19 March 2010)

We predict anomalous atomic-scale 0-� transitions in a Josephson junction with a ferromagnetic-

insulator (FI) barrier. The ground state of such junction alternates between 0 and � states when thickness

of FI is increasing by a single atomic layer. We find that the mechanism of the 0-� transition can be

attributed to thickness-dependent phase shifts between the wave numbers of electrons and holes in FI.

Based on these results, we show that a stable � state can be realized in junctions based on high-Tc

superconductors with a La2BaCuO5 barrier.

DOI: 10.1103/PhysRevLett.104.117002 PACS numbers: 74.50.+r, 03.67.Lx, 72.25.�b, 85.75.�d

The developing field of superconducting spintronics
comprises a plenty of fascinating phenomena that may
complement nonsuperconducting spintronics devices [1].
Mesoscopic hybrid structures consisting of superconduct-
ing and magnetic materials have attracted considerable
attention as devices with novel functionalities [2]. One of
most interesting effects is the formation of � states in
superconductor/ferromagnetic-metal/superconductor (S/
FM/S) Josephson junctions [3]. Under appropriate condi-
tions a ferromagnet can become a � phase shifter, provid-
ing the phase difference � ¼ � between two super-
conductors in the ground state in contrast to � ¼ 0 in
ordinary Josephson junctions. Recently a quiet qubit based
on S/FM/S � junction [4] has been suggested as a prom-
ising device to realize quantum computation because the
spontaneously generated two-level system in this structure
is robust against decoherence due to external fluctuations.
However, low energy quasiparticle excitations in a FM pro-
vide strong dissipation [5]. Therefore Josephson � junc-
tions with a nonmetallic interlayers are highly desired for
qubit applications [6]. Moreover, from the fundamental
viewpoint, the Josephson transport through a ferromag-
netic insulator (FI) has been studied based on phenome-
nological models [7] and not yet been explored explicitly.

In this Letter, we study theoretically the Josephson effect
in superconductor/ferromagnetic-insulator/superconductor
(S/FI/S) junctions using the tight-binding model. We show
that the ground state in such structures alternates between
the 0 and � states when the thickness of a FI (LF) is
increasing by a single atomic layer. This remarkable effect
originates from the characteristic band structure of a FI.
Quasiparticles in the electron and hole branches acquire
different phase shifts while propagating across a FI. We
will show that the phase difference is exactly �LF due to
the band structure of a FI, thus providing the atomic-scale

0-� transition. This mechanism is in striking contrast to the
proximity induced 0-� transition in conventional S/FM/S
junctions. On the basis of the obtained results, we predict a
stable � state in a Josephson junction based on high-Tc

superconductors with a La2BaCuO5 barrier, where electric
current flows along the c axis of cuprates.
Let us first consider an S/FI/S junction in the two-

dimensional tight-binding model as shown in Fig. 1(a).
The vector r ¼ jxþmy points to a lattice site, where

FIG. 1 (color online). (a) The Josephson junction with a
ferromagnetic-insulator (FI) barrier on the tight-binding lattice.
The magnetic moment in FI is chosen along the z axis in spin
space. The band structure of a FI (b) and of standard band
insulator (c) in the Bogoliubov–de Gennes picture. The disper-
sion for a hole with spin � is obtained as a mirror image of the
dispersion for an electron with spin � with respect to Fermi
energy.
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x and y are unit vectors in the x and y directions, respec-
tively. The thickness of a FI layer is LF. In the y di-
rection, we apply the hard wall boundary condition for
the number of lattice sites being W. Electronic states
in a superconductor are described by the mean-field

Hamiltonian, H ¼ ð1=2ÞPr;r02Sð~cyr ĥr;r0~cr0 � ~crĥ
�
r;r0~c

y
r0 Þ þ

ð1=2ÞPr2Sð~cyr �̂ ~cyr �~cr�̂
�~crÞ with ~cr ¼ ðcr;"; cr;#Þ, where

cyr;� (cr;�) is the creation (annihilation) operator of an

electron at r with spin � (¼" or #), �~c means the transpose
of ~c, and �̂0 is 2� 2 unit matrix. We introduce the hopping
integral t among nearest neighbor sites and measure the
length in the units of the lattice constant a. In supercon-

ductors, the Hamiltonian leads ĥr;r0 ¼ ½�t�jr�r0j;1 þ
ð��s þ 4tÞ�r;r0 ��̂0, the chemical potential �s is measured

from the band bottom, and �̂ ¼ i��̂2, where � is the
amplitude of the pair potential in the s-wave symmetry
and �̂j for j ¼ 1–3 are Pauli matrices. We describe a FI by

ĥr;r0 ¼ �t�jr�r0j;1�̂0 � ðg=2þ 4tÞ�r;r0�̂3, where g corre-

sponds to a gap of a FI as shown in Fig. 1(b).
The Hamiltonian is diagonalized by the Bogoliubov

transformation. The Andreev bound state consists of sub-
gap states whose wave functions decay far from the junc-
tion interface. In what follows, we focus on the subspace
for spin- " electron and spin- # hole [the dispersions shown
by solid curves in Fig. 1(b)]. In superconductors, the wave
function of a bound state is given by

�LðrÞ ¼ �L

�
u
v

� �

Ae�ikj þ v
u

� �

Beik
�j
�

�lðmÞ; (1)

�RðrÞ ¼ �R

�
u
v

� �

Ceikj þ v
u

� �

De�ik�j
�

�lðmÞ; (2)

where � ¼ L (R) indicates a superconductor in the left-
(right-)hand side, �� is the phase of a superconductor,

�� ¼ diagðei��=2; e�i��=2Þ, uðvÞ ¼ ½ð1þ ð�Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � �2

p
=EÞ=2�1=2, and A, B, C, and D are amplitudes

of the wave function for an outgoing quasiparticle. The

wave function in the y direction is �lðmÞ ¼
ffiffiffiffiffiffiffiffiffiffi
2=W

p
sin½lm�=ðW þ 1Þ�, where l indicates a transport

channel. The energy E is measured from the Fermi energy

and k ¼ cos�1½2��s=2t� cosfl�=ðW þ 1Þg þ
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � E2

p
=E� is the complex wave number. These wave

functions decay as e�ðj�LFÞ=�0 for j > LF and ej=�0 for j <
0 with �0 being the coherence length. In a FI, the wave
function is given by

�FIðrÞ ¼
�

fLe
�iqej

gLe
�iqhj

� �

þ fRe
iqej

gRe
iqhj

� ��

�lðmÞ; (3)

qe ¼ �þ i	"; (4)

qh ¼ 0þ i	#; (5)

where cosh	" ¼ 1þ E=2tþ g=4tþ cos½l�=ðW þ 1Þ� �

cos½W�=ðW þ 1Þ�, cosh	# ¼ 1þ E=2tþ g=4t�
cos½l�=ðW þ 1Þ� � cos½�=ðW þ 1Þ�, and fL, fR, gL and
gR are amplitudes of wave function in a FI. The Andreev
levels "n;lð� ¼ �L ��RÞ [n ¼ 1; . . . ; 4] can be calculated
from boundary conditions �Lð
;mÞ ¼ �FIð
;mÞ and
�RðLF þ 
;mÞ ¼ �FIðLF þ 
;mÞ for 
 ¼ 0 and 1. The
Josephson current is related to "n;l via IJð�Þ ¼
ð2e=@ÞPn;l½@"n;lð�Þ=@��fð"n;lð�ÞÞ, where fð"Þ is the

Fermi-Dirac distribution function. The Josephson critical
current IC is defined by IC ¼ IJð�=2Þ.
In Fig. 2(a), we first show the Andreev levels "n;1 � "n

for odd LF (¼3 and 5) and even LF (¼4 and 6) with W ¼
1, �s ¼ 2t, and � ¼ 0:01t. The results show that the
ground state for odd LF is at � ¼ �, whereas that for
even LF is at � ¼ 0. This atomic-scale 0-� transition
persists even if we increase LF and W. In Fig. 2(b), we
show the Josephson critical current as a function of LF for
W ¼ 1. Temperature T is set to be 0:01Tc � Tc, where Tc

is the transition temperature of a superconductor. The
�ð0Þ state is always more stable than the 0ð�Þ state when
the thickness of FI is an odd(even) integer. The reason is as
follows. At low temperatures, only the Andreev levels
below the Fermi energy, i.e., "1 and "2, contribute to IC
[see Fig. 2(a)]. In the odd (even) LF cases, the �- (0-) state
is stable because of @�"1j�¼�=2 > ð<Þ0, @�"2j�¼�=2 <

ð>Þ0, and j@�"2j�¼�=2j> j@�"1j�¼�=2j. The atomic-scale

0-� transition is insensitive to W and material parameters

FIG. 2 (color online). (a) The Andreev levels "i � "i;1 are
plotted as functions of � for an one-dimensional S/FI/S junction
with W ¼ 1. Left (right) panel shows the results for odd LF

(even LF) with g ¼ 0:5t. (b) Josephson critical current IC at T ¼
0:01Tc as a function of the thickness LF forW ¼ 1 and g ¼ 0:5t.
The large red (small blue) circles indicate the �ð0Þ junction. In
the inset, the 0-� phase diagram on the g-LF plane is shown for a
two-dimensional S/FI/S junction with W ¼ 10 at T ¼ 0:01Tc,
where the red and blue regimes correspond to the � and 0 states,
respectively.
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such as �s, g, and �. As an example, inset of Fig. 2(b)
shows the phase diagram on the g-LF plane for W ¼ 10.

The mechanism of the 0-� transition in a FI is very
different from that in a FM. The key feature is expressed
by the wave number of a quasiparticle in a FI as shown in
Eqs. (4) and (5), where qe and qh are the wave numbers for
an electron spin- " and a hole spin- # , respectively. The real
parts of qe and qh reflect the wave number at the q points,
where energy is closest to the Fermi energy, and differ by�
from each other. As shown in Fig. 1(b), the real part of qe is
� because the top of the electron band is located at q ¼ �.
On the other hand, the real part of qh is 0 because the top of
the hole band is at q ¼ 0. This is the origin of the differ-
ence between qe and qh which accounts the atomic-scale
0-� transition. When we consider a usual band insulator as
shown in Fig. 1(c), we always obtain qe ¼ qh and their real
parts equal � because both the top of the electron band and
the bottom of the hole band are located at q ¼ �. As a
consequence, 0-state is always stable in usual band insu-
lators. Thus we conclude that the characteristic band struc-
ture of a FI is the origin of atomic-scale 0-� transitions.
These features basically remain unchanged even when we
consider Josephson junctions in higher dimensions. In such
junctions, however, the appearance of 0-� transitions de-
pends on relative directions between the current and the
crystalline axis. We will address this issue below. It should
be emphasized that peculiar results presented above cannot
be described by the standard quasiclassical Green’s func-
tion method [8] where band structure far from the Fermi
energy is ignored.

Let us reconsider atomic-scale 0-� transitions from a
different view point of quasiparticle transmission coeffi-
cient. In the high barrier limit (g � t), the Josephson
critical current is perturbatively given by IC / T�

# T" [6].
Here T"ð#Þ is a transmission coefficient of a FI for an

electron with spin- " (- # ). By using the transfer-matrix
method [9], T� for one-dimensional junctions can be ob-
tained analytically T� � �LF

ð��t=gÞLF . Here �"ð#Þ ¼
�ðþÞ1 and �LF

is a spin-independent complex constant.

We immediately find T"=T# ¼ ð�1ÞLF . Thus the relative

phase of T� between spin- " and spin- # is � (0) for the odd
(even) number of LF. As a consequence, the sign of IC /
ð�1ÞLF becomes negative for odd LF and positive for even
LF. In other words, a FI acts as a � phase shifter for the
spin- " electron for odd LF.

The transfer-matrix method in real space also enables us
to extend the calculations to another magnetic materials.
Up to now, we have considered uniform magnetic moment
in FI, which can be schematically expressed by S= "1"2
	 	 	 "LF

=S or S= #1#2 	 	 	 #LF
=S. The arrows "j and #j in-

dicate the z-axis magnetization at j. We can extend the
above simple analysis to the arbitrary magnetization con-
figuration, e.g., a random alignment described by S= #1"2#3
	 	 	 "LF�2"LF�1#LF

=S. In such junctions, we find IC 

Q

i¼1;LF
T�
i;#Ti;" ¼

Q
i¼1;LF

ð�1Þ ¼ ð�1ÞLF , where Ti;� is

the transmission coefficient of an FI layer at i. Therefore
we obtain a noticeable result, i.e., the sign of IC is inde-
pendent of magnetization configurations and is negative
(positive) for odd (even) LF. The appearance of the atomic-
scale 0-� transition has been also predicted in S/antiferro-
magnetic-interlayer/S junctions [10]. In their theory, how-
ever, the antiferromagnetic configuration is found to be
essential for the atomic-scale transition. On the other hand,
we conclude that the magnetization symmetry is not nec-
essary and that the �-phase difference between T" and T# is
an essential feature for the atomic-scale transition.
Therefore, our analysis provides a more general view for
the physics of the atomic-scale 0-� transition.
Finally, we show the possibility of the atomic-scale 0-�

transition in a three-dimensional junction using realistic
materials. Here we focus on La2BaCuO5 (LBCO) [11],
which is an important representative FI in spintronics.
According to a first-principle band calculation [12], the
bottom of the minority spin band is at the � point whose
wave number is ðka; kb; kcÞ ¼ ð0; 0; 0Þ, where kj for j ¼ a,

b, and c is the wave number along the j axis (see Fig. 6 in
Ref. [12]). The mirror image of the minority spin band with
respect to the Fermi energy corresponds to the hole band
with minority spin in the Bogoliubov–de Gennes picture.
Thus the top of the minority spin hole band is at the �
point. On the other hand, top of the majority spin band is at
the Z point with ðka; kb; kcÞ ¼ ð0; 0; �Þ. Thus we can pre-
dict that the � state would be possible if one fabricates a
Josephson junction along the c axis as shown in Fig. 3(a).
Note that it is impossible to realize the � state if current
flows in the ab plane. This is because wave numbers in the
ab plane at the bottom of the minority spin band and those
at the top of the majority spin band are given by the same
wave number ðka; kbÞ ¼ ð0; 0Þ [12].
From the perspectives of the S/FI interface matching

and the high-temperature device operation, the usage
of high-Tc cuprate superconductors (HTSC), e.g.,
YBa2Cu3O7�� and La2�xSrxCuO4 (LSCO) is desirable.
Recent development of the pulsed laser deposition tech-
nique enables layer-by-layer epitaxial growth of oxide
superlattices [13]. In order to show the possibility of
� coupling in such realistic HTSC junctions, we have
calculated the c-axis Josephson critical current IC based
on a three-dimensional tight-binding model with La and Lb

being the numbers of lattice sites in the a and b directions
[Fig. 3(a)]. In the calculation we have taken into account
the d-wave order-parameter symmetry in HTSC, i.e., � ¼
�dðcoskxa� coskyaÞ=2. The tight-binding parameters t

and g have been determined by fitting to the first-principle
band structure calculations along the line from the � to Z
point [12]. Figure 3(c) shows the thickness LF dependence
of IC at T ¼ 0:01Tc for a LSCO/LBCO/LSCO junction
with g=t ¼ 20, �d=t ¼ 0:6, and La ¼ Lb ¼ 100. As ex-
pected, the atomic-scale 0-� transitions can be realized in
such oxide-based c-axis stack junctions.
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The experimental detection of the � junction is possible
by using a superconducting ring which contains two
Josephson junctions as shown in Fig. 3(b). When both
junctions are in the 0 (or �) state at the same time, the
critical current of the ring reaches its maximum at zero
external magnetic flux. On the other hand, the critical
current reaches its minimum at zero magnetic flux when
the 0 state is stable in one junction and � is stable in the
other [14].

From the viewpoint of qubit applications, it is important
to note that the harmful influence of midgap Andreev
resonant states [15,16] and nodal quasiparticles due to
the d-wave symmetry on the macroscopic quantum dy-
namics in HTSC c-axis junctions [17] is found to be weak,
both theoretically [18] and experimentally [19]. Therefore,
we conclude that HTSC/LBCO/HTSC � junctions would
be promising candidates as basic elements for quiet qubits.

In summary, we have studied the Josephson effect in S/
FI/S junctions based on the tight-binding model. We pre-
dict the formation of the atomic-scale 0-� transitions in
such junctions. This result is insensitive to the material
parameters such as the gap g of the FI and the super-
conducting gap �, indicating that it is a robust and univer-
sal phenomenon. Our findings suggest the way of realizing
ideal quiet qubits, which possess both the quietness and the
weak quasiparticle-dissipation nature.
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[12] V. Eyert, K. H. Höck, and P. S. Riseborough, Europhys.

Lett. 31, 385 (1995).
[13] W. Prellier, P. Lecoeur, and B. Mercey, J. Phys. Condens.

Matter 13, R915 (2001).
[14] M. Sigrist and T.M. Rice, J. Phys. Soc. Jpn. 61, 4283

(1992).
[15] Y. Tanaka and S. Kashiwaya, Phys. Rev. Lett. 74, 3451

(1995); Y. Tanaka and S. Kashiwaya, Phys. Rev. B 56, 892
(1997); S. Kashiwaya and Y. Tanaka, Rep. Prog. Phys. 63,
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FIG. 3 (color online). (a) Schematic picture of a c-axis stack
high-Tc superconductor/FI/high-Tc superconductor Josephson
junction and (b) a d-wave ring to detect the �-junction behavior
experimentally. (c) The Josephson critical current IC as a func-
tion of the FI thickness LF at T ¼ 0:01Tc for a c-axis stack
LSCO/LBCO/LSCO junction with g=t ¼ 20, �d=t ¼ 0:6, and
La ¼ Lb ¼ 100. The large red (small blue) circles indicate the
�ð0Þ junction.
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